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Ensembles

» An ensemble is a collection of learning machines
(or agents) that operate to solve a machine
learning problem (supervised/unsupervised);

> T. Dietterich: " The task of improving
classification accuracy by learning ensembles of
classifiers is one of the most important
directions in machine learning research." (AL
Magazine, 1997);

» No unified theory on ensembles; growing
interest within the machine learning community.




Why Ensembles?

» In many domains it has been shown that an
ensemble is offen more accurate than any of
the single components;

» Combining predictors can lead fo significant
reductions in generalization error

When do Ensembles Work?

> An ensemble succeeds in improving the
accuracy of the whole when the components
are diverse and accurate;

» Diversity: To ensure that the agents make
uncorrelated errors;

» Accuracy: To avoid poor components to obtain
the majority of votes;
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When do Ensembles Work? (contd.)

> To obtain the required properties: Train the
individual components on different sets of
data, acquired by sampling from the original
training seft;

» Bagging [Breiman, 96] and Boosting [Freund
& Schapire, 96] are successful ensemble
iterative methods for improving the
predictive power of classifier learning
systems.

Bagging

> Uses sampling with replacement;

» Generates multiple classifiers trained on the
different bootstrapped training sets;

» To classify an instance:

= A vote for each class is recorded by every
classifier that chooses it;

= The class with the most votes is chosen by the
aggregating scheme.
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Boosting

» Uses adaptive sampling;
> Uses all instances at each iteration;

» Maintains a weight for each instance, that
reflects its importance as a function of the
errors made by previously generated
hypotheses;

> Aggregation is done by voting, but with
different voting strengths to classifiers
based on their accuracy.

Bagging vs. Boosting

» Experimental evidence proved that both
bagging and boosting are effective in reducing
generalization errors (e.g., with CART, C4.5);

» Boosting provides in general higher
improvements;

» This behavior can be explained in terms of
the bias-variance components of the
generalization error.
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Bagging vs. Boosting (contd.)
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» The objective of combination is to reduce
variance, that is what both bagging and

boosting achieve.
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» In addition, boosting challenges the weak
learner algorithm to perform well on the
harder examples, thereby reducing also the
bias. *

Nearest Neighbor Ensemble

> Bootstrapping the data in not effective for
stable classifiers;

» NN methods are very robust with respect to
variations of the training data;

> As a consequence, bootstrapping the data is
not effective with NN classifiers.

10
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Nearest Neighbor Ensemble

» Suppose the weak learner is the NN
classifier;

» It has been shown [Breiman, 96] that the
probability that any given training point is
included in a data set bootstrapped by
bagging is approximately 63.2%;

> It follows: the nearest neighbor will be the
same in 63.2% of the classifiers.

» Thus: errors are highly correlated. Bagging
becomes ineffective!

1

Nearest Neighbor Ensemble

» In contrast, NN methods are very sensitive to
input features (i.e., highly intolerant to
irrelevant features), and to the chosen
distance function.

> Then, the idea is to exploit the instability of
NN classifiers with respect to different
choices of features to generate a diverse set
of NN classifiers with (possibly) uncorrelated
errors.

12
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Basic Idea

To design an effective NN ensemble:

»>Use different feature subsets to
build the component classifiers;

»To achieve both diversity and
accuracy, we perform adaptive
sampling over the feature space;
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Related Work

» Each nearest neighbor classifier has access

only to a random subset of features
[Ho98 ,Bay99];

» Pros: Can increase diversity without
increasing error rates. Thus: accuracy
improvement;

> Cons: No guarantee that discriminant
features are selected. Thus: voting can
increase the generalization error.

14
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Our Solution

> To reduce the risk of discarding discriminant
information, we perform adaptive sampling
over the feature space;

» To keep the bias of individual classifiers low,
we use feature relevance to guide the
sampling process;

> This approach can lead to accurate classifiers
in disagreement with each other;

> Effective for problems in high dimensions.

15

Learning Feature Relevance

> We use the ADAMENN algorithm [Domeniconi
et al., PAMI 02];

» It uses the Chi-squared distance to estimate
to which extent each dimension can predict
class posterior probabilities;

» Features are weighted according to their
estimated local relevance;

» Provides a local flexible metric for computing
neighborhoods.

16
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Modified “"weighted” neighborhoods

Red=Class1, Green=Class2, Black=Query’s neighbors

Initially: w, =Ww, Finally: W, <w,

17

Chi-Squared Distance

D(x,x,)= Y (P(j|x)=P(j|x,))’

je +’-}

o« (PUX)=P(| %))
2 ',EZ_} P(j | x,)

P(+|x)=1 P(+|x,)=0

. Minimize: E[(r (x,) - r(xy,x))°]

18
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Adaptive Sampling

» The weights credited to features by
ADAMENN are values in (0,7) and their sum
equals /;

» Thus: they define a probability distribution
over the feature space that can be employed
in our adaptive sampling mechanism;

» For each test point and each classifier of the
ensemble, any given feature has a non zero
probability to be selected:;

> A certain level of diversity among classifiers
is guaranteed.

19

Putting All Together

» Input: Number-of-Classifiers (NoC), Number-of-
Features (NoF), k, test point x;

» Compute the weight vector w reflecting feature
relevance at x;
* For I to NoC:

- Sample NoF features with or without replacement,
according to the probability distribution given by the weight
vector w (adaptive sampling);

- Use selected features only (and their weights) to compute
the k closest neighbors;

- Classify test point using KNN rule;

- Apply the voting scheme in use to the NoC classifiers.

20

4/5/09

10



Voting Methods

» Simple majority vote;

> Count : Delay the class membership decision
until the aggregation phase: select the class
with the largest expected posterior
probability in the ensemble;

> Borda: Positional-scoring technique. Each
candidate class gets O points for each last
place vote received, ..., and so on up to C-/
points for each first place vote. The class
with the largest point total wins.

21

Experiments

» We compare Random and Weight-Driven
feature subset methods;

» NoC = 200; NoF = 1,...,.DIM; k=1,...,5;

> Leave-One-Out cross-validation was used to
generate training and test data in each
classifier;

» Average error rates (over 10 runs).

22

4/5/09

11



Error rates

liver ionosphere | spectf-test lung sonar
Dim-N-C | (6-345-2) | (34-351-2) | (44-267-2) | (54-32-3) | (60-208-2)
kNN 32.5 13.7 23.6 50.0 12.5
ADAMENN 30.7 71 19.1 37.5 9.1
Random (S) (294 (0.5)| 5.8(0.2) 20.2 (0.4) | 45.0 (0.5)| 10.5(0.3)
Random (C) [ 28.6 (0.5)| 5.7 (0.2) 19.9 (0.4) | 45.3 (0.5)| 10.3 (0.3)
Random (B) s ik 44.7 (0.5)
Weight (S) |29.3(0.5) (0.2) 17.6 (0.4) | 35.0 (0.5)
Weight (C) |29.9 (0.5) 0.2) 17.7 (0.4) |32.5(0.5)| 8.3 (
Weight (B) i - i 30.9(05)|  _
23

Tonosphere Data (34-351-2)

error rate
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Spectf-test Data (44-267-2)
0.25
s —e—Random-simple: minimum at 5
0.24 features-0.202
0.23 v —=—Random-counting: minimum at
5 features-0.199
e 0.22 Weight-simple: minimum at 4
© 091 features-0.176
§ ) Weight-counting: minimum at 5
3 0o features-0.177
—x—ADAMENN: error rate 0.131
0.19
0.18 % —e—KNN: error rate 0.236
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Number of selected features
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Lung Data (54-32-3)
0.75
07 ‘\_ —e—Random-simple: minimum at 54
i -\\ features-0.450
—=—Random-counting: minimum at 49
065 \ features-0.453
06 " Random-Borda: minimum at 49
' y features-0.447
i ! A kA Weight-simple: minimum at 7
§ 055 I \/;*.}q . features-0.350
E 05 -\M £ —x— Weight-counting: minimum at 5
5 U ¥ vwwk P features-0.325
045 v 'W,M —e— Weight-Borda: minimum at 5 features-
’ N 0.309
04 —+—ADAMENN: error rate 0.375
A
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Sonar Data (60-208-2)

—e—Random-simple: minimum
0.14 at 23 features-0.105

0.13 aat

—=—Random-counting:
minimum at 29 features-
0.103

Weight-simple: minimum
at 45 features-0.083

error rate

Weight-counting: minimum
at 45 features-0.083

—x—ADAMENN: error rate
008 T T T T T T T 0091

Number of selected features —+—KNN- error rate 0.125
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Measure of Diversity
» Kappa statistic k [Margineantu et al, 1997]:
h,,h, : two classifiers;
N,; = number of examples x for which 4, (x) =i and h,(x)=j
C
SN, Probability that the two
0, =1 classifiers agree
n
ol[w N, [N, Probability that the two
e E 2 : E ; classifiers agree by chance
el s ot
K= ®1 iz ®2
1-0,
28
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Kappa-error: spectf-test

o Weight-Driven: error
rate 0.176

= Random: error rate
0.202

error rate

02 01 0 01 02 03 04 05
kappa
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Kappa-error: lung

+ Weight-Driven: error
rate 0.350

» Random:; error rate
0.450

error rate

30
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Kappa-error: sonar

04
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Results

» Our Weight-Driven approach offers accuracy
improvements for the data sets with a larger
number of dimensions (spectf-test, lung,
sonar);

» Bootstrapping features using an "intelligent”
distance metric takes advantage of the high
dimensionality of the data;

> The Weight-Driven approach shows a robust
behavior as the number of selected features
increases.

32
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Results (cont.)

» Drawback of the Random approach: as the
fraction of selected features not carrying
discriminant information increases, poor
classifiers are generated, and the voting
increases the generalization error (ionosphere,
spectf-test, sonar).

» The Weight-driven technique offers a lower
diversity. However, the "intelligent” metric
employed by the Weight-driven technique
allows to reduce bias, and thus achieve a

better error rate.
33

Reduction of Error Correlations

> We explore the possibility of decorrelating
errors by introducing new elements of
diversification among the NN classifiers;

> We face the challenge of reaching a trade-
off between error decorrelation and accuracy
in the context of NN classifiers.

34
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Reduction of Error Correlations

> Technique 1:

» Each classifier customizes the number of selected
features at each query point:

Sort the weight components of w, in non
increasing order: wg, z-+zw,;

Number of selected features at x,, is NoF;, such that :

NoF, NoF, +1

Ywysfand Sw,>f fE(0.)

We used f =0.6,0.8,0.9
35

Reduction of Error Correlations

> Technique 2:

» Ensemble of a mixture of Random and Weight-
driven classifiers;

= Two percentage combinations were tested: 50% of
each kind; 60% Weight-driven and 40% Random.

36
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Measure of Error Correlation

Correlation of errors of two classifiers (1 and 2) on each class i :

cov(nf (x).m;3 (x))

8, =
jih St
O
m M2

i

n j(x) : error value on x € C, of classifier j

o , : standard deviation of n'(x) Vx € C,

nj

C
To account for all classes: 6, = Eé{ﬂzP(i)

i=1

C
Equal priors: 6, = l/CE J, Total error correlation
PHl between classifiers 1 and 2

37

Average Error Correlation and
Error Rates: Liver Data

Error Correlation Error rate
Random 0.12 294
Weight 0.23 29.3
Weight-C (=0.9) 0.74 30.3
Weight-C (=0.8) 0.41 31.4
Weight-C (f=0.6) 0.21 316
Mixture 0.1 30.8

38
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Average Error Correlation and
Error Rates: Sonar Data

Error Correlation Error rate
Random 0.34 10.5
Weight 0.69 8.3
Weight-C (f=0.9) 0.72 8.7
Weight-C (=0.8) 0.66 10.2
Weight-C (=0.6) 0.42 11.4
Mixture 0.43 8.1
39
Conclusions

> We have infroduced a mechanism to generate an
effective and diverse ensemble of NN classifiers;

> Results show the potential of combining ensembles
with locally adaptive metrics to effectively dodge the
sparsity of high dimensional data;

> To reach a good balance between error decorrelation
and accuracy, multiple adaptive mechanisms for
sampling in feature space will be considered.

40
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