PNrule: A New Framework for Learning Classifier Models in Data

Mining (A Case-Study in Network Intrusion Detection)

Ramesh Agarwal* Mahesh V. Joshi'

Abstract

We have developed a new solution framework for the multi-class classification
problem in data mining. The method is especially applicable in situations where
different classes have widely different distributions in training data. Our framework is
based on a new rule-based classifier model for each target class. The proposed model
consists of positive rules (P-rules) that predict presence of the class, and negative rules
(N-rules) that predict absence of the class. Learning is done in two phases. The first
phase discovers a few P-rules that capture most of the positive cases for the target
class while keeping the false positive rate at a reasonable level. The goal of the second
phase is to discover a few N-rules that remove most of the false positives covered by
the union of all P-rules while keeping the detection rate above an acceptable level. The
sets of P- and N-rules are ranked in their order of discovery. Using statistics of P- and
N-rules on training data, we develop a mechanism to assign a score to each decision
made by the classifier. Scores from all the binary classifiers are consolidated using the
misclassification cost matrix to make the final decision. In this paper, we describe the
details of this proposed framework. We describe how we applied our framework to
a real-life network intrusion-detection dataset, supplied as part of the KDD-CUP’99
contest. Unique features of this dataset make this a challenging application. We
compare the results of our approach with 23 other contestants. As an aside, we also
describe how we proved that the test-data labels provided after the contest were wrong.
For the subset of test data consisting of known subclass labels, our technique achieves
the best performance of all in terms of accuracy as well as misclassification cost penalty.

*IBM Thomas J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598

(agarwal@watson.ibm.com)

"Department of Computer Science, University of Minnesota, Minneapolis, MN 55455 (mjoshi@cs.umn.edu).
This work was done when the author visited IBM Research during Summer’99. Expanded version of this paper is

available at http://www.cs.umn.edu/~ mjoshi/myw.html

1 Introduction and Motivation

Learning classifier models is an important problem in data mining. Observations are often
recorded as a set of records, each characterized by multiple attributes. Associated with each
record is a categorical attribute called class. Given a training set of records with known
class labels, the problem is to learn a model for the class in terms of other attributes. The
goal is to use this model to predict the class of any given set of records, such that certain
objective function based on the predicted and actual classes is optimized. Traditionally, the
goal has been to minimize the number of misclassified records; i.e. to maximize accuracy.
Various techniques exist today to build accurate classifier models[15]. Although no single
technique is proven to be the best in all situations, techniques that learn rule-based models
are especially popular in the domain of data mining. This can be contributed to the easy
interpretability of the rules by humans, and competitive performance exhibited by rule-based
models in many application domains.

A general rule-based model is a disjunction (or union) of rules where each rule is a
conjunction (or intersection) of conditions imposed on different attributes. Learning rule-
based models directly from the training data has been studied in great detail in past couple
of decades. The goal is to discover small number of rules (low cardinality), which cover most
of the positive examples of the target class (high coverage or recall) and very few of the
negative examples (high accuracy or precision).

General-to-specific search techniques start with the most general rule, an empty rule,
and progressively add specific conditions to it. When conjunction of conditions is added,
the accuracy of the rule increases while its coverage and support decrease. Here, support
means the total number of records where the rule applies, whereas coverage is the number of
positive examples covered by the rule. An ideal situation is when exactly one conjunctive rule
gives desired accuracy with entire coverage of the target class. But, this rarely happens in a
real-world because usually a class consists of multiple subclasses each with unique signatures.
Thus, disjunction of rules becomes a necessity. Disjunctions are discovered iteratively. In
each iteration, a high accuracy conjunctive rule is discovered. Then the records covered
by this rule are removed, and next iteration starts with the remaining examples. These are
called sequential covering algorithms, and have found widespread use in rule-based modeling.

However, they face a problem. As the algorithm proceeds, the data from which the rules

are learned decreases in size. Hence, the support for the rules decreases. If the support is
allowed to reduce substantially then the discovered rules may be too specific, thus overfitting
the training data, or they may be overly general, because of the noise present in the data.
Instead, if one stops the iterations after the remainder data size falls below some threshold,
the rare subclasses might be missed. Rules with small coverage, learned from small datasets,
are called small disjuncts. This problem was first identified by [12]. They showed that
such rules tend to contribute more to the generalization error rate as compared to the
large disjuncts (rules with high coverage). Detailed scenarios under which it can occur are
discussed in [20, 6].

One remedy to avoid this problem is to use specific-to-general search techniques [7, 16],
which start with each record as the most specific rule, and progressively generalize the
rule-set. However, these techniques are not usually suitable for problems with large high-
dimensional data-sets because their complexity scales poorly (e.g., quadratic in training set
size and cubic in number of attributes [7]).

Within the framework of general-to-specific strategies, a few remedies are proposed in
[12, 2] to solve the problem of small disjuncts so far. One remedy is to relax the emphasis
on generality of rules, thus making them more specific for each of the iterations [12]. This
has shown to reduce error rate of small disjuncts at the cost of increased error rate of large
disjuncts. Solution proposed by [2] is to assign probabilistic measures to the rules discovered
in the hope of assigning lower measures to small disjuncts. Some other solutions proposed
[18] are based on estimating a generalization accuracy from the accuracy in training data
and use it to decide whether to retain or remove small disjuncts. But, all these solutions can
be considered as workarounds for the actual problem, which is that of the trade-off between
support and accuracy of the rules discovered. We suspect that the problem occurs because
of relatively tight accuracy constraints used in all the iterations. This causes rules with
small support to be discovered as the algorithm progresses, thus leading to the problem.
We believe that if accuracy constraints are relaxed gradually as required, then we can keep
finding rules with sufficiently large support until most of the positive examples are covered.
This is precisely the crux of our proposed approach.

In this paper, we propose PNrule, a two stage general-to-specific framework of learning a

rule-based model. It is based on finding rules that predict presence of a target class (P-rules)

as well as rules that predict absence of a target class (N-rules). The key idea is to learn a
set of P-rules that together cover most of the positive examples such that each rule covers
large number of examples to maintain its statistical significance. Initially, highly accurate
rules are selected, but later accuracy is compromised in favor of support. This relaxation
of accuracy causes some negative examples to be covered. What differentiates our method
from all the previous approaches is its second stage, in which it learns N-rules that essentially
remove the negative examples collectively covered by the union of all the P-rules. We believe
that the existence of this stage helps in making our algorithm less sensitive to the problem
of small disjuncts in the first stage. Moreover, our proposed method has a runtime that is
linear in the number of training data records and linear in number of attributes, for each of
its iterations. Another novel feature of our technique is its scoring mechanism. Using the
statistics of P- and N-rules on training data, we develop a method to score each decision of
each binary classifier. This method weighs the effect of each N-rule on each P-rule, thereby
yielding PNrule a modeling flexibility. One more feature of our proposed framework is that
it is suitable for taking into account different costs of misclassifying different classes. For
example, the cost of not identifying a mailing responder is certainly more than that of not
identifying a non-responder in direct marketing applications. We use the scores generated
by individual binary classifiers and the misclassification cost matrix, to arrive at predictions
according to Bayes optimality rule for minimum expected cost.

In order to validate our proposed framework, we present a case-study in which we applied
PNrule to a real-life dataset from the network intrusion detection application. Data-set was
supplied as a part of KDD-CUP’99 classifier contest [11]. Tt contains about 5 million records,
each with 41 attributes (34 continuous and 7 categorical), belonging to four attack classes
and one normal (or no-attack) class. Unique features such as very wide distribution of
classes and misclassification cost based evaluation, made this contest challenging. PNrule
framework evolved during and after our participation in the contest. We describe how we
applied it to the data-set, and compare our results with those of 23 other participants. For
the subset of test-data that belonged to subclasses present in the training data-set, our
technique performs the best both in terms of accuracy and misclassification cost. Especially,
our technique does substantially better for a class that is present in very small proportion

and also carries high misclassification penalty. As an aside, we also mention the controversy

about test-data quality that we triggered after initial set of results were announced. We
conducted a detailed analysis of test-data and proved that the original test-data class labels
were wrong.

The rest of this paper is organized as follows. First, we review some related work. Then,
we give the details of all the steps of PNrule framework in Section 2. In Section 3, we present
our case study on application of PNrule to the KDD-CUP’99 intrusion detection dataset.

The paper concludes with a section on some future research directions.

1.1 Related Work

Various rule-based classification algorithms have been proposed in the literature so far, such
as CN2[4], the family of AQ algorithms[14], RAMPI[3], RISE[7], RIPPER[5], and others[15].

Algorithms CN2, AQ, RIPPER are all sequential covering based techniques (often called
separate-and-conquer). CN2 and AQ run into the "small disjuncts” problem exposed
extensively in section 1. The RIPPER technique differs slightly from CN2 and AQ
algorithms. After discovering (or growing) a highly accurate rule, it immediately prunes
it by estimating its generalization error using a separate prune-set. It stops growing the
rule-set when the description length of encoding the rule-set and the training data becomes
large (MDL principle). RAMP[3] combines general-to-specific and specific-to-general search
directions into one single step of learning in an attempt to do annealing-like optimization.
It simultaneously strives for minimality of the rule-set and perfect accuracy of the rules on
training dataset. Its predictive capabilities are based on keeping rule-set small and general.

Like RAMP and RIPPER, most techniques use, as an underlying hypothesis, the Occam’s
Razor principle which implies that smaller set of general rules generalizes better. The role
of Occam’s razor in data mining is still being debated [8, 19]. Irrespective of that, one thing
remains true - that larger support rules have more generalization capability than smaller
support rules. This can be traced back to the early arguments from large-sample theories in
statistics. In our PNrule framework, our main emphasis in the rule discovery process is that
the rule should satisfy support requirements (along with a reasonable accuracy). We do not
specifically strive for small set of rules, but in cases where Occam’s razor indeed applies, we
believe that PNrule will discover a small set of rules. Another feature of most rule-induction

techniques is that the tolerance on accuracy is quite strict. Few algorithms [7], however,

allow more negative examples to be covered depending on the expected noise in the training
data. This is equivalent in some sense to PNrule, which tries to reduce the emphasis on
accuracy in favor of support in the first stage. But, PNrule ensures that accuracy is regained
by removing many false positives in second stage.

PNrule’s model can be considered functionally equivalent to the decision-tree model.
However, the primary feature of PNrule’s learning strategy is that it learns N-rules on the
collection of examples covered by all P-rules. Decision-tree can be thought of as learning N-
rules for individual P-rules, which we believe makes it more susceptible to the small disjunct
problems, because it has to learn from a smaller set of records. Moreover, PNrule’s method
has the ability to discover more general N-rules which span across the records covered by

different P-rules.

2 PNrule Classification Framework

PNrule framework is a two-stage process of rule-induction from training data starting with
the most general rule, an empty rule. Given a misclassification cost matrix and a training
data set with multiple class labels, it learns multiple binary classifier models, one for each
class. The model for each class is represented using two kinds of rules: P-rules and N-
rules. P-rules predict presence of the target class, whereas N-rules predict absence of the
target class. We start this section by illustrating the concept behind our two-stage learning

approach. Later, we give detailed algorithms for various steps of the framework.

2.1 Conceptual Illustration of Learning Method
Consider a binary classification problem. Given a training data-set, 7', and target class C,
a rule is found using the records of 7. The rule is of the form R : A — C, where A is a
conjunction of conditions formed by different attributes and their values. Let S denote the
subset of 7" where R applies; i.e. where A is true. R is said to cover S. Let S’ denote the
subset of S where the class label is C. Support of the rule is defined as |S|/|T| (|S| denotes
the cardinality of set S). Accuracy is defined as |S'|/|5].

Given this set of definitions, we will conceptually illustrate our framework using Figure 1.
Part (a) shows the entire training data-set, among which the target class is distributed as

shown in the shaded region. Our framework operates in two stages. The first stage starts

5

positive
examples

negative examples

(@ (b) ©

negative
examples
positive examples
for second stage

NO

@ ©

Fic. 1. How PNrule works. (a) Original training set, (b) Discover first P-rule, (¢) Discover
Second P-rule on remaining examples (d) Choice of Third P-rule. P2 chosen over q1 or q2, because
of its support. (e) Starting data-set for second stage.

with the entire training set, and finds a rule that has the highest combination of support
and accuracy (to be defined later). Let the rule found be indicated by P0. As part (b) of
the figure shows, PO covers a good portion of the shaded area, with very small portion of the
unshaded region. Now, we remove the set that is covered by P0, and repeat the process on
the remaining set [part (c)]. Let P1 be found on this dataset. P1 still has high support and
fairly high accuracy. As the process continues, it becomes increasingly difficult to find rules
that have high support as well as high accuracy. In such cases, we give preference to the
support as illustrated in part (d), where P2 is preferred over ql or q2. We stop the process
when we are able to capture a sufficiently large portion of the original shaded region [part
(a)] or we start running into rules which have very low accuracy. If the accuracy threshold
is set lower, then we might proceed beyond P2 to cover the remaining positive examples.
Assume that we decide to stop after P2, because we have covered sufficiently large fraction
of positive examples.

As can be seen, because of our preference for support in later iterations, we have covered

quite a few examples of the negative class, which are commonly referred to as false positives.

6

These are shown as the shaded area in Figure 1(e). Now, our goal is to learn rules that will
remove most of these false positives. We collect all the examples covered by all the P-rules
in the hope of increasing chances of finding high support and more general rules, as against
learning rules to cover false positives of individual P-rules. So, on the dataset consisting of
records covered by the union of all P-rules, we start an inverse learning process. Our new
target class is now the absence of original target class. In Figure 1(e), the starting data-set
is shown as the restricted universe and shaded area becomes the new target class. Again
first rule NO tries to capture as much of the positive examples of the new target class with
high accuracy. Iterations progress similar to the first stage. The point to note is that a 100%
accurate rule in this stage strictly removes the false positives covered by the first stage,
while a rule with less than 100% accuracy removes some of the true positive examples of
the original target class (that were captured in the first stage). We call this phenomenon as
introduction of false negatives. All the rules discovered during this stage are called N-rules.

During each of the stages, higher accuracy large support rules are discovered in the
beginning, and lower accuracy rules are discovered towards the end. We rank the rules
in the order they are discovered. At the end of this two-stage process, we expect to have
captured most of the positive examples of the target class, with few of the negative examples
(false positives). Most of the false positives still getting covered can be attributed to the
lower accuracy P-rules. Similarly, most of the positive examples missing from the coverage
can be attributed to the lower accuracy N-rules. Based on this observation, we design a
scoring mechanism that allows to recover some of the false negatives introduced by the low
ranked N-rules. Also, the scoring mechanism will try to assign low scores to the negative
examples covered by low accuracy P-rules. Note that we can afford to be more aggressive
by keeping the final accuracy threshold low in each of the stages, because we rely on our
scoring mechanism to correct for the additional errors introduced.

The two-stage learning approach illustrated above and the scoring mechanism, elaborated

in Section 2.4 later, are the two key novel features of our method.

2.2 Main Learning Algorithm and Model Format

We do not describe the detailed algorithm here due to space constraints. It is given in [1].

Briefly, given a training data-set and the target class, the algorithm learns P- and N-rules

using two sequential covering rule-learning stages as described in previous subsection. This
is followed by a step that constructs the scoring mechanism for P-N rule combinations. The
details of rule selection and the scoring mechanism are given in following subsections. Two
points to note regarding the overall algorithm are as follows. First, each stage (P-stage and
N-stage) of the algorithm is parametrized by support and accuracy thresholds applied to that
stage. From our experience with the case-study problem, which had wide variation of class
distributions, usually the support thresholds in both stages are quite strict (higher). The
accuracy thresholds can be relaxed (lowered) depending on the characteristics of the target
class. Especially for smaller target classes, they might need to be lowered substantially for
the P-stage, if the support thresholds are to be set higher. Second, if the scoring mechanism
is absent, then the model learned by PNrule framework will simply mean that if some P-
rule applies and no N-rule applies to a record, then the record belongs to the target class C.
Formally, this means C' = (PyVP V...V P,, 1)A=NyA=N;A...A= N, 1, which is equivalently
a DNF model of the form C' = (PyA-NgA-Ni A AN, 1)V (PIA-NgA=NIA ANy 1)
V..V (P, 1 A= Ng ANy A AN, —1). As can be seen, this model is restrictive in the sense
that all conjunctions have all but one conditions in common. This might seem to restrict
the kinds of functions we can learn using our model. However, as we will see in section 2.4,
our scoring mechanism allows to relax this restriction, by selectively deciding to ignore the

effects of certain N; rules on a given F;.

2.3 Choosing and Evaluating Rules

We learn very general rules. Each rule has only one condition. For a categorical attribute
A, the candidate conditions are of the form A = v and A! = v, for all possible values v of
attribute A in the current training data-set S. For numerical attribute B, the conditions are
of the form B € [low, high) and B ¢ [low, high), where the numerical range of B in S is split
into multiple ranges [low, high) using a simple clustering technique. Briefly, clustering starts
by forming a small number of ranges of equal span. We merge or split the ranges such that
the number of records in each range satisfy certain pre-specified minimum and maximum
requirements on the cluster size (in terms of the number of records). After this, we evaluate
the strength of each range, and merge the adjacent ranges which have similar strengths.

Detailed steps of the rule-selection algorithm are given in [1]. Note that the algorithm can

be easily extended to discover more specific rules by adding more conditions in conjunction.

Our framework can use any performance metric that combines the distinguishing
capability of a rule for the target class, support of the rule, and accuracy of the rule, all
in one single metric. The metric that we used in our experiments is Z-number. Let ap
denote the accuracy of a given rule, R, and sg denote its support. Let ac denote the mean of
target class C, defined as ac = |S¢|/|S|, where S¢ is the subset of S where C is true. Let o¢
denote the standard deviation of target class C'. For the binary problem under consideration,
oc =/ac(l — ac). Using these notations, Z-number is defined as Zr = /s (ar —ac)/oc.
This metric is similar to the z-test or t-test used in statistics, depending on the value of
sg. The term sp helps in choosing high support rules. A rule with high positive Z-number
(ar > ac) predicts presence of C' with high confidence. Similarly, a rule with high negative
Z-number (ar < ac) predicts absence of C' with high confidence. Our experience with
the case-study showed that this metric may have difficulty in distinguishing between highly
accurate rules especially in early iterations, because it tends to give too much weight to
the support. In such cases, we used another metric, which we call Y-number, defined as
Yr = /sgr min(\/sg, (1.0 — ac)/(1.0 — agr)). The necessity of Y-number is illustrated in
[1], but it should be noted that Y-number is not suitable in later iterations of the learning

process, especially when ac values are low.

2.4 PNrule Classification Strategy and Scoring Algorithm

Once we have learned P-rules and N-rules for each class, first we describe how we use them
to classify an unseen record. As indicated in section 2.1, P-rules and N-rules are arranged in
decreasing order of significance, which is the same as their order of discovery. Given a record
consisting of attribute-value pairs, each classifier first applies its P-rules in their ranked order.
If no P-rule applies, prediction is False. The first P-rule that applies is accepted, and then
the N-rules are applied in their ranked order. The first N-rule that applies is accepted. We
always have a default last N-rule that applies when none of the discovered N-rules apply.
The reason for having the last default N-rule will become clear little later in this section.
If our classifier has to make a simple True-False decision, then we can predict a record to
be True only when some P-rule applies and no N-rule applies. However, this is not useful,

especially in the multi-class framework, where we may need to resolve conflicts between True

decisions of multiple classifiers. We need a mechanism to assign a score to each decision.
Hence, depending on which P-rule and N-rule combination applies, we predict the record
to be True with certain score in the interval (0%,100%). This score can be interpreted as
the probability of the given record belonging to the target class. Scores from individual
classifiers are combined with the cost matrix to decide the most cost-effective class for the
given record. This is the overall classification strategy.

In the light of this, we now describe how each classifier determines the scores to assign to
each P-rule, N-rule combination. The motivation behind the design of scoring mechanism is
to weigh the effect of each N-rule on each P-rule. Remember that the N-rules were learned on
a set of records collectively covered by all P-rules. So, each N-rule is significant in removing
the collective false positives. However, a given N-rule may be effective in removing false
positives of only a subset of P-rules. Moreover, some low accuracy N-rule may be introducing
excessive false negatives for some P-rules, possibly because its primary contribution is to
remove false positives of other lower accuracy P-rules. Such excessive false negatives can be
recovered by assigning them a correspondingly low score. Thus, we need to properly judge
the significance of each N-rule for each P-rule.

The starting point of the scoring mechanism are two matrices, SupportMatrix and
ErrorMatrix. An example of these matrices is shown in Figure 2. In SupportMatrix, entry
(i,5) [J < nn| gives the number of records for which the both P-rule P, and N-rule N; apply.
Last entry in row 7, SupportMatrix(i,ny) gives the number of records where P; applied
but no N-rule applied. The ErrorMatrix records the prediction errors made by each (P;,N;)
combination. Entries (i,5) [j < ny| give false negatives introduced by N; for P;’s predictions,
whereas (i,ny) gives the number of false positives of P; that none of the N-rules was able to
remove. The last column effectively corresponds to a rule which states "no N-rule applies”.
In figure 2, the entries in [P1,N1] location of these matrices imply that among the records of
training dataset covered by rule P1, rule N1 applied to 7 records (SupportMatrix[P1,N1]), out
of which its decision to remove false positives was wrong for 2 records (ErrorMatrix[P1,N1]).
This means that it removed 5 false positives of P1, and introduced 2 false negatives for P1.
Using these matrices, our goal is to come up with a ScoreMatrix, such that ScoreMatrix(i,j)
(j < ny) gives a score to the record for which both P-rule P; and N-rule N; apply, and

ScoreMatrix(i,ny) gives a score when P-rule P; applies and no N-rule applies.

10

SupportMatrix ErrorMatrix

NO | N1 | N2 | N3 NO | N1 | N2 | N3
PO| O | 0| 4 |100 PO[O | 0| 3| 1
PL| 3| 7] 5]50 PL 1 | 2] 4] 4
P2| 8| 5| 627 P20 | 1| 2] 4
Illustration for P-rule P1: Parameters:
A [53,12.81.5] MinSupport = 5
MinZ = 3.0

Final Result: ScoreMatrix

NO | NI | N2 | N3

1Z1=2.81
Low Z! @ P1 | 81.5/28.6/90.9| 92.0
[4,1,80.0] no N-rule
applies P2 | 11.1/20.0|333| 852

Format: [True Positives, False Positives, Accuracy]

L LEL

Fia. 2. [lustration of Constructing the Scoring Mechanism (ScoreMatriz)

Detailed algorithm is given in [1]. Here, we illustrate the key concepts behind it using
the example given in Figure 2. A P-rule captures some positive examples (True Positives, or
TP) and a few negative examples (False Positives, or FP), when it is discovered first. These
together give it its initial accuracy, TP/(TP+FP). As N-rules are applied successively, the
accuracy varies depending on how many false positives are removed and how many false
negatives are introduced by each N-rule. This effect can be conceptually captured in a
decision tree, as shown in the Figure for the P-rule P1. The root node A has all the records
where P1 applies. There are 65 such records for P1, out of which 53 are TPs and 12 are FPs
(accuracy of 81.5%). Out of these records, first N-rule NO applies to 3 records. Now, we
determine the significance of NO specific to P1, by applying our first criterion, which states
that support of any decision should satisfy a MinSupport threshold. For our example, this
threshold is 5, hence N0 has statistically insignificant support, and we decide to ignore its
effect on P1. The decision is reflected in the ScoreMatrix by assigning the accuracy of the
parent node to the [P1,N0O] location (81.5%). Now, we recalculate the TP, FP, and Accuracy
statistics for the records where NO did not apply. We cannot propagate the statistics of root

node to node B, even though we decided to ignore NO’s effect. The reason is the sequential

11

covering nature of the way N-rules are learned, which implies that the decisions made by
rule N1 (and later rules) are significant only to the population of records where rule NO does
not apply.

When N1 is applied to the new set of records (52 TP, 10 FP), it applies to 7 of those.
[t satisfies our support criterion of significance (> MinSupport). Now, we calculate the Z-
number of N1 w.r.t P1, given by formula Zy = \/np(any —ap)/op, where np is the support of
parent node (TP+FP). ay and ap are accuracies of N-rule’s node and parent, respectively,
and op = y/(ap)(l —ap) is the standard deviation of parent’s population. Our second
criterion of significance states that if the absolute value of Zy is sufficiently high (> MinZ),
then the decision made by the N-rule is significant w.r.t. the given P-rule. Point to note here
is that each N-rule had a significant Z-number when it was discovered in the learning process
because it was computed over a collection of records covered by all P-rules. What we are
determining here is its significance specific to a given P-rule. In our example, P1-specific |Z|
value of N1 is high (11.85 > MinZ=3.0), so we decide that N1’s effect on P1 is significant.
The decision is reflected in the ScoreMatrix by assigning the accuracy of N1’s node to the
[P1,N1] location (28.6%). So, whenever N1 applies to a record predicted true by P1, we say
that the probability of that record belonging to the target class is only 28.6%.

The process continues for N2, where we find that N2’s decision has significant support,
but it does not have sufficient distinguishing capability w.r.t P1 (low |Z|). Hence, we ignore
its effect on P1, and assign the ScoreMatrix[P1,N2] location the accuracy of N2’s parent
(90.9%). Finally, when no N-rule applies, we assign the accuracy of N3’s leaf to the last
location in P1’s row (92.0%). This entire process is repeated for PO and P2. In summary,
at every node of the decision tree, we apply the support and Z-number criteria to determine
whether a N-rule is significant w.r.t. to the given P-rule. If it is significant, we use the
accuracy of the N-rule to score the decision, or else we use the accuracy of its parent.

Here are some more points to note about the algorithm, which are not illustrated by
the above example. First of all, if any node’s support falls below MinSupport, we ignore its
effect, and assign it the score of its nearest ancestor having statistically significant support.
Second, we do not allow a perfect decision at any node; i.e. our scores are never exact 100%
or 0%. A score of 100% gets adjusted to n/(n + 1) where n = TP, whereas a score of 0%

gets adjusted to 1/(n + 1), where n = F'P. This is done in order to give less importance to

12

the perfect decision made on small population as compared to the perfect decision made on
larger population. Finally, the parameters MinSupport and MinZ can usually be fixed for
most problems using statistical arguments.

The essential effect of this scoring mechanism is to selectively ignore effects of certain
N-rules on a given P-rule. At the end of it all, ScoreMatrix reflects an adjusted probability
that a record belongs to the target class, if P, N; combination applied to it.

2.5 Making PNrule Cost-sensitive

Given a misclassification cost matrix {C(s,)}, where C(s,1) is the cost of predicting class
s as class t, the goal is to predict the classes of a given data set to minimize the total
misclassification cost penalty.

Given a record z, if the actual probability P(s|z) of the record belonging to class s is
known, then Bayes optimality rule [9] implies that assigning = the class ¢ which minimizes
>, P(s|x)C(s,t), gives the least overall cost. We use the scores generated by our binary
classifiers as the estimation of P(s|z), and use this formula to predict the class of x.

This strategy may not work well if the scores generated by our classifier are not close-
to-true estimates of P(s|z). We have not analyzed this issue in detail, but plan to do so in
the future. But, from preliminary concept behind our scoring strategy, it can be seen that

if test-data and training-data have similar class distributions, then our scores will be closer

to true estimates.

3 Case Study: Applying PNrule to Detect Network Intrusions
In order to validate our PNrule framework, we applied it to a classification problem from the
domain of network intrusion detection. In this section, we explain the application process in

detail. We start by describing the data-set and the challenges it poses.

3.1 The Data-Set and Challenges

A data-set from the network intrusion detection domain was provided as part of the KDD-
CUP’99 classifier learning contest [10]. The contest problem was as follows: Given the
training data-set of close to 5 million records belonging to five classes and a misclassification

cost matrix, learn a classifier model so as to achieve least total misclassification cost of

13

Class | Count Subclasses Count
normal | 972781 (19.9%) smurf (dos) 2807886
predicted class dos 2883370 (79.3%) neptune (dos) 1072017
normal probe dos u2r r2l probe | 41102 (0.84%) back (dos) 2203
_ | normal 0 1 2 2 2 21 1126 (0.023%) teardrop (dos) 979
é probe 1 0 2 2 2 u2r 52 (0.001%) ipsweep (probe) 12481
% dos 2 1 0 2 2 satan (probe) 15892
‘{':: u2r 3 2 2 0 2 warezclient (r21) 1020
S| r21 4 2 2 2 0 buffer_overflow (u2r) 30
(@) (b)

TABLE 1
Characteristics of Problem and Training Data. (a) The misclassification cost matriz. (b) Class
and subclass distribution in training data.

predicting the labels of the supplied test-data records. The training- and test-data were
collected from a controlled experiment in which a real-life military network was intentionally
peppered with various attacks that hackers would use to break in. Each record in the dataset
represents a connection between two network hosts. It is characterized by 41 attributes: 34
continuous-valued and 7 discrete-valued. Some examples of the attributes are duration-of-
connection, number-of-bytes-transferred, number-of-failed-login-attempts, network-service-
to-which-connection-was-made, etc. Each record represents either an intrusion (or attack) or
a normal connection. There are four categories of attack: denial-of-service (dos), surveillance
(probe), remote-to-local (r2l), and user-to-root (u2r).

As can be seen, this data-set is quite large and it represents a real-world problem. There
are four other features of the problem and data-set that made the KDD-CUP’99 contest
challenging. First, the goal was not mere accuracy, but misclassification cost. The cost
matrix is given in Table 1(a). Second, each attack category has some subclasses of attacks,
and out of total 39 total attack subclasses that appear in test-data, only 22 were present
in the training data. Third, the distribution of training records among attack categories
as well as subclasses varied dramatically. Tables 1(b) shows the counts for some of the
representative classes and subclasses. Moreover, the misclassification cost penalty was the
most for one of the most infrequent classes, r2l. Finally, it was told that the test-data had a

completely different distribution of classes as compared to the training-data.

14

normal probe dos ur 2l Acc normal probe dos u2r 2l Acc
normal | 59958 534 163078 2 22 26.8% normal | 59958 534 77 2 22 99.0%
probe 1968 2191 7 0 0 52.6% probe 1968 2191 7 0 0 52.6%
dos 6775 23 60054 0 0 89.8% dos 6775 23 223055 0 0 97.0%
u2r 197 0 23 7 1 3.1% ur 197 0 23 7 1 3.1%
2l 14759 11 3 2 1414 | 8.7% 21 14759 11 3 2 1414 | 8.7%
FP-rate |29.3% 21.6% 73.1% 364% 1.7% FP-rate |29.3% 21.6% 0.05% 364% 1.7%
Misclassification Cost = 402000, Accuracy = 39.75% Misclassification Cost = 75998, Accuracy = 92.15%

F1G. 3. Results obtained with original two-stage strategy. (a) With corrupt test-data supplied

initially. We proved this test-data wrong. (b) With correct test-data.

DataSet1 (DS1) DataSet2 (DS2) DataSet3 (DS3) DataSet4 (DS4)
Description Normal in Training| Normal in Test Smurf in Training | Disputed Records
Except those in DS4 in Test
Counts 972,781 60,590 2,807,886 164,096
Labels in Disputed Records normal: 163,004
smurf: 1,090

smurf: 164,096
164,091 (99.99%)

Our Labels in Disputed Records
#times our simple smurf rule applies

3456 (0.35%) 173 (0.28%) 2,807,886 (100%)

#times our strong smurf model applies | 19 (0.002%) 0 (0%) 2,805,850 (99.93%) | 163,582 (99.69%)
distinct values for AtrQ (duration) 9034 224 1 1
Max value for AtrQ 58.329 54451 0 0
distinct values for Atr4 (src_bytes) 7,145 2,354 2 8
Max value for Atr4 89,581,520 6,291,668 1,032 1,032
TABLE 2

How we Proved the Original Test-Data labels wrong.

3.2 Our Original Strategy: Results and Critique

The PNrule framework proposed in this paper is actually an improved and automated version
of a strategy we had originally developed during the three week period that was given to
submit our results to the KDD-CUP’99 contest. The details of that strategy are given in [1].
Briefly, it was also a two-stage semi-automatic strategy of learning P-rules and N-rules. It
had no sequential covering mechanism. Also, there was no scoring mechanism, each classifier
made a pure 0-1 decision. This original strategy ranked 8th among 24 contenstants, and had
the confusion matrix as shown in Figure 3(a). A very peculiar thing in the confusion matrix
struck us: our false alarm rate for dos was very high. We decided to analyze it after the actual
test-data labels were made available. This led us to trigger a controversy about test-data

quality issue, which we briefly describe in the next subsection.

3.2.1 Test-Data Quality Issue: How we proved it wrong Our very high false alarm

rate for dos was quite surprising, especially given that we had found very high accuracy

15

models for smurf and neptune (two prominent subclasses of dos). In fact, we were quite
accurate in predicting neptune records in test-data, but apparantly almost all of the 164,096
records (among 311,029) we had predicted to be smurf were normal according to the test data
labels. Our smurf model had a low false positive rate of 0.35% in training data-set, but was
based on a rule with only one attribute. So, we added more conjunctions to the rule, and
made it consist of 31 attributes out of 41. With this stronger model, the false positive rate
had gone down to 0.002%, and we could still capture 99.93% of the 2,807,886 smurf records
in the training data-set. So, what are the statistical chances of a 0.002% false positive rate
on this very large data-set blowing all the way upto 99.3% in the test-data? If they are
indeed very high, then it would make almost every data-mining technique to fail.

Then, we did some more analysis. We tried to use domain knowledge. We observed
the behavior of three basic attributes: the duration of a connection, and bytes transferred
from and to the source host. For a normal connection, these attributes should vary all
over their possible range of values, whereas for attack connections, they should exhibit some
standard pattern based on a hacker’s strategy of attack. Hence we separated four data-sets,
and observed the behavior of these basic attributes in them. The definition of data-sets
and results are shown in Table 2. As can be seen, The first two datasets (DS1 and DS2)
are very similar, whereas the last two datasets (DS3 and DS4) are very similar, making a
case that most records in DS4 (disputed data-set) should be smurf rather than normal. We
presented our arguments to the contest organizers. We were right. The correct labels in the
disputed data-set (DS4) were all indeed smurf. With the new test-data, our rank improved
two notches, up to 6th. The new confusion matrix is shown in Figure 3(b). As can be seen,

our false alarm rate for dos is almost close to 0.0%.

3.3 Applying PNrule and Results

The sequential covering algorithms, the scoring mechanism, and cost-sensitivity make PNrule
framework of this paper an improved and more automated version of our original two-stage
strategy. Here is how we applied PNrule to the network intrusion detection data-set of

KDD-CUP’99 contest:

1. We first developed models for smurf and neptune using the entire training set 7". Then,

we removed every record where smurf and neptune were predicted true with a score
16

greater than 99.9%. We refer to the filtered training data-set as T'1. The filtering
is done to increase the relative proportion of smaller subclasses in the training set.
Moreover, the 99.9% threshold removes only those records which are strongly assured

to be smurf or neptune.

2. Two prominent classes remaining were normal and probe. The other remaining classes,
r2l, u2r, and remaining subclasses of dos, were really tiny. We formed a 10% subset
of T'1. This subset, refered to as T'11p%, had every record belonging to these classes,
but only around 10% sample of the records belonging to normal and probe. The goal
was to increase the statistical significance of the tinier classes. We learned P-rules for
normal and probe using entire T'1. But, we learned N-rules for normal and probe, and

entire models (P- and N-rules) for other smaller classes using 7'114.

3. We used scores of each of the classifiers along with the misclassification cost matrix,

to make final decisions according to the procedure given in section 2.5.

Detailed results for individual class models can be found in [1]. When these models were
applied to the corrected test-data of the contest, we obtained the results shown in Figure 4(a).
According to these results, our rank would be 4th among 24 contestants. This is certainly
an improvement over our previous technique (figure 3(b)). We also show the results of the
winner[17] and runner-up|[13] entries of the contest in figures 4(b) and 4(c) respectively. As
can be seen we are not very far away in misclassification cost from the winning entry. As a
matter of fact, PNrule has the best detection rate for r2| among all the contestants.

The peculiar thing to observe is the large numbers in the first column of the confusion
matrices. Almost all the contestants seem to have misclassified a large number of r2| and
dos records as normal. This happens because there are 6% records in the test-data (18,729
out of 311,029) belonging to 17 subclasses that are completely absent in the training data,
and none of the contestants did a good job of capturing these unknown subclasses.

Hence, for a fair comparison, we decided to remove these 18,729 records. For the
remainder of test-data bearing known class labels, we show the confusion matrices of three
entries in the right half of Figure 4. PNrule results are in part (d). As can be seen, PNrule
performs better than other entries in terms of misclassification cost as well as accuracy. The

number of records misclassified by PNrule is almost 3.7% less than the second best (part

17

PNrule PNrule

normal probe dos u2r 2l Acc normal probe dos u2r 2l Acc

normal | 60316 175 75 13 14 99.5% normal | 60316 175 75 13 14 99.5%
probe 889 3042 26 3 206 73.2% probe 25 2349 3 0 0 98.8%
dos 6815 57 222874 106 1 96.9% dos 392 24 222874 17 1 99.8%
u2r 195 3 0 15 15 6.6% u2r 22 1 0 9 7 23.1%
2l 14440 12 1 6 1730 | 10.7% r2l 4248 12 1 2 1730 | 28.9%
FP-rate |27.0% 7.5% 05% 89.5% 12.0% FP-rate |72% 83% 04% 710% 13%
Misclassification Cost = 74058, Accuracy = 92.59% Misclassification Cost = 18338, Accuracy = 98.28%

(a) ()
Contest Winner Contest Winner
normal probe dos u2r 2l Acc normal probe dos u2r 2l Acc

normal | 60262 243 78 4 6 99.5% normal | 60262 243 78 4 6 99.5%
probe 511 3471 184 0 0 83.3% probe 0 2374 3 0 0 99.9%
dos 5299 1328 223226 0 0 97.1% dos 2 304 222992 0 0 99.9%
ur 168 20 0 30 10 132 ur 15 0 0 18 6 46.2%
FP-rate |254% 352% 0.1% 28.6% 12% FP-rate [6.7% 260% .03% 333% 09%
Misclassification Cost = 72500, Accuracy = 92.71% Misclassification Cost = 18734, Accuracy = 98.19%

(b) (e
Contest Runner-up Contest Runner-up
normal probe dos u2r 21 Acc normal probe dos u2r 2l Acc

normal | 60244 239 85 9 16 99.4% normal | 60244 239 85 9 16 99.4%
probe 458 3521 187 0 0 84.5% probe |4 2370 3 0 0 99.7%
dos 5595 227 224029 2 0 97.5% dos 10 10 223278 0 0 99.9%
u2r 177 18 4 27 2 11.8% u2r 19 0 0 18 2 46.2%
2l 14994 4 0 [§ 1185 | 7.3% 21 4804 3 0 4 1182 | 19.7%
FP-rate |293% 21.6% 73.1% 364% 1.7% FP-rate |74% 9.6% 04% 419% 1.5%
Misclassification Cost = 73243, Accuracy = 92.92% Misclassification Cost = 19790, Accuracy = 98.22%

()
Results on subset of test-data with known subclasses

©

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
r2l 14527 294 0 8 1360 | 8.4% X 2l 4339 289 0 5 1360 | 22.7%
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
1
Results with entire test-data '

Fic. 4. Comparing PNrule results with the winner and runner-up of the KDD-CUP’99 contest.

(f)). PNrule’s misclassification cost penalty is about 2.2% better than the second best (part

Since we can safely assume that many contestants have applied many different techniques
to solve the problem, and our PNrule method performs better than the best two, we can
conclude that PNrule certainly has promise to be an effective classification technique for
problems which are of similar nature as the network intrusion detection problem studied in

detail here.

4 Concluding Remarks and Future Research

We proposed a new framework, PNrule, for multi-class classification problem. The key novel

idea used in PNrule is that of learning a rule-based model in two stages: first find P-rules to
18

predict presence of a class and then find N-rules to predict absence of the class. We believe
that this will help in overcoming the problem of small disjuncts often faced by sequential
covering based algorithms. The second novel idea in PNrule is the mechanism used for
scoring. It allows to selectively tune the effect of each N-rule on a given P-rule.

We have shown via a case-study in network intrusion detection, that the proposed PNrule
framework holds promise of performing well for classification problems, especially the ones
which have a wide variation of class distributions.

The proposed framework opens up many avenues for further testing and improvement.
We are currently in process of testing PNrule on various datasets from different domains.
In particular, we plan to analyze its behavior for data-sets where other sequential covering
problems have faced the small disjuncts problem. Here are some aspects of the proposed
framework that have scope of future research: automating selection of support and accuracy
thresholds in each stage, adding some mechanisms to prevent the N-stage from running
into the small disjuncts problem, improving scoring mechanism to reflect close-to-true

probabilities, and improving the clustering technique used for continuous attributes.

References

[1] Ramesh Agarwal and Mahesh V. Joshi. PNrule: A new framework for learning classifier
models in data mining (a case-study in network intrusion detection). Technical Report TR
00-015, Department of Computer Science, University of Minnesota, 2000.

[2] Kamal Ali and M. Pazzani. Reducing the small disjuncts problem by learning probabilistic
concept descriptions. In T. Petsche, S. J. Hanson, and J. Shavlik, editors, Computational
Learning Theory and Natural Learning Systems in Knowledge Discovery and Data Mining.
MIT Press, Cambridge, Massachusettes, 1992.

[3] C. Apte, S. J. Hong, J. Lepre, S. Prasad, and B. Rosen. RAMP: Rule abstraction for modeling
and prediction. Technical Report RC-20271, IBM Research Division, 1996.

[4] P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3:261-283, 1989.

[5] William W. Cohen. Fast effective rule induction. In Proc. of Twelfth International Conference
on Machine Learning, Lake Tahoe, California, 1995.

[6] Andrea Danyluk and Foster Provost. Small disjuncts in action: Learning to diagnose errors
in the local loop of the telephone network. In Proc. of Tenth International Conference on

Machine Learning, pages 81 88. Morgan Kaufmann, 1993.
19

[7]

[13]

[14]

[20]

Pedro Domingos. The RISE system: Conquering without separating. In Proc. of Sizth IEEE
International Conference on Tools with Artificial Intelligence, pages 704-707, New Orleans,
Louisiana, 1994.

Pedro Domingos. The role of Occam’s razor in knowledge discovery. Data Mining and
Knowledge Discovery, 3(4), 1999.

R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley, New York,
1973.

Charles Elkan. KDD’99 classifier learning competition. In
http://www.epsilon.com/kdd98 /harvard.html, September 1999.

Charles Elkan. Results of the KDD’99 classifier learning contest. In http://www-
cse.ucsd.edu/ "elkan/clresults.html, September 1999.

Robert C. Holte, L. Acker, and B. Porter. Concept learning and the problem of small disjuncts.
In Proc. of Eleventh International Joint Conference on Artificial Intelligence (IJCAI-89), pages
813-818, 1989.

Itzhak Levin. Kernel miner takes second place in KDD’99 classifier learning competition. In
http://www.llsoft.com /kdd99cup.html, October 1999.

R. Michalski, I. Mozetic, J. Hong, and N. Lavrac. The multi-purpose incremental learning
system AQ15 and its testing application to three medical domains. In Proc. of Fifth National
Conference on AI (AAAI-86), pages 1041 1045, Philadelphia, 1986.

Tom Mitchell. Machine Learning. McGraw Hill, 1997.

S. Muggleton and C. Feng. Efficient induction of logic programs. In Proc. of First Conference
on Algorithmic Learning Theory (ALT-90), Ohmsha, Tokyo, 1990.

Bernhard Pfahringer. Results on known classes. In private communication with authors,
October 1999.

J. Ross Quinlan. Improved estimates for the accuracy of small disjuncts. Machine Learning,
6(1):93 98, 1991.

J. Ross Quinlan and R. M. Cameron-Jones. Oversearching and layered search in empirical
learning. In Proc. of Fourteenth International Joint Conference on Artificial Intelligence
(IJCAI-95), pages 1019-1024, Montreal, Canada, 1995.

Gary M. Weiss. Learning with rare cases and small disjuncts. In Proc. of Twelfth International

Conference on Machine Learning, pages 558 565, Lake Tahoe, California, 1995.

20

