Clustering and Subspace Clustering

Outline

- Clustering and the Curse of Dimensionality:
 - Discovering local structures: Subspace Clustering

- Clustering and its ill-posed nature:
 - Clustering Ensembles
 - Semi-supervised clustering
Clustering

• **Goal**: Grouping a collection of objects (data points) into subsets or “clusters”, such that those within each cluster are more closely related to one another than objects assigned to different clusters.

• Fundamental to all clustering techniques is the choice of *distance or dissimilarity measure* between two objects.
Dissimilarities based on Features

\[x_i = (x_{i1}, x_{i2}, \ldots, x_{iq})^T \in \mathbb{R}^q, \ i = 1, \ldots, N \]

\[D(x_i, x_j) = \sum_{k=1}^{q} d_k(x_{ik}, x_{jk}) \]

\[d_k(x_{ik}, x_{jk}) = (x_{ik} - x_{jk})^2 \]

\[\Rightarrow D(x_i, x_j) = \sum_{k=1}^{q} (x_{ik} - x_{jk})^2 \]

Squared Euclidean distance

Clustering

- Fundamental to all clustering techniques is the choice of distance measure between data points;

\[D(x_i, x_j) = \sum_{k=1}^{q} (x_{ik} - x_{jk})^2 \]

Squared Euclidean distance

- Assumption: All features are equally important;

- Such approaches fail in high dimensional spaces
Clustering: The Curse of Dimensionality

- A full-dimensional distance is often irrelevant, as the farthest point is expected to be almost as close as the nearest point;

- In high dimensional spaces, it is likely that, for any given pair of points within the same cluster, there exist at least a few dimensions on which the points are far apart from each other.

Example
Clustering

- Clusters may exist in different subspaces, comprised of different combinations of features:

 ![Clusters in different subspaces diagram]

 Each dimension is relevant to at least one cluster

Global Dimensionality Reduction

- We cannot prune off dimensions without incurring a loss of crucial information;

- Global dimensionality reduction techniques, e.g. PCA, do not handle well situations where different clusters are dense in different subspaces;

- The data presents local structure
Local Dimensionality Reduction

- To capture the local correlations of data, a proper feature selection procedure should operate locally;

- A local operation would allow to embed different distance measures in different regions;

Subspace clustering

Simultaneous clustering of both row and column sets in a data matrix

dimensions

data points
Subspace clustering

Other terms used:
1. Biclustering
2. Coclustering
3. Box clustering
4. Projective clustering
5. ...

Subspace clustering

- Important problem in practice
- Real life problems:
 - Are high dimensional
 - Present local structure
Clustering of Microarray data:

- Different conditions may have different importance for a given set of genes;
- The relevance of one condition may vary from gene to gene

Text classification: Different words may have different degrees of relevance for a given category of documents; A single word may have a different importance across different categories.
Example: clustering query results

- Query: “Bush”
- Returns documents on the president of the United States as well as information on landscaping.
- Clustering using BOW representation
 - Documents on the president and documents on landscaping are related to different sets of features (i.e., terms)

Approaches to Subspace Clustering

- **Bottom-up** Finds dense regions in low dimensional spaces, and combines them to form clusters.
- **Top-down** Finds an initial clustering in the full space, and evaluates the subspaces of each cluster, iteratively improving the results.
Approaches to Subspace Clustering

- Most methods provide “hard” clustering solutions at data level.
- In each subspace typically features are equally weighted.
- More recently: “soft subspace clustering” and weighted subspace clustering approaches.

Locally Adaptive Clustering (LAC)

- We wish to learn from the data the relevant features for each cluster.
- **Idea**: Develop a soft feature selection procedure
 - Assign (local) weights to features according to the strength with which the feature participates to the cluster.
Locally Adaptive Clustering: Example

Within-cluster distances between points are computed using the respective local weights.
Categorization and Keyword Identification of Unlabeled Documents

The Overall Idea

- The result of LAC is twofold:
 - It achieves a *clustering* of the documents;
 - It achieves the identification of *cluster-dependent keywords* via a continuous term-weighting mechanism.
Data set: 20 Newsgroups

- **20 Newsgroups**: messages collected from 20 different netnews newsgroups;
- Two class classification problem: electronics (981) and medical (990) classes;
- The original size of the dictionary is 24546.

<table>
<thead>
<tr>
<th>S</th>
<th>Q</th>
<th>q</th>
<th>n</th>
<th>Ave Err</th>
<th>Min Err</th>
<th>K-means</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>6217</td>
<td>1359</td>
<td>1971</td>
<td>11.5 (2.4)</td>
<td>9.5</td>
<td>49.6</td>
</tr>
<tr>
<td>2%</td>
<td>6217</td>
<td>583</td>
<td>1971</td>
<td>18.1 (11.8)</td>
<td>13.5</td>
<td>49.7</td>
</tr>
<tr>
<td>3%</td>
<td>6217</td>
<td>321</td>
<td>1971</td>
<td>21.0 (9.5)</td>
<td>16.8</td>
<td>49.6</td>
</tr>
<tr>
<td>4%</td>
<td>6217</td>
<td>201</td>
<td>1971</td>
<td>21.8 (0.4)</td>
<td>20.8</td>
<td>49.7</td>
</tr>
<tr>
<td>5%</td>
<td>6217</td>
<td>134</td>
<td>1971</td>
<td>29.1 (7.5)</td>
<td>23.3</td>
<td>49.6</td>
</tr>
</tbody>
</table>
Results

- Selected keywords are representative of the underlying categories;
- The subspace clustering technique is capable of sifting the most relevant words, while discarding the spurious ones;
- Relevant keywords, combined with the associated weight values can be used to provide short summaries for clusters and to automatically annotate documents (e.g. for indexing purposes).
Clustering: An ill-posed Problem

- Document clustering: Based on content? Based on style? Based on authorship?
- Given a data set, different clustering algorithms are likely to produce different results.
- Given a data set, the same algorithm with different parameter settings is likely to produce different results. E.g.: k-means with different random initialization.
- What do we do?

Clustering: An ill-posed Problem

- Solutions:
 - CLUSTERING ENSEMBLES
 - SEMI-SUPERVISED CLUSTERING