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Abstract

» Obtaining clean datasets to train AD
sensors has always been a problem

* The proposed technique is to include a
‘sanitising’ phase (does not affect the
underlying AD algorithm) in the training
phase of the AD sensor.

 The sanitising phase consists of creating
“micro models” trained on small slices of
data.
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Abstract

e The micro-models are combined in a
voting scheme.

* The paper shows that the sanitising phase
significantly improves the quality of
unlabeled data.

Introduction

» Effective AD systems require highly
accurate modelling of normal data.

* Datasets are large, contain unpredictable
spread of attacks, rare data and errors.

» The paper proposes a Sanitising phase, a
distributed architecture for cross
sanitisation, a shadow sensor for the false
positive problem.
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Local Sanitisation

* Feasibility of supervised and semi-
supervised training?

» Unsupervised learning? Will it help to use
this method?

* Remove all attacks, abnormalities and rare
traffic artefacts is the first important step.

Assumptions

* Frequency of attacks is generally low
relative to legitimate input

» Common attack packets tend to cluster
together and form a sparse
representation over time.

* Large datasets for training — increases the
probability of mal-code presence.
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Micro-models

e Micro-models are used in an ensemble
arrangement.

e T={mdl,md2,..., mdN}

» mdi is the micro-dataset starting at time (i —
l) * g and, g is the granularity

* AD: M =AD(T) where AD can be any
chosen anomaly detection algorithm

* micro-model, Mi = AD(mdi)

Sanitised and Abnormal Models

o Lj,i = TEST(Pj,Mi) where Pj is a packet j, Mi is
the micro-model used for testing.

e Lj,i, has a value of 0 if the model Mi deems
the packet Pj normal, or | if Mi deems it
abnormal.

» SCORE(Pj) is the weighted score of each
packet
» split our data into two disjoint sets: one

that contains only majority-voted normal
packets, Tsan and the other Tabn
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Evaluation of Sanitisation

* Measure increase in the detection
accuracy of any content-based AD system
when we apply training data sanitisation.

» measure the performance of the sensor
with and without sanitisation.

* test each packet and consider the
computational costs involved in diverting
each alert to a host-based shadow sensor.

Experimental Results

Sensor www | ' WWW__ 'lisls '
FP(%) TP(%) FP(%) TP(%) FP(%) TP(%)
A 0.07 0 0.01 0 0.04 0
A-S 0.04 2020 029 17.14 0.05 18.51
A-SAN  0.10 100 0.34 100 0.10 100
P 0.84 0 6.02 40  64.14 64.19

P-SAN  6.64 7676 1043 61 240  86.54
FP: false positive rate; TP: true positive rate

Sensor  wwwl  www lists
A 0 0 0

A-S 505 59.10 370.2
A-SAN 1000 294.11 1000
P 0 6.64 1.00

P-SAN 11.56 5.84 36.05
signal-to-noise ratio (TP/FP); higher values mean
better results
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Sanitisation parameters

* The optimal operating point for any
sensor can be identified automatically
with offline tuning that requires no
manual intervention.

* Fine tune the following: granularity of the
micro-models, the voting algorithm, and
the voting threshold.

o
[

False positive rate (%)
o

1CD—0‘"!"-'¢ T

=k =1hour |

—e—3-hour | :

—e—6-hour
12-hour] : ; ; ; ;

81 02 03 04 To5s 06 07 o8

v

Detection rate (%)
8

Figure 1. Performance for www/ for 3-hour
granularity when using simple voting and
Anagram (V is the voting threshold; see section 2)
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Figure 2. Performance for www! when us-
ing weighted voting and Anagram (V is the
voting threshold)
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Figure 3. Performance for www for 3-hour
granularity when using Anagram (V is the
voting threshold)
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Figure 4. Performance for lists for 3-hour
granularity when using Anagram (V is the
voting threshold)
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Figure 5. Granularity impact on the perfor-
mance of the system for wwwi when using
Anagram

;\?10 E 9
Q
s
c [USTURIRE U VUt SUPRUPRPRIUTSPRPUR. PP SPRUPRRPPRR
2
°
2 :
|73 :
a 0 i i " - "
1 3 6 12 24 48 300

3/16/09



3/16/09

ey
0

o

I I I
1 3 6 12 24 48 300
Granularity (hours)

False positive rate (%)
B

< 100 T T T
D : —e—V=0.15
o : =—=\/=0.55
g : :
5 50( ...................... " .......... t ............ aAA‘A. ............
5 : ;
D :
? :
2 0 ] i ] i ]
1 3 6 12 24 48 300

Granularity (hours)

Figure 6. Granularity impact on the perfor-
mance of the system for www when using

Payl
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Figure 7. Impact of the size of the training
dataset for www]
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Figure 8. Impact of the anomaly detector’s
internal threshold for www/ when using
Anagram

Computational Performance

* Goal: keep request latency at a reasonable
level, scalability

¢ |s the shadow sensor sufficient?

* Shadow sensor: performance, requires
synchronisation of state between it and
the shadowed production application and
its not perfect.

* Alert rate for both Anagram and Payl
does not increase by much after
sanitising.
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Collaborative Sanitisation

* Long-lasting attacks

* Such attacks require significant resources
— effectively limits the scope of attack to a
few target hosts or networks.

» Distributed system: abnormal traffic
models are shared between collaborative
sites.

» Cross-sanitisation improves ability to
remove long living attacks.

Cross sanitised model

* Direct model differencing
¢ Indirect model differencing

Table 4. Recalculating sanitized and abnor-
mal models. These routines use the abnormal models
of collaborating peers to regenerate models of both normal

and abnormal local data.
ROUTINE CROSSSANITIZED()

Vi € [1..M]
if 0=TEST(P}, M 4o,,) and I=TEST(P}, M y3,,,)
Tcross - -P]

A[Cross _ AD‘TCI'OSS)
ROUTINE CROSSABNORMAL()

3 e [1..M]
s.t. O=TEST(P}, Msar) and O=TEST(P;, Mapn,)
Tcabn — P_]

Meabn — AD(Teabn)
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Additional Optimisation

 Data items that are indeed normal for a
particular site can be considered
abnormal by others.

* Proposed solution: Use a shadow server.

Performance of Collaborative

Sanitisation

¢ Indirect model differencing performs
better

Table 5. Performance when the sanitized
model is poisoned and after it is cross-
sanitized when using direct/indirect model

differencing

Model www | WWW lists
FP(%) DR(%) FP(%) DR (%) FP(%) DR(%)

Mpois 0.10 4494 027 51.78 025 4753

AI. sssss 0.24 100 0.71 100 0.48 100

(direct)

Meross

L 0.10 100 0.26 100  0.10 100
(indirect)

3/16/09

12



* Size of the cross sanitised model decreases,
increasing FP rates.
* Potential attack by an adversarial collaborator.

Table 6. Size of the sanitized model when poi-
soned and after cross-sanitization when us-
ing direct/indirect model differencing

wwwl WWW lists
#grams file size #grams file size#gramsfile size
M, 2,289,888 47M 199,011 39M 6,025 114K

Model

Mpois 1,160,235 23M 1,270,009 24M 43,768 830K
‘[ sssss 1095458 21M 1,225,829 24M 37,113 701K
(direct)

Meross <

L. 1,160,004 23M 1,269,808 24M 43,589 828K
(indirect)

Table 7. Time to cross-sanitize for direct and
indirect model differencing

Method www | WWwW lists
direct 13.98s 26.35s 16.84s
indirect 1966.68s 1732.32s 685.81s

Polymorphic Attacks

* A polymorphic engine CLET was used to
generate shellcode.

» 2100 samples of shellcode was used. 100
micro-models were poisoned with 20
shellcodes. Sanitised model was poisoned
with the remaining 100 shellcode.

» 82% of the grams from 100 samples were
found abnormal.
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