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Ensembles 
 An ensemble is a collection of learning machines 

(or agents) that operate to solve a machine 
learning problem (supervised/unsupervised); 

 T. Dietterich: “The task of improving 
classification accuracy by learning ensembles of 
classifiers is one of the most important 
directions in machine learning research.” (AI 
Magazine, 1997); 

 No unified theory on ensembles; growing 
interest within the machine learning community. 
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Why Ensembles? 

 In many domains it has been shown that an 
ensemble is often more accurate than any of 
the single components; 

 Combining predictors can lead to significant 
reductions in generalization error  
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When do Ensembles Work? 
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When do Ensembles Work? (contd.)  
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Bagging  

 Uses sampling with replacement; 

 Generates multiple classifiers trained on the 
different bootstrapped training sets; 

 To classify an instance:  
  A vote for each class j is recorded by every 

classifier that chooses it; 

  The class with the most votes is chosen by the 
aggregating scheme. 
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Boosting  

 Uses adaptive sampling; 

 Uses all instances at each iteration; 

 Maintains a weight for each instance, that 
reflects its importance as a function of the 
errors made by previously generated 
hypotheses; 

 Aggregation is done by voting, but with 
different voting strengths to classifiers 
based on their accuracy. 
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Bagging vs. Boosting  

 Experimental evidence proved that both 
bagging and boosting are effective in reducing 
generalization errors (e.g., with CART, C4.5); 

 Boosting provides in general higher 
improvements; 

 This behavior can be explained in terms of 
the bias-variance components of the 
generalization error. 
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Bagging vs. Boosting (contd.)  

 The objective of combination is to reduce 
variance, that is what both bagging and 
boosting achieve. 

 In addition, boosting challenges the weak 
learner algorithm to perform well on the 
harder examples, thereby reducing also the 
bias. 
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Nearest Neighbor Ensemble  
 Bootstrapping the data in not effective for 

stable classifiers; 

 NN methods are very robust with respect to 
variations of the training data; 

 As a consequence, bootstrapping the data is 
not effective with NN classifiers. 
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Nearest Neighbor Ensemble  
 Suppose the weak learner is the NN 

classifier; 

 It has been shown [Breiman, 96] that the 
probability that any given training point is 
included in a data set bootstrapped by 
bagging is approximately 63.2%; 

  It follows: the nearest neighbor will be the 
same in 63.2% of the classifiers.   

 Thus: errors are highly correlated. Bagging 
becomes ineffective! 
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Nearest Neighbor Ensemble  

 In contrast, NN methods are very sensitive to 
input features (i.e., highly intolerant to 
irrelevant features), and to the chosen 
distance function. 

 Then, the idea is to exploit the instability  of 
NN classifiers with respect to different 
choices of features to generate a diverse set 
of NN classifiers with (possibly) uncorrelated 
errors. 
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Basic Idea 
To design an effective NN ensemble: 

 Use different feature subsets to 
build the component classifiers; 

 To achieve both diversity and 
accuracy, we perform adaptive 
sampling over the feature space; 
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Related Work 
 Each nearest neighbor classifier has access 

only to a random subset of features 
[Ho98,Bay99]; 

 Pros: Can increase diversity without 
increasing error rates. Thus: accuracy 
improvement;  

 Cons: No guarantee that discriminant 
features are selected. Thus: voting can 
increase the generalization error. 
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Our Solution 
 To reduce the risk of discarding discriminant 

information, we perform adaptive sampling 
over the feature space; 

 To keep the bias of individual classifiers low, 
we use feature relevance to guide the 
sampling process;  

 This approach can lead to accurate classifiers 
in disagreement with each other; 

 Effective for problems in high dimensions. 
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Learning Feature Relevance 
 We use the ADAMENN algorithm [Domeniconi 

et al., PAMI 02]; 

 It uses the Chi-squared distance to estimate 
to which extent each dimension can predict 
class posterior probabilities; 

 Features are weighted according to their 
estimated local relevance; 

 Provides a local flexible metric for computing 
neighborhoods. 
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Modified “weighted” neighborhoods 
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Chi-Squared Distance 
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Adaptive Sampling 
 The weights credited to features by 

ADAMENN are values in (0,1)  and their sum 
equals 1; 

 Thus: they define a probability distribution 
over the feature space that can be employed 
in our adaptive sampling mechanism; 

 For each test point and each classifier of the 
ensemble, any given feature has a non zero 
probability to be selected;  

 A certain level of diversity among classifiers 
is guaranteed. 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Putting All Together 
 Input: Number-of-Classifiers (NoC), Number-of-

Features (NoF), k, test point x;  
  Compute the weight vector w reflecting feature 

relevance at x; 
•  For 1 to NoC: 

–  Sample NoF features with or without replacement, 
according to the probability distribution given by the weight 
vector w (adaptive sampling); 

–  Use selected features only (and their weights) to compute 
the k closest neighbors; 

–  Classify test point using kNN rule; 

•  Apply the voting scheme in use to the NoC classifiers. 
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Voting Methods 
 Simple majority vote; 

 Count : Delay the class membership decision 
until the aggregation phase: select the class 
with the largest expected posterior 
probability in the ensemble; 

 Borda: Positional-scoring technique. Each 
candidate class gets 0 points for each last 
place vote received, … , and so on up to C-1 
points for each first place vote. The class 
with the largest point total wins.  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Experiments 

 We compare Random and Weight-Driven 
feature subset methods; 

 NoC = 200;  NoF = 1,…,DIM;  k=1,…,5; 

 Leave-One-Out cross-validation was used to 
generate training and test data in each 
classifier;  

 Average error rates (over 10 runs). 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Dim-N-C 

liver 
(6-345-2) 

ionosphere 
(34-351-2) 

spectf-test 
(44-267-2) 

lung 
(54-32-3) 

sonar 
(60-208-2) 

kNN 32.5 13.7 23.6 50.0 12.5 
ADAMENN 30.7 7.1 19.1 37.5 9.1 

Random (S) 29.4 (0.5) 5.8 (0.2) 20.2 (0.4) 45.0 (0.5) 10.5 (0.3) 

Random (C) 28.6 (0.5) 5.7 (0.2) 19.9 (0.4) 45.3 (0.5) 10.3 (0.3) 

Random (B) _ _ _ 44.7 (0.5) _ 

Weight (S) 29.3 (0.5) 6.3 (0.2) 17.6 (0.4) 35.0 (0.5) 8.3 (0.3) 

Weight (C) 29.9 (0.5) 6.3 (0.2) 17.7 (0.4) 32.5 (0.5) 8.3 (0.3) 

Weight (B) _ _ _ 30.9 (0.5) _ 

Error rates 
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Ionosphere Data (34-351-2) 
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Spectf-test Data (44-267-2) 
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Lung Data (54-32-3) 
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Sonar Data (60-208-2) 
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Measure of Diversity 
 Kappa statistic    [Margineantu et al, 1997]: 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Kappa-error: spectf-test 
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Kappa-error: lung 
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Kappa-error: sonar 
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Results 
 Our Weight-Driven approach offers accuracy 

improvements for the data sets with a larger 
number of dimensions (spectf-test, lung, 
sonar); 

 Bootstrapping features using an “intelligent” 
distance metric takes advantage of the high 
dimensionality of the data; 

 The Weight-Driven approach shows a robust 
behavior as the number of selected features 
increases. 
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Results (cont.) 
 Drawback of the Random approach: as the 

fraction of selected features not carrying 
discriminant information increases, poor 
classifiers are generated, and the voting 
increases the generalization error (ionosphere, 
spectf-test, sonar). 

 The Weight-driven technique offers a lower 
diversity.  However, the “intelligent” metric 
employed  by the Weight-driven technique 
allows to reduce bias, and thus achieve a 
better error rate. 
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Reduction of Error Correlations 

 We explore the possibility of decorrelating 
errors by introducing new elements of 
diversification among the NN classifiers; 

 We face the challenge of reaching a trade-
off between error decorrelation and accuracy  
in the context of NN classifiers. 
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Reduction of Error Correlations 

 Technique 1: 
  Each classifier customizes the number of selected 

features at each query point: 

    

€ 

Sort the weight components of  w0 in non
increasing order :   w01 ≥ ≥ woq;
Number of selected features at x0 is NoF0 such that :

w0i ≤ f  and  
i=1

NoF0

∑ w0i > f 
i=1

NoF0 +1

∑      f ∈ 0,1( )
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Reduction of Error Correlations 

 Technique 2: 

  Ensemble of a mixture of Random and Weight-
driven classifiers; 

  Two percentage combinations were tested: 50% of 
each kind; 60% Weight-driven and 40% Random. 
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Measure of Error Correlation 

  

€ 

Correlation of errors of two classifiers (1 and 2) on each class  i :

                               δ1,2
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η j
i x( ) :  error value on  x ∈ Ci  of classifier  j
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∑ Total error correlation 
between classifiers 1 and 2 
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Error Correlation Error rate 

Random 0.12 29.4 
Weight 0.23 29.3 

Weight-C (f=0.9) 0.74 30.3 

Weight-C (f=0.8) 0.41 31.4 

Weight-C (f=0.6) 0.21 31.6 

Mixture 0.11 30.8 

Average Error Correlation and 
Error Rates: Liver Data 
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Error Correlation Error rate 

Random 0.34 10.5 
Weight 0.69 8.3 

Weight-C (f=0.9) 0.72 8.7 

Weight-C (f=0.8) 0.66 10.2 

Weight-C (f=0.6) 0.42 11.4 

Mixture 0.43 8.1 

Average Error Correlation and 
Error Rates: Sonar Data 
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Conclusions 
 We have introduced a mechanism to generate an 

effective and diverse ensemble of NN classifiers; 

  Results show the potential of combining ensembles 
with locally adaptive metrics to effectively dodge the 
sparsity of high dimensional data; 

 To reach a good balance between error decorrelation 
and accuracy, multiple adaptive mechanisms for 
sampling in feature space will be considered. 


