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Abstract 

We propose to solve a text categorization task using a new metric between documents, based on a 
priori semantic knowledge about words. This metric can be incorporated into the definition of radial 
basis kernels of Support Vector Machines or directly used in a K-nearest neighbors algorithm. Both SVM 
and KNN are tested and compared on the 20 - newsgroups database. Support Vector Machines provide 
the best accuracy on test data. 

1 Introduction 
Text categorization represents an interesting challenge to statistical inference and machine learning commu- 
nities due to the growing demand for automatic information retrieval systems. Recently, a large number 
of learning methods [9] such as decision trees [12], naive Bayes classifier and Support Vector Machines 
[8],[6],[17],[5] have been successfully applied to  this task. However, quite surprisingly even the most ef- 
ficient learning systems (SVM) are based on rather simple representations of documents such as term 
frequency-inverse document frequency ( ( T F  - I D F )  that only take into account the frequencies of the 
terms in indexed documents and in the whole collection. In some sense, during the last years, the effi- 
ciency of automatic tools was traded of against the lack of linguistics into the representation of documents. 
Based on the experience that prior knowledge always enhances performance of a system when appropri- 
ately introduced, we have investigated ways of introducing semantic knowledge into text classifiers and texts 
representation. We focused our study on the application of Support Vector Machines [2], [18] that present 
very good capacity to generalize and were already used with success on text categorization tasks. From our 
point of view, SVM has especially the advantage as other “relational learning methods” to  be well-suited 
to  incorporate a priori knowledge by the choice of an appropriate metric. Different works [14],[15],[3] have 
pointed out the impact that the choice of a metric has on the generalization capacity of classifiers. A simple 
way to  define a new metric is to  build one from the data themselves. For instance if the new metric is built 
from a linear transformation of the data, one can search for the best transformation matrix from the data  
themselves. Short and Fhkunaga in [14] proposed to  optimize the metric used in k-NN by determining it 
from the training data. A famous example of this approach was provided by Simard et al. who defined 
the tangent distance to compare digit images using the definition of set of linear small transformations that 
lead classes invariant. As reported by Vapnik in his book [19], the best performance on the US post office 
data base of digits were obtained for one-nearest neighbor with the tangent distance which shows the high 
relevance of the knowledge introduced there. 

The method we develop for texts relies on the a priori mapping of the input vectors into a space more 
semantically relevant. Equivalently, as the transformation of the data is linear, it comes to  modify the 
Euclidean metric that allows to compare to  features vectors. 

We will present in section 2 our semantic mapping we called semantic smoothing that is equivalent to the 
definition of a semantic metric. Section 3 will be devoted to  the brief presentation of SVM with references 
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to previous works on text categorization. In section 4, experimental results concerning both SVM and KNN 
will be discussed. In section 5,  a conclusion and different openings to  this work will be presented. 

2 Incorporation of semantic into texts metric 
Texts as features vectors 

In text categorization [9], one has to  assign categories to documents. A document can belong to  several 
classes. When a corpus of documents and the corresponding desired categories are available, the task 
consists in solving separate binary supervised classification problems.Most of the learning systems rely on 
the following preprocessing of the data. First, words of the whole collection are stemmed and are selected 
to constitute an index. Usually this feature selection step is realized by the optimization of a mutual 
information criterion to  provide the most relevant terms for the classification tasks. Once the index is 
available, each document is represented as a features vector where each feature is the value of the frequency 
of the corresponding term in the document multiplied by the inverse frequency of the term in the whole 
documents collection [l3]. This representation mainly exploits and expresses the statistical properties of the 
document collection in terms of occurencies of symbols (terms) of a predefined alphabet (index). Whereas 
some methods use syntactical tags to  characterize more precisely words [l], [1717 very few methods have been 
proposed to take into account semantic categories of terms or semantic information. One successful attempt 
can be found in the FAQ finder system of [4] that makes use of a semantic similarity and a term similarity 
to select relevant answers to the requests. 

One possible explanation of the encountered difficulties might be that the nature of semantic information 
is rather relational in opposition to the unique character of grammatical or syntactical information. 

A semantic proximity defined for terms 
The method we propose is based on the exploitation of the informations provided by Wordnet [ll], a 

hierarchical semantic database of English words . In Wordnet, the main relations between words are the 
hypernym links which works as “is-a” relationships for nouns and adverbs, and synonym links defined for 
adjectives and adverbs. The length of the path between two terms indicates if two terms are semantically 
close or not. This information has already been used in the FAQ finder system[4] to  define a semantic 
similarity. We also define here a semantic proximity but we will make another use of this function. 

The semantic proximity between two words is defined in the [0,1] interval. If words are equal the proximity 
is equal to one.the words are different, the proximity between them is defined as the inverse of the length 
of the path (in the tree) linking the two words. When a word does not belong to this graphical dictionary 
(Wordnet), it is considered as separated from the other words by paths of half maximal length. Obviously 
this proximity does not covers all the aspects of the complex semantic relationships between words and also 
groups of words but provides a useful indication of semantic position of words among the others. 

Semantic smoothing and metric Once the training corpus (documents with stemmed words) has 
been preprocessed in order to build an index of the most relevant terms, a proximity (symmetric) matrix P 
that reflects semantic relations between the index terms is built. Its dimension is thus the size of the index. 
Let us now consider the linear transformation defined by this matrix P. 

Applied to T F  - I D F  features vectors, it performs a kind of semantic smoothing of the vectorial data. 
Indeed terms that are semantically close to  many others terms and are a priori strongly related to them, 
gain in importance (the corresponding feature value increases) while semantically isolated terms loose their 
importance. 

For example, if the word ”society” is highly present while the words ”people” and ”country7’ are less, the 
application of semantic smoothing will increase the values of the last two terms because ”society”, ”people” 
and ”country” are strongly related concepts. The new encoding of the documents is richer than standard tf- 
idf encoding since, in addition to  statistical information, it embodies grammatical/syntactical and semantic 
information. In a sense, this linear transformation smoothes the vectorial representation using a semantic 
bias. Let us now consider the metric induced by this transformation on the data. For two vectors x and y, 
ordinary Euclidean metric is transformed into the following metric where the positive matrix S is defined as 
s = P2. 
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This metric can be incorporated to the definition of a kernel in SVM. 

3 Support Vector Machines 
Support Vector Machines were introduced by Boser, Guyon and Vapnik in the seminal paper [2] and analyzed 
in [18]. SVM, in their general form, maps the input data into a new space using kernel function centered into 
support vectors and then makes a linear separation in the new space. Different symmetric functions can be 
used as kernels K : radial basis kernels and polynomial kernels for instance. Let us define {(xi, yi), i = l...Z} 
the training sample for a binary classification problem. If the vector a and the scalar b are the parameters 
of the output hyperplane, f the SVM function is defined as : 

i d  

f(.) = sgn(C ai.yi.K(z,za) + b )  
i= 1 

(3) 

The induction principle derived to determine weights of output hyperplane (and support data) is the 
maximization of the margin between the output hyperplane and the data encoded in the hidden layer of the 
network. To deal with non separable data, the margin concept was softenized [18] in order to accept as SV 
some points that are on the wrong side of the margin frontiers. 

One of the most interesting characteristic of SVM is that they belong to the class of learning machines that 
implement Structural Risk Minimization principle : this brings a justification to their very good performance 
on all the real-life problems so far tested. However, as all algorithms based on relational coding, the accuracy 
of the SVM highly depends on the definition of the relation, here the kernel function, that describes the 
“similarity” of two given examples. 

Several authors have claimed the relevance of SVM for text categorization tasks [B], [6],[17], [5]. SVM are 
indeed well-suited to cope with high-dimensional data. Joachims in [8] showed that they do very well with 
sparse data and outperform other systems. But none of these works have take advantage of the possibility 
to add prior linguistic knowledge into kernels. 

To implement our approach, we have chosen the radial basis kernel that usually gets very good perfor- 
mance with few tuning and which is still a reproducing kernel when a metric is used as the argument of 
exponential. 

K(., Y) = e.d-7 I1 z - Y 1 1 2 )  (4) 
After semantically smoothing the vectors, we get 

Other kernels based on the usual definition of similarity between two documents could be used as well, 
together with the semantic proximity matrix. Indeed, one great advantage of SVMs is the fact that in order 
to apply its powerful learning algorithm, it is sufficient that the matrix K of the kernel-transformed data is 
positive. Hence, it is possible to apply SVMs as soon as a positive matrix K can be defined over the data. 
This opens large areas of problems where SVMs could be applied as well studied in [16]. 

4 Numerical results 
Data sets and preprocessing We tested semantic smoothing in the 20 newsgroups data set. The 20 
newsgroups data set contains 20,000 Usenet articles partitioned in 20 thematic categories. Each category 
contains 1,000 articles and 4% of the articles are cross-posted. Results of text categorization experiments 
with this data set can be found in [7] [lo]. We divide the initial multi-class categorization problem into 20 
separate bi-class problems, each time considering the totality of a category’s articles as the positive examples 
and an equal number of articles randomly chosen among all the other classes as the negative examples. In 
each case, we use 213 of the examples in the train set, while the remaining examples are put in the test set. 
The complexity of the calculation needed to generate the semantic proximity matrix limits the number of 
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words that could be used as indexing terms. We performed tests with indexes of 150, 200, 250 & 300 words, 
selected by the highest mutual information criterion. Increasing the number of the indexing words did not led 
to significantly improved performances, so we settled with a 200-word index. A similar approach for selecting 
the number of features is used in [6] and a discussion of the feature size problem in text classification can 
be found in [lo]. In general [5],  [7], adding words into the index with low predictive power adds noise. 

In using Wordnet, we notice that an important ratio of words were not present in the wordnet database 
(about 30 among 200). This was a source of deterioration of our results using the semantic metric that does 
not appear in the results. 

Numerical results We evaluated the relevance of our semantic metric using two machines : a SVM 
using an exponential kernel with y=O.OOl and a k-nearest-neighbors. 

The results are detailed in table 1. For each category, results are given as averages obtained from 5 
random splits of the data set. 

sci.electronics 
sci.med 
sci.space 
soc.relieion 

73.01 2.54 75.11 1.72 79.88 2.48 81.08 2.11 
68.56 2.47 77.84 2.95 85.01 1.77 88.01 2.91 
70.97 2.52 80.75 2.61 88.1 1.73 85.99 2.37 
68.66 2.94 82.15 3.06 90.39 2.01 93.09 2.12 

I 
Table 1: Average accuracy and standard deviation (based on 5 random split of the data) for each newsgroup. S 

indicates the semantic metric. 

I method I accuracy I Drecision I recall I #sv 1 
71.79 92.86 

86.44 86.35 
91.25 

Table 2: Average scores for accuracy, precision and recall, and number of support vectors. 

For both machines, the introduction of the new a priori metric increases the classification rate (accuracy). 
This empirically shows that semantic smoothing is relevant for text categorization tasks. SVM, with any 
metric, outperforms kNN and this confirms the supremacy of the induction principle used for SVM. 
In table 2, average scores are presented for the 20 classes. Performance are not only measured in term of 
accuracy on test set but in terms of precision and recall, two classical criteria of IR community (information 
Retrieval) [9] Semantic SVM offers the best trade-off between recall and precision even if the best precision 
is obtained by the simple k-nearest-neighbors classifier and the recall of the semantic enhanced SVM is lower 
than the one of the simple SVM classifier. It should be also noticed that compared to previous works on 
the same database (learnt with slightly different protocols) [10],[7], the Semantic-SVM improves greatly the 
performance both in term of recall/precision and in term of classification rate (accuracy), while the index 
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size is amazingly small. 
However a remark comes to temper these good results, the introduction of the semantic proximity matrix 

in the kernel increases the number of support vectors. The average number (for each of the 20 categories) 
is quite large in both approaches (with or without semantic). This could be explained by the fact that for 
each category problem, negative examples are taken from the 19 other categories and thus should be very 
different the ones from the others. Thus the extraction of support data cannot be very selective. 

5 Conclusion 
We propose to introduce semantic a priori knowledge into text processing in the framework of text catego- 
rization. The simple but efficient semantic smoothing we propose can be seen as a priori mapping of feature 
vectors to a semantically more suitable space or equivalently as a modification of the ordinary Euclidean 
metric. When incorporated into SVM kernels or k-NN , the semantic a priori improves significantly the 
performance while the size of the index is kept small. Moreover, in case of SVM, the results in terms of 
precision, recall, and accuracy appear to be very high. This comforts the idea that SVM provides an at- 
tractive framework to deal with real-life problems where domain knowledge is available. Furthermore, the 
framework of data support machines opens a new interesting perspective, encoding documents as proximity 
data rather than numerical vectors. 
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