META CLUSTERING

R Caruana, M Elhawary, N Nguyen, C Smith IEEE International Conference on Data Mining, 2006

WHAT IS CLUSTERING

- · Finding groups of similar objects in data
 - Clustering people with similar characteristics
 - · Activities
 - · Network of associations
 - . Educational, socio-economic, background
 - · Beliefs and behaviors
 - Clustering text/documents with similar characteristics
 - . By content
 - . By document type
 - . By document intent
 - · By intended audience
 - Clustering network events
 - · By intent attack vs. intrusion vs. denial of service vs. normal
 - . By type: port som vs. probe vs. ...

WHY CLUSTERING

- Data exploration
 - Our capacity to collect data has outstripped our capacity to understand/ interpret the data
 - . Chicken and egg problem with new data
 - . Don't know what you are looking for until you understand the data
 - . Can't understand data until you know what you are looking for
 - . Easier to find patterns in groups of objects than in single objects
 - As data grows bigger, but human brain remains fixed, must present experts with less raw, more processed data
 - · Focused search and data analysis
 - soft/fuzzy/approximate/smart queries
 - · Efficient transmission, presentation, summarization

STANDARD CLUSTERING IS INADEQUATE

- Disadvantages:
 - user in the loop
 - · manually engineer distance metric
 - time consuming
 - · requires significant expertise
 - · final clustering often sub-optimal

NEW APPROACH: META CLUSTERING

- + Automatically generate many different clusterings
- · Cluster clusterings to organize results
- · Present user with organized meta clustering
- · Human out of loop: just select best clustering
- No need to manually engineer distance metric
- · Faster, better final clustering for task at hand

MAIN GOALS

- Push as much work as possible required for clustering from the user to the computer
- Make clustering as automatic as possible
- . More effective clustering in hands of users, not researchers
- + Find better clusters/clusterings
- + Find better clusters/clusterings faster
- Simultaneously provide multiple/alternate views of data
- + Meta level helps users understand complex data faster
- + Provide more natural user control and feedback

OVERALL APPROACH

- Generate many good, yet qualitatively different, base-level clusterings of the same data
- Measure the similarity between the base-level clusterings generated in the first step so that similar clusterings can be grouped together
- Organize the base-level clusterings at a meta level and present them to the users

RESEARCH QUESTIONS

- · How to generate different clusterings?
- How to measure distance between clusterings?
- · How to organize clusterings for user?
- How to combine/merge clusterings?

GENERATING DIVERSE CLUSTERINGS

- Diverse clusterings from K-means minima
- Diverse clusterings from feature weightings

GENERATING DIVERSE CLUSTERINGS

- Diverse clusterings from K-means minima
 - K-means is run multiple times with different initializations, and each local minimum is recorded
 - Finding: the space of local minima is small compared to the space of reasonable clusterings, so an additional method for generating diverse clusterings is used...

GENERATING DIVERSE CLUSTERINGS

- · Diverse clusterings from feature weightings
 - clustering many times with different random feature weights allows to find qualitatively different clusterings using the same clustering algorithm.

GENERATING DIVERSE CLUSTERINGS

- Diverse clusterings from feature weightings
 - feature weighting requires a distribution to generate the random weights
 - a Zipf power law distribution is used (empirical evidence shows that feature importance is Zipfdistributed in a number of real-world problems)

GENERATING DIVERSE CLUSTERINGS

- Diverse clusterings from feature weightings
 - A Zipf distribution describes a range of integer values from 1 to some maximum value K
 - The frequency of each integer is proportional to ¹/_{i^α} where i is the integer value and α is the shape parameter

GENERATING DIVERSE CLUSTERINGS

· Diverse clusterings from feature weightings

```
Algorithm 1: Generate a diverse set of clusterings
Input: X = \{x_1, x_2, ..., x_n\} for x_i \in \mathbb{R}^d, k is the
        number of clusters, m is the number of
        clusterings to be generated
Output: A set of m alternate clusterings of the data
           \{C_1, C_2, ..., C_m\} for which
          C_i: \mathbf{X} \mapsto \{1, 2, ..., k\} is the mapping of each
          point x \in X to its corresponding cluster
    for i = 1 to m do
        \alpha = rand("uniform", [0 \alpha_{max}])
        for j = 1 to d do
            w_j = rand("zipf", \alpha)
        X_i = \emptyset
        for x \in X do
            z'=z\odot u where \odot is pairwise
            multiplication
             X_i = X_i + \{x'\}
        end
        C_i = K\text{-means}(X_i, k)
    end
```

CLUSTERING CLUSTERINGS AT THE META

- · How to measure distance between clusterings?
- + Measure based on Rand Index
- · Given two clusterings:

 $I_{ij}=1$ if points i and j are in the same cluster in one clustering, but in different clusters in the other.

 $I_{ij} = 0$ otherwise

Dissimilarity of two clusterings:

$$\frac{\sum_{i < j} I_{ij}}{N(N-1)/2}$$

AGGLOMERATIVE CLUSTERING AT THE META LEVEL

- · How to combine/merge clusterings?
- Meta clustering can be performed using any clustering algorithm that works with pairwise similarity data
- · Agglomerative clustering is used
 - works with similarity data
 - does not require the user to specify the number of clusters
 - resulting hierarchy makes navigating the space of clusterings easier

EXPERIMENTAL RESULTS

Data Sets

Data Set	# features	# cases	# trueclasses	# clusters	# points in biggest class	# features in 95 % PCA
Australia	17	245	10	10	80	10
Bergmark	254	1000	25	25	162	130
Covertype	49	1000	7	15	476	39
Letters	617	514	7	10	126	141
Protein	ad format	639	N/A	20	N/A	NA
Phoneme	10	990	15.11	15	N/A	9

PERFORMANCE METRICS

 Compactness: measures the average pairwise distance between points in the same cluster

$$\frac{\sum_{i=1}^{k} N_i \frac{\sum_{j=1}^{N_i-1} \sum_{k=j+1}^{N_i} d_{jk}}{N_i (N_i - 1)/2}}{N_i (N_i - 1)/2}$$

Accuracy (using class labels)

EFFECT OF ZIPF WEIGHTING

- As the α value increases, feature weighting explores a region of lower compactness
- Some of the most accurate clusterings are generated when applying feature weighting with higher α values
- A uniform distribution alone is insufficient to explore the clustering space

FEATURE WEIGHTING BEFORE AND AFTER PCA

- Although there is correlation between compactness and accuracy, the correlation is not perfect.
- Sometimes, the most accurate clusterings are not the most compact ones.
- PCA yields more diverse clusterings on some problems, less diverse clusterings on others.

LOCAL MINIMA VS. FEATURE WEIGHTING

- For Australia, Bergmark, and Letter, weighting features yields more diverse clusterings.
- For Covertype, not applying feature weighting fails to discover the cloud of more accurate clusterings.
- For Australia, K-means finds more clusterings in the upper left corner (accurate and compact).

CASE STUDY: PHONEME CLUSTERING

CONCLUSIONS

- Modest correlation between clustering compactness and clustering accuracy
- Searching for a single, optimal clustering may be inappropriate when correct clustering criteria cannot be specified in advance
- Clustering that is good for one criterion may be suboptimal for another criterion
- · Different clustering may be needed by different users