Chapler 1
FOBEMAL ADAPTIVE SYSTEMS

1.1 Introduction

The adjectlve "adaptive" is frequently encountered
in the highly sclentific and technologlcel age in which
we llve., We read of sophisticated radar guldance systems
which are capable of adapting quickly to changes in terrain
and thus permit high-speed low-altitude flying. The space
program has focused our attention on the need for machines
which are flexible encugh t¢ adapt their responses to un-~
expected environmental factors., artificial 1nte111génce
research has generated complex game-playing computel pro-
grams which have learned by experience to play better than
their authors. PBlologlsts continue to study the fascin-

ating edaptlive capabilitles of organisms as simple as bac-

teria and as complex as man.

The question a8 to what constitutes an adaptive sys-
tem has been widely debated, most recently in Tsypkin's
survey of control theory (1971). This debate willl not be
continued here; rather, a broad view of what constltutes
an adaptive sysatem Will be adopted, & view succinctly
stated by Teypkin (1971, p. 45}:

wve the most characteristic feature of adap-
tation 15 an accumulation and slow usage of
the current information to eliminate the un-
certainty due to insufficient a priorl infor-
matlon and for the purpose of optimizing a
certain selected performance index,




Taypkin has focused his attentlon on artificlal adaptive
systems used in control theory. Holland (1975), on the
other hand, has been studying the characterlstics of beth
natural and artificlal adaptive systems from this broad
viswpoint., Out of this work has come a formal framework
for deseribing, analyzing, and comparing adaptlive systems.
Thigs framework 1g the basis for the formal deflnition of
adaptive systems used in this thesis. However, before
presenting the formalism, let us consider some examples

of prcbleme which are candldates for an adaptlve scolutlon.

1,2 Some Problews for Adaptation

I ar particularly interested in the application cof
adaptive system theory to the problem cof adaptive software
design. This bias will show itself in the cholce of ex~
amples and applicatlons discussed in thls thesis. The
reader 18 reminded that the adaptilve system theory pre-
gsented here i1s limited in i1tz application only by the
imagination, and he 18 encouraged to conslder exanpleg

from hiz own experlence.

1.2,1 Data Structure Design

Suppose we are faced with designing s data structure
for & generalized infoermation-retrieval system. If 1t i3
really intended to be genersl purpose, the characteristics
of input data sets are unknown at design time. A standard

approach is to assume random input and choose the data



structure which minimizes some performance critericn for a
standard set of data structure operations {(e.g. search,
delete, insert). Unfortunately, many applications consist
of diatinetly non-randem input resulting in sub-optimal
performance, An adaptive approach would explore the
rosgibility of deferring the cholce of a specific data
gtructure until the charscteristics of a particular dats

set are avallable in order to enhance on~line performance.

1.2.2 Algorithm Design

Suppose we are faced with designing a sophlsticated
time-sharing system which supports a large number of batch
angé terminsl users simultaneously. The heart of such a
syatem 18 a supervisor program which l1s responsible for
sharing limlted gystem resources among competing processes,
The performance of a time~sharing system (usually specified
in terms of termiﬁal response time, batch throughput, and
system overhead) is directly affected both by the algo-
rithms chosen for resource sharing and by the demand
characterlstics for system resources. Unfortunately, the
demand characteristles can vary widely from day to day and
are often difficult t¢ prediet. A standard approach is
to base resource sharing algorithms on averagze demand
characteristiecs and hence obtain good performance "on the
average”, An adaptive approach would explore the possi-
bility of modifylng resource sharing algorithms in response

to current demand characteristics (see, for example,



Bauer {(1974}).

1.2.3 Game=-playing Programs

Some of the moat fascinating aspects of software
design have arisen in the area of game-playlhg programs.
Credible systems have been developed for playling games as
conplex as checkers and chess. The difficulty 1n degign-
{ng such programs llee in our inabllity to speclfy a
winning strategy in a preclse slgorithmic way. The stand-
ard approach has been to specify as precisely as pussible
the strategies used by expert players. Unspecified para-
weters (of which there are many) are externally "tuned®™
during development by observing theilr effects on perfore~
ance. This approach has led to the development of several
good chess-playing programs, An adaptive approach would
explore not only the possibillity of sellf«tuning programs,
but also the possibility of strategy-generating syatems,

1.2.4% Two-armed Bandits

Two-armed bandlit problems arise in the context of
gtatistical decision theory, but have conslderable bearing
on the problem of adaptation. In 1ts simplest form, the
problem 1a stated as follows: you are presented with two
glot-machines, one of which pays better than the other.
If you are unaware of which is the better-paying machine,
what strategy would youn use to minimize your expected

losses over N trials? The optimal (but alas, non-realiz-



able) strategy 18 to play the better-paying wmachine all
the time. Lacking thiz a priori information, the problem
hecomes one of minimizing the expectad number of trials
to the lower-paying machline. Each trial yields more
informetion sbout the relative performances of the two
machines. The goal 15 to exploit this information as
quickly and efficlently as porsible, Jt should be clear
by now that two-armed bandlt problems capture adaptatlion
in 1ts simplest fo:m: the dynanic gathering and explolt-
ation of Iinformation to reduce uncertainty and improve

performance.

1.3 A Formal Framewcrk

With these examples in mind, we now asak what are the
esgential characteristics of adaptation. It has already
been suggested that a problem 1ln sadaptation arises out of
a lack of & priorl information which prevents one from
choosling between competing alternative golutlions to the
problem. Impllicit in the ideaa of competing solutlons 12 a
measure of performance used to compare alterpative solu-
tions. The performance of a solution is & function both
of itas own characteristice and the particular environment
in which 1t i1s tested. Adsptation consiats of a etrategy
for generating better-performing solutions to the problem
by reducing the inltial uncertalnty about the environment
via feedback information msde avallable during the evalu-

ation of particular solutlions.



Holland has been atudying the properties of both
natural and artificlal systems. Out of these atudlies has
come a formalism for repregenting problems in adaptation
which will be used 1in this thesis. DBriefly, a problem in
adaptation 13 formally repressnted as:

E: the set of snviromments to be faced.

A: a set of structures describing alternative solutlons
to the problem.

U: a performeance measure for evaluating solutions in a
particular environment, t.e.

U:s: AXxE >R (B representing the real line)

I: a feedback function providing dynamic information to
the sdaptlva system about the performance of a par=
ticular solution in a part;cular environment, i.e.

I: A x E —»E"

S: the collection of adarptive strategles under study.
Each 8 & 3 is a strategy for generatling better-per-
forming solutlons based on feedback inferestion from

previous trial solutions, 1i.e.

T
8: {i&[t).I(t)]}' iy A
t=1

X: the criterion used for comparing the performances of
adaptive stratégies. 1.0,
X1 S =mR |
As an example ¢of the formallism, nonsid?r how one might

formally represent the previocusly disoussed prodblem of



choosing data structures for an information retrieval

gystem:

E: the set of all possible input data zets,

A1 the get of alternative data structures.

U: the performance of the infoermation=retriaval system
on a partlicular data set,

I: data structure performance statistics (e.g. search,
insert, delete timings).

3: alternatlve strategles for changing data structures
based on input data set characteristics.

X1 ususlly U averaged over random samples from E.

1.4 The Problem of Functlon Optimization

In this sBection we will conzgider the olose relation-

ship between the problems of adaptation and function
optimization, Function optimization 1s a well-studied
problemr in epplied mathemetlics and 1s briefly =tated as
follows: given a function f: A-# R, rind those points
in A on which f takes its marimum (minimum) values. To
aee its relatlionship to the problem of sadaptation, con-
8lder again the formallsm dlscussed sbove. The perform-
arice measure U: A x E~®R 15 more precisely the com=-
position of two functiona, a behavioral function

B: A x E-+RBP gpecifylng the behavloral characteristlca
of a2 particular solution in a partlcdlﬁr environment, and
a metric function M: B2 —w R specifyling the performance

rating assoclated with behavioral characterlstice, We



can further emphasize the role of the environment by
considering s family of behavlioral functions {be} e E'
where each b, 18 simply the restriction of B to 4 x {e} .
In this way adaptation can be viewed as attempting to
optimlze the performance measure u, ! A~» R assoclated
with a particular environment ¢ € E and defined by

ue(a] = H{be(a)). The difficulty of the problem of
adaptation (i.e. the initial uncertﬁinty) can then be ex-
pressed in terms of the r;chness of the set {ue} ceE of
performance msasures. Because of this close relationship
betwesen the two problems it i= worth consldering the
applicabllity of function optimlzation theory to the prob-
lem of adaptive system design.

Punction optimization theory 1s generally divided into
two areas: constralned and unconstrained problems. The
tractability of & constrained problem is often highly de-
pendent on the complexity of the constralnts; finding the
maxrimum is often eclipsed by the problem of staying within
the constraints. From an adaptive systsms point of view,
the problem of constralnts can be subsumed in the defin-
1tion of the representation space A and the performance
measues -{P;} + PFor example, m complexly constralned
space H ¢can be embedded in a simply constrained space A
with u, defined to take on 1ts minimal wvalue on A~H. For
these reagons We will restrict our attention to uncon-

strained problems which, as far as any implementation 13

concerned, are really linearly constreined problems where



the constrainta are of the form
1{(1) £ x(1) = h(1), 1 =1, ,.., n.

A second observatlion restricts our attention even
further. It 1s the case that the performance messure ue
i1s almost never avallable in analytic form. Recall from
above that U, 18 really the composition of b, and M.

While M is often expliclitly expressed in analytic form,

b,» the behavior function, 1s generally omly a "black box"
representing the complexity of the problem under adaptation.
This observation immediately rules out classical analytic
techniques and those lterative technigques which depend

on exact expressions for flrst and possibly sécond order
partial derivatives.

& third obgervation, and perhaps the most critical
a8 far as the applicability of function optimization theory
1s concerned, 18 the fact that for problems of any complex-
ity the behavioral function b, (and hence in general ueJ
is a high~dimensional, non-linear, multimodal function.

As a oonsequence standard optimization technigues which
assume llinearity or unimodality, or technlques whose
computation time grows rapldly with dimensionality are
generally inapplicable to the adaptation problem,

With these constraints we are left with only a few
alternative optimization techniques. The most commonly
proposed gearch technigue for multimﬁdal functiona 1is
to run one's favorite local (uﬁimodal} cptimizer repeat-

edly usling random starting points, the assumption being
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that sach local marimym will be encountered after a
sufficisnt number of trials. Alternate approaches perform
soms type of patternsd search over the whole space looking
Tor likely areas in which the local optimizer should be
employed. Finally, for problems of high dimensionality,
several suthors (see, for example, Bastrigin {(1963) or
Schumer & Steiglitz (1968}) have recommended reverting to
various forms of random search.

Whaether or not these technigues produce the kind of
adaptive performance we would llke is at this polnt an
open guestion which will be explored further in thilz theals.
Comparisons of function optimizers center around the num-
ber of function evaluations raguired to find the optimum
within a certain tolerance. The emphasis here 1z on con-
vergence. In contrast, adaptation 18 also concerned wlth
the gquality of interim performance, the criterion often

involving the integral of the performance curve.

1.5 A Beduction in Scope

Having stated and explored the general framework for
problems in adaptation, we will now focus our attention
on a apeciflc class of adaptive systems which will be
the object of this atudy.

In the first place, we will consider only discrete
time-scale adaptive systems. A time step generally
conslists of generating, testing. and receiving feedback

about a particular solution to the problam. The lnter-
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pretation of a time step is, of course, appllication-
depesndent.

Secondly, we will be concerned with the design of
adaptive systems in which fhe only available feedback 1=
the value of the performance measure Uge Such systems
are usually termed "first-order® feedback systems in the
gense that the very minimal feadback information avallable
about the behavieor of a particular solution ias its per-
formance rating.

FPinally, we wlll restriet our attentlon to two adapt-
ive system performance criteria (X and X* defined below}.
The motivatlon for these criteria arises from the coﬁcept
of robustnesgs. We say that an adaptive system iz robust
i 1t is able to generate and maintain acceptable solu-
tions to a problem across a wide variety of environments.
In order to formalize thls concept, consider first the
definition of local robustness, 1l.e. the ability of a
strategy to generafte and meintain acceptable solutions
to a problem in a particular environment, Two such
measures will be used in this thesls: Jlocal on-line per-
formance and local off-line performence., On-line perform-
ance £, : 5~*E will be defined as follows:

Te(e) = . Ot - uglay)
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That ig, the performance of strategy 8 1in environment
e 12 a waighted average of the performances u,(asy) of
the genarated solutions a, over a time period Te‘ On-
line performance meagures are motivated by situatlions
in which adaptiva systems are belng used to dynamically
tmprove the overall performance of an on-line system
such as a2 time-sharing system. In such sltuatlons every
new solution generated by the adaptive system for testing
15 ineluded in the overall performance rating of the
system,

In contrast, local off-line performance x* ; s-»R

will be defined as:

TG
* 1 *
Xg(8) =r * oy + Uglay)
ot t=1
t=1

where u;(at) ¢ uin {ue(alj. PN ue(atlk o Off=1line
performance 18 motivated by situations in whleh the
teating and evaluation of solutions is done off-line
and 15 not included in the overall performance eval-
uwation, In these situations the on-line gystem runs
¥ith the best solution generated te that point while
off-1lna adaptation is continuing. Off-line performance
18 much closer to the standard weasure of performance
for function optimizers, The ﬁagnitude of tria) errors

18 not included; only progress toward the minimum is
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measured, As a consequence, off=line performance places
heavier emphasls on convergence while on-line perform=
anca emphasizes initial performance.

In both cases, the welghts c¢ provide a means of
ghifting the emphasgis. If they are increasing {cy<ceyyl.
more enphasis is placed on convergence. If they are
decreasing (cy> ¢yyq),. fore emphasis 1g placed on in-
1tial performance. For our purposes ce=l for all t
1s sufficient,

Global robustness ls now defined 1n terms of these

local measures. On-line performance X: 5 %R 1s given by:

X{s) = 1 * we-xe(s)

Zwe E
B

off-1ine performance i1s =imilarly given by:

x*(a) = » we-x:(s}

E

In both cases, the welghts w, can be used to assign

relative difficulties to the alternative environments.

1.6 Summary
In this chapter we have attempted to define formally

what we mean by a problem in adaptation and have dis-
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cussed some practical examples of such problema. We
have noted the close relationship hetween the problems
of adaptation and function optimization, and we have
seenn that the bulk of optimizatlion technligques is not
generally applicable to the design of adaptive systems,
Finally, we have defined the speciflic class of adaptlve
systems which will be the subject of further study in

the following chapters.



Chapter 2
GENETIC ADAPTIVE MODELS

2.1 Introduction

In the dilscussion of function optimization theory 1n
chapter 1, we noted that, although the problews of adapt-
ation and optimization are closely related, most of the
standard optimization techniques are lnadequate for adapt-
ive problems of any complexity. Thls lnadequacy can be
viewed as an inability to process information releting to
global aspects of the function to be optimlzed. Extremely
effilelent; techniques have heen developed for finding the
nearest local maximum of a function; however, attempts to
extend these techniques to find global maxima have met
with 1little success. Some glebal search technlques have
been proposed for low-dimensional problems (see, for ex-
ample, H1ll (1969) or Bremermann (1970})., their computa-
tion time growing rapidly with dimensionaiity. Az &
conseguence, most global searching is accouplished with
soms form of random search. From an adaptive system point
of view, random search 15 extremely inefficient because
i1t makes no use of the avallable feedback infermation to
reduce the inltial uncertainty surrounding the problem
for adaptation, These observatlions guggeat a critical
question for adaptive system design: are there efficient
ways to explolt global 1nforma£1on about a problem in

order to generate better-performing solutions?

15
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This theels i part of a larger research projsct
which 18 attempting to answer such guestions under tha
direction of John Holland at the University of Michigan.
The basic point of view of this research is that nature
is an extremely rich source of examples of sophlatlcated
information processing and adaptation. The goal of this
project 1s to understand and abstract from natural systems
the mechanisms of adaptation in order to desigﬁ artificial
systems of comparable sophistication. This research h#a
centered around the design of artificiel systems derived
from standard models of heredity and evolution in the fleld

of population genetlcs which we will briefly review,

2.2 Genetic Population Models

Population genetlcs is concerned with the character-
istios of heredity and evolutlon at the population level.
It assumes a Mendellan view of the mechanisums of hersdity,
i.e. genetic materlal is represented as gtrands of chrom-
osomes consisting of genes which control observable
properties in the individuals making up the population.

A population iz viewed as a dynamlc pocl of genetic in-
formation, the characteristics of which change from gener-
ation to generation in response to envircnmental factors.
Numerous examples exist which demonstrate the ability of
a population of organisms to adapt over a perlod of gen-
erations to couwplex changes in its environment. The goal

1s to explain these observable adaptations in termz of
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the mechanisms of heredity and evolutilon.

In a genetic population model, individuale are repre-
sented purely in terms of their genetic makeup., HRepre-
sentations of genetic material vary frouw simple one-chrom-
ogome 1ndividuals (haplold models) to complex pultil-
chromosome individuals {polyplold models). Having speci-
fled m representatlon for genetic material, the obgervable
characteristlcs of an indlvidual are defined as functions
of the chromosomal genes. Environmental pressures, speci-
fied 1n terms of these obzervable characterilstics, assign
a measure of *fitness" to an indlvidual. Finally, the
dynamics of population development aye defined in terms of
ritness, life-death cyeles, mating rules, mobility, =ex,
gEpecies, and &8¢ on.

We, of course, are not concerned with modeling the
development of blologlecal populations per se; rather, we
are concerned with understanding the mechanisms of adapt-
ation which provide for such development. Unfettered by
biclogical facts, we are free to construct artificlal
systems which capture the sssence of these mechanisms.

The exclting aspect of thls approach, as we will sse, 1s
that even very simple artificisl systems exhibit consider~

able adaptive capabllities,

2+3 BReproductive Plans

In this section we will describe the baeic class of

artificial adaptive systems which hag arisen from the
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genstic population models, This class of adaptive systems,
called reproductive plans, was first proposed by Holland;
subsequent variatione have been studied by others (see, for
example, Cavicelo (1970), Hollstien (197i), Frantz (1972)).
Becall from the formalism introduced in chapter 1
that alternative solutions to the problem for edaptation
are reprasented by the set A, Jn a reproductive plan, the
menory of the system at tlme t consists of a populatlon
A(t) of N individuals 8¢ from A togethar with thelr
assacliated performance rafings ue{ait}. These repre-
sentations ay¢ of sqlutions to the prablem for adaptation
are conslderad the genetlc material to be processed by a
reproductive plan. New individuals (and hence new alter-
native golutions) are produced by simlsting genetic
population dynamica. That is, individuals from A(t) are
gelected as parents and idealized genetic operators are
apﬁlied to produce offspring. More gpeciflcally, & repro-

ductive plan operates as follows:

Bandowly generate A{o) |

»
—'{Por each as in A(t}), compute and save ue(alt!.

'
Computs the selection probabllities defined by
Ugfayy)

uglayy)

i=

!

Generate A{t+1} by selecting individualz from A(t)
via the sgelection probability distribution and
applying genetic operatora to them.
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To get a feeling for how reproductive plans work,
note that the expected number of offspring produced by
an individual is proportional t¢ its performance., This
can be seen by considering the process of selectlng
individuala for reproduction as N samples from A(t) with
replacement usling the selection probability distribution.
Hence, the expected number of offspring from 1ndividual

By iz glven by

G(Elt} N « Playg)

- n . Zefait)

g Ugfayy)

1=1

Uy(ay )

5 2%(311;}

- ue(ait}
To(A L))

S0 we zee that indlvidusls with average performance ratings
produce on the average 1 offspring while better individ-
ugls produce more than 1 and poorer individuals produce
less than 1, Hence, with no other mechanisms for adapt-
atioﬁ. reproduction proportional to fitness produces a

sequence of generations A(t) in whioch the best individual

in A{o) takes over a larger and larger proportion of the

population.
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However, in nature and in these artificlal systems,
offspring are almost never eract duplicates of a perent,
It 18 the role of genetic operators to explolt thle selec-
tion process by producing new individuals which have high-
performance expectations. The cholice of operators is
motlvated by the mechanisms of nature: crossover, mui-
tatlon, inversion, and so cn. The exact form taken by
such operators depends on the “genetic" representation
chosen for individusls in A, In order to see more clearly
the role of genetic opsrators, let us consider a vary
simple (from a biological viewpeint) reproductive plan

which exhiblts surprising adaptive capabilitles.

2.4 The Bagsic Reproductlve Flan: Bl

The simplest reproductive plans use fixed-length
haploid Tepresentations for elements of A. That is, an
individual 13 represented by a slngle chromosome consist-

ing of a fixed number () of genes:

1 2 3 T

Each gene position 1s defined to take on one of a spacifiled
number of {(allele) valuesg. Hence, the set A of all poss-
ible individuals can be considered an {-dimensicnal space
in which an individual 1s represented by the value of its
genes., To obtaln a representation of this form for a
gépecific problem for adaptation, alternative solutions to

the problem are characterized uniquely by an ordered =aet



21

of ﬂ parameters which in turn play the role of genes.
Having thus defined the representation space A, a
reproductive plan ia now free to explore 4 by submltting
individuels for testing and evaluation as solutions to
the problem., The baglc reproductive plsn accomplishes
this via two genetic operastors:; cressover and matation.
To specify praciszely how these operators work, we let an
element 8y from A be represented ag the string V11v12 saa

v in which the iy represent the gene values (alleles).

1%
Crossover generates a8 new individual ay from two
existing individuals ay and aé by concatenating an 1n1t1a1
gene segment from a, with a flral gene segment from aJ..

The segments are defined by selecting a crossover point
via a random semple from a uniform distridbution over the
1-1 positions between the genes. So, for example, if
crosgsover ooours between the second end thiré gene posi«
tions, individual ay 18 generated from 2y and aj as 1llus-

trated:

ai = ?11712?13 Y] ?ll

-" ak = ?11712733 ann 711

ul

EJ = vdlvjz Jj - ?Jl

The crossover operatlon is embedded in plan Bl in the
following way. Given an individual ay Selected from A(t)
to produce en offapring, a mate a ¢ 18 chosen from A(t)
using the selection probabilitiés. An offspring 1s then

produced by crossover,
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S0 we see that the strategy employed by crossover in
gearching A for bettereperforming solutions consiste of
constructing new sample points from axlsting ones selected
on the basia of performance. Notice that if a particular
allele (gene valus) Vi3 is not present in A(t), nec off-
spring produced by c¢rosgsover wWill contain vij' In other
words, creossover is unsble to generate polnts in the sub-
space Vi x Vz X ess X {?li} A x:ﬂi of A. An allele
can be missing from A(t) for several reasons. It may
have been deleted by selection because of azsoclated poor
performance, 1t may also be mlssing simply because of the
limited size of A{t). Obviously, if |V1\ = 1000, & win-
imem population of gsize 1000 15 requlred for A{t) to con-
tain an instance af each 713' In plan Hl new alleles are
introduced into A{t) by the second genetic operator:
mutation.

Mutation generates & new individusl by independently
modifying the valua of one or more ganes of an existing
individunl., A gene i3 gelected for modificatlion via a
Tandom sample from a uniform distribution over the § gene
positions. The new gene value 12 gselected via 8 random
gapple from a uniform distribution over the asscclated
get of mlleles vj. So, for example, 1f individual ey 18
selected to undergo a mutation at position 2, an individ-
vee¥yg 18 generated, The mutation _

uala =v11-L13
operator 13 embeddesd 1n Plan Bl as follows: & small
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percentage of individuals gsnerated by crossover ror
A(t+1) additionally undergo a mutation. In nature the
probability of a gene undergoing mutation is generally
less than ,001 indicating that mutation {(a form of random
searchn) 18 not the primary genetic operator. BRather, 1t
gshould be viewed as a background operator guaranteeling
no allele will permanently disappear from A{t}.

In order to evaluate the adaptive capsebilities of
plan Ri, an environment E was deflned consisting of a
breoad clags of performance measures u, defined on A {zee
appendix A). Included were instances of continuous, dis-
continuous, convex, non-convex, unimedal, multimodal, low-
dimensional and high-dimensicnal functions as well as
functions with Gaussian noise, The plan Rl was implement-
ed in PL1 and its behavior observed over E in compsrison
to pure random search (see appendlx C). While H1 did not
always converge to a global maxlmum in the Time allotted,
it erhibited a considerable improvement over the perform=-
ance generatad By random search., Typical curves from

these simulations are shown below:

¢ Rawdom
u (t)

Ri
il
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ug(t)

Yandem

t

Becall that the performance criteria X and x* for adaptive
gystems were defined in terms of the average values cof

u, and u;. respactively, over time. With these encour-
aging results, we conslder in more detall the properties

of plan Rl.

2.5 K-arpmed Bandits

Befors we explore in more detall the way in which
plan Bl searchees the space A for better-performing ele-
ments, we will take a brlef, but relevant, dlversion to
consider solutlons to the generalization of the Z-armed
bandit problem introduced in section 1.2, namely, the opti-
mal allocation of trials to X machines., Holland (19735)
has shown a mathematical solution exists If one is glven
a bit more & priori information sbout the K machines,
Suppoes wWe know that each machlne pays stochastically
according to a normal distribution N(ui,af}, but we are not
told which digtribution is assgoclated with which machine.

In this case, an optimal strategy for allocating T trials

to the K machines is roughly characterized as follows:
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allocate exponentially more of the T trials to the ob-
served best than to the remaining K-1 machines, where the
exact form of the exponential depends on the K distribu-
tions N{ni.sf}. Notice that this strategy 1s non-reallize-
able in that no strategy can decide which machins will be
the observed best after T trials without allocating the T
triasls, and then 1t 1s.too late to distribute the trisls
optimally. However, such a solution gives us a character-
ization of the w&y in which triala should be sllocated,
and it yields s lower bound on the expected logses over
T trials. The quastion, of course, 18 whether there are
any realizeable strategles which are good approximations
to the optimal one. To answer this gquestion, Wwe consider
in more detall the optimal solution to the Z-armed bandit
problen.

In this case we have two machlnes Bl and BZ which
pay according to the distributloms N(ul.af) and N(uz,s%]
regpectively, Por convenience, let Bl be the machine with
the higher payoff and Ei be the machine wlth the highest
observed payoff after all T trialis have been allocated
with t, going to Bi snd t, to B2. Holland {1975) has
shown that the expected loss incurred over these T trials

ig given hy: _

where q(tl.tz) 18 the probability that B2 will be the

observed best and iz well-approximated by
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2
a(ty.t,) = 1, exp(-x%/2 x ug-uy

b o L)
2w ] 5578y + 83/t

To get a feeling for how L{ti.tz} varies over the
interval Ot:_tz{ T, coneider L rewritten as a function of Ti

\ul-ﬂuz\ l[(T-tz)*q(Tutzj + tz"(l-q{Tftzla

L{T,t;)

It

\ul"ua\ * [{T-th}iq(T.tZ) + tz]

Ag 1llustrated in figure 2,1, the term

1 . exp{-xzfzj

(T-2t,)wa(T.tp)} & (T-2t5)«
J2r x

dominates L for smal)l walues of t;, but drops off exponen-
tially as a function of t, since
' ul-“z 1.11-'1-12 u

-

17 "2
= = = { )i'\lt =k“t
1[52/z + 82/t "szft 52 ; 22
1% 2’ "2 272

2 axp{-kZt,/2)
Soo(rzty)e 2, XA/ ¢ 2, 22
42‘;{' b 4 {211' kz—dt?'

T *ezp(-aztzl

kg\rz_;'f_l JT;
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FIG 2.1: BANDIT LOSS FUNCTION FOR T=50
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Flgure 2.1: Erpected losses over 50 trials on bandits
B1(9,1} and B2(8,1).



28

As t2 increages, the term tE dominates and L is essen-

tially linear with respect to tz. Finally, as t,~»T,

tha tarm

2
- exp(-k>t, /2) _ _
(T-2t,)wq(T,tp) ¥ . 17T saeleegty)

re«siergss as the dominant term with a negative sign.
In order to minimlize cur expected losses over T trilals,

we must find the value t;'such that
-

Finding an analytic expression for t; by consldering thosa

points at which %%— = 0 1s fairly complex. Holland (1975),

for example, has derlved the approximation

* l]- u..u
tzﬂb-zﬁln sz « b= 1 2

8 +1n(T%}y - 8,

Por our purposaes the optimum iz found via a one-dimension-

al iterative search technigue applled dlrectly to L for
various values of T. Figure 2,2 1llustrates how the op=-
tinal loss function L(T.t;J variez wlth T. It is thils

kind of performance that a realizeable strategy must
hope to approximate, Finally, figure 2,3 1llustrates the

previously mentioned relationship between t; - T-t;

and t;. nagely, that an optimal strategy allocates ex-
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FIG 2.2: OPTIMAL LOSSES OVER T TRIALS

10.00

9.60

8.00

7.00

L
T

"
L(T,tz}

EXPECTED LOSSES

6,00

4
T

5.00

00

HEU.D 550.0 : BEQ.G : IEUD.O
TOTAL TRIALS

i
.

u,

0.0 200. 0

Figure 2.2: Optlmal losseg incurred over T trisls on two
bandits BE1{9,1) and B2(8,1).
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FIG 2,3: OPTIMAL DISTRIBUTION OF T TRIALS
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Flgure 2.3: Optimal distribution of T trials between two
bandits B1{9,1) and B2(8,1).
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ponentially more trials to the observed best.

We are now in a position to evaluate the performance
of Bcome Trealizeable strategies. The first cne which comes
to mind 18 the standard decision theory approach (here-
after referred to as DTS) which goes a8 follows: allocate
a small number t of trials to each machline; then allocate
the remaining T-2t trials to the observed best, Paralliel-
ing the preceding analysls, we have an expected loss func-

tion:
Ly (T.t) = |uy-uy| *[(T-t)«q(tJ + t*(l-q(t).'l]

where q(t) is the probablility that B2 is the observed
hest after allocating t trials to each machilne. In this
case We have

—x2
~ exp(-1</2}) uy-up
qi{t) = * ¢« T =

vz x Af s/t + s3/t

[

- u,-u, 0

\Eer

T
Again, we seek the value t-*, 0<t*< 3 which minimlzes

Ll{T.t). as illustrated by figure 2.4%. It should be clear
that we ocan define a DTS which, when given T, Uys Ups 8y
and Bay computes the optimal initiel sample size t* ana

allocates its trials accordingly. Intultively one feels
that this DTS will approrimate the optimal strategy as T
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FIG 2.4: DTS LOSS FUNCTION FOR T=30
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Figure 2.4: DTS expected losses over 50 trials on bandits
B1(9.1) and B2(8,1}.
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increases., PFlgure 2.5, however, lllustrates that 1t 18 &
fairly crude approximation since the optimal number of
trials allocated to BZ grows very slowly with T.

A second more interesting approach lncorporates
some of the i1deas prasented in the discusslon of repro-
duetive plans in section 2.3. The basic 1ldea is to make
a series of reveralble declisions during the sequence ol
trisls rather than one non-reversible decision. This 1s
accomplished by defining a selection probability distri-
bution over the machines. Initially, the distribution is

uniform; however, it changes over time as follows:

P, {t+l) = B, {t) fa ) K
= - *.
1 1 ?{b) t+1

That is, the probabllity of selecting machline 1 changes
over time in proportion to 1ts observed performance rela-
tive to the average, where K¢,y 1s the normalizatlon
factor required for ‘22 Py(t+1)=1. If at each time step
we select a machine fo% frial by sampling from this time-
varying selection distribution, it should be clear that

a machine which ocontinues to show above-avearage performance
will rapldly dominate the allocation of trlals.

Initinlly t samples are allocated to each machine for
estimates T,(t) of u, before the first decision is made.
This, of course, incurs an inltisl loss lul“ua‘ »t, but
adds certainty to the sBubsequent decisions. 4As t-w1, the

initial overhead 13 reduced at the expense of making de-
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FIG 2.5: EXPECTED DTS LOSSES CVER T TRIALS
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A compariaon of the expected losses for DTS
an%ath? optimal on two bandits Bi(9,1) and
BR2(8,1). '
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clslone with more unoertainty.

So we have expected losses over T trialz glven by:
s
Ly(T,t) = |uy-uy | ot + Lp(T,t)

4
where Lo(T,t) specifies the expected losses durting the
time-varying decision processes from 27+1 to T, We can

LAY,
express I, as

T
To(T.t) = g R
j=2t+1

where R(j) is the expected loss on the }*! trial and 1s

given by
001 = fug-uy)aefp )]

where EEE'Q(JJ} 1s the expected value of the selection
probabllity P,(]) at time J.

While it 15 relatively streightforward to caleulata
the expected initial value, El%z{zti'. subsequent expected
values are extremely difficult to analyze gince the tran-

gition funotion

To(t)
= *Ete
t}

P,(t+1) = Py(t)e

is non-Markovian and depends on the random varlable tz(t},
the number of trials allocated to B2 through time t,
Consequently, we are faced with éptimizing LE(T.t)
with respect to t by simulatlion a= i1llustrated in figure
2,6, Two hundred samples were taken of L,(100,%t) for
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FIG 2.65 TVS LOSS FUNCTION FOR T=100
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Pigure 2.6: Simulated losses over 100 trials using TVS .
on two bandits B1(9,1) and B2(8,1).
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tel,2,3.004,10. These figures, and others not shown here,

suggest that a good approximation for t* is given by:

' 2 2
- 81+82

L

Uy -n,

which, for the illustrated cese, yields t*= {Z'or ¢t ¥ 2,
This formulation is motivated as follows: choose enough
initial gamples t so that, with a prioril probability g,
T1(t) = T,(t) will have the same sign as u -u,. We know
the a prlorl probabilitlies assoclated with r.(t) - fZ{tJ

+ g&/t
falling in the interval (u,-u,)t K*gJ s%ft g5/t

For the signs to be the same, we must have

3
-J a‘%;‘t + s%/t
it

\li Bf + sg

| w172

lul -uz\ > Ke

or t2 K=~

The value K=1 or q=.68 seemed to fit the data best,

Using the above approximation for t*. figure 2,7
compares the sxpected TVS losses with thoss of the two pre-
vious strategiles and tilustrates that it rapidly approsches
the optimal one. Finally, figure 2.8 compareg the way in
which the three strategies divide the trials between the
two machines,

With thiz analysis in mind, we now conszider in more
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FIG 2.7: EXPECTED TVS LOSSES QVER T TRIALS
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FIG 2.8: COMPARATIVE ALLCGCATICN OF T TRIALS
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Figure 2.8: A comparison of the allecation of T trials to
two bandits B1(%,1) and B2(8,1). -



dstail how adaptive plan Rl allocatea 1ts trials within

the space A.

2.6 Eyperplane Analysis of Rl
In this sectlion we will attempt to understand more

clearly how the genetic plan Rl searches the representa-
tion space A Tor better-performing elements by focusing
sur attention on hyperplane partitions of A as suggested
by Holland (1975).

As suggested in sectlon 2.4, we consider A as an
{-dimensional space in which s polnt a;¢& A 15 specified by
giving 1ts § gene values vVij,ceen ¥y o & k" _order
hyperplane 18 then defined to be the ({-k)-dimensional
subspace of A specified by gilving only k of the f gene
values. These hyperplanes ¢an be representsd visually as

follows:

11
Qumgsa= = {EIE& i vll = 0}

d
-11-...- ={&1 E’.A H Vj.z = 1 & "13 = 1}

If we consider all possible hyperplaneg which can be de-
fined by specifying the gene values of a fixed set of

K positions, thils set {F;k of hyperplanes forms a uniform
partition of the space A. For example, 1f Vl = {O.ik, the
allowable values fTor the first poslition, then

Hl = 0"‘"--." .

Hz = 1--- PN
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form a first-order partition of A with exactly half of
the polnts falling 1ln each hyperplane. If we consider the
performance meagure ue:A—hB Tastricted to a particular

hyperplane,

it has a well=-defined mean and varlance which are, of
course, unknown to an adapiive strategy. Hence, associ-~
ated with each hyperplans partition {H1} E=1 of the space
A, is a K-armed bandit problem, namely, the optimal allo~
catlon of trimls among the partition elements Hy. B3ince
any sequence of trials In A similtaneously distributes
trials among the elements of each of the :ﬁ; (%] n 2l
distinct hyperplane partitions of A, we cag=$1ew the prot-
lem of searching A aa similtaneocusly solving 2R Kj-armed
bendit problems. The question we are exploring in this
section i1s how well plan Bl allocates it2 trials to these
K ~armed bandits. |

In order to accomplish this we fix our attentlon on a
rarticular hyperplane partitlon {?i} in relationship to
the population A(t) of N individusls maintained by plan
Rl1. Since {H;& 1s & partition of the space A, each a,,
in A{t) lies in some Hy. Let Hl{t) reprasent the number
of itndividusls from A(t) which lie in H, at time t. BRe-
cause of the way in which the salection probabllitles |

¥ere defined for reproductive plans (section 2.3), we



42

know that the expected number of off'spring O{(Hy) produced
by individuals in Hy at time t is given by:

My(t) w la,)

OlFy) = T, (%)
e
3=1
ﬁi(t]
N, (t) E Uela )
Ty(6) | Hy(e)
Te (K, (€})
T (t)

If in fact the offspring O(Hi) themselves lie in Hi.-then

we have

- T_(H,(t))
H1(t+1) = Hl(t)* —_—
u_(t)

That 18, the nuwber of trials allocated to H1 varies from
one time step to the next in proﬁortion to its performance
relative to the average, which of course is the TVS solu-
tion to the K.armed bandit problem discussed in the pre-
ceding sectlion.

Whether or not O(H,) < H, depends on the genetic
operators used to construct them. 1In plan Rl there are
two such operators: crossover and mutation. An offapring

w11l lie in H, only if the k positions which define H, re=-



3

main unchanged between parent and offspring. Intultively,
if erossover occeurs within these defining posltions, one
or more of them will likely be changed. Hence it 1is
fairly easy to show that the probability of a parent in H,

producing an offspring outside H1 is no greater than
d{Hi}-l

i-1
ramely, the length of the smallest segment contalning all

« where d{Hl} ig the "definition length" of H,,

the defining positions of Hy as illustrated below.

a(H,)

- HII -h-xj - --xkﬂ -

p !

_‘

As a consequence we note that crossover has littile effect
on the allocatlion of trisls to the bandlts assocliated
wilth short-defrinition hyperplanes (relative to ﬂ Yo While
the allocation of trials to long-definltlon hyperplanes
iz conzildersbly disrupted,

The probabllity of a parent in H, producing an offe
spring outside Hy via mutation 1s just P,o= ; + Where
Pm is the probabllity of a gene undergoing a mutation and
k is the order of E,, In nature and generally in plan Bi,
P,%.001. Hence, mutation has very iittle effect on the
ellocation of trials according teo performance.

In summary, then, by looking at hyperplane partitions
of A, we have galned considerable insight into the behav-



jor of reproductive plans. In the first place, thisz anal-
ysis ylelds a oriterion ror artificisl genetic operators,
namely, the ability to generate new individuale in A with-
ocut disturbing too much the near-cptimal TVS allocation

of trials. Secondly, we can now describe the way plan Eil
searches the space A. It generates near-optimal sallocation
of trials simultaneougly to short-definition hyperplane
partitions, AEs elements of high-performance hyperplanes
begin to dominate A(t), we have a reduction in the dimen-
sion of A and a correspeonding reduction in the definitionm
lengtha of hyperplanes, providing for another cycle of

near-optimal sawepling.

2,7 An Example of Bl

Ags an i1llustration of the discussion i1n the previous
sections, we consider a simple problem for sdaptatlon.
Suppoge esach alternative solutiorn to a problem ls repre-
sented by a single real number 1ln the 1lnterval (9.16]_Hith
& preclslon of 2 decimal places. BSuppose further than
the performance assoclated with each solution point Ja
given by f(x)=x® with the higher valued sclutlons being
the better ones. We choose the representation space A for

Bt as follows: There are {10-0)«10°

dtstinct solutions;
hence, 1032(103)=10 bite are required for & binary repre=-
gantation. The correspondence batwéen Y?.id} and A is

given by:
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30, for example,

0.01 4 0000000001

5.12 <= 1000000000
In order te see how B searches A, we focus our attention
initially on a first-order partition P1 defined by:

H11= L

H12= 1---. -y

P, simply divides the space in helf:

1

Since Bl generates an initial populstion A((Q) randomly
Trom & uniform distribution over A, we expect half of A(0D)
to lie in H11 and kalf 1in le. Notlce, howaver, that
Telative to §=10, plan Bl will allocate trials to H11 and

Since P1 1s a short-definition partition

E;» sccording to the near optimal time-varylng strategy
(TV8) described earlier, In other words, Bl quickly gen-

erates a population A(t) comsisting almost entirely of

individuals from le.
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We now consider & refinement P, of Py given by:

Hzll aﬂ—---co--
sz' 01--"110---
szt 10--"1:-.-"
qu: loam,.i=n-

P2 8imply divides the space 1n quariers:

Hyy Hyp Hyq Hyy

As we noted above, Rl rapldly generates a population A(t;)
in which most individuals begin with a 1, This is in
effect a reduction 1n the search apace A to an §-1 dimen-
gional space. Hence, after a few generations, Pz effect~
ively becomes = Tirst-order partition of #x-l to which
Rl now allocates a mear-aptimal sequence of trials, 3Since
?(323)4:.?(1:[24). Bl repldly generates a population A(t;)
which lies almost entirely in th. effecting yet another
reduction in the search space.

The lmportant thing to note here is that the same
remarks hold for any other short-definition partitions,

for example:
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---.--*-0
l—--. (W] ﬂ--l
While such partitions are harder to visuallze, each 1s

beling sanmpled at a8 near-cptimal rate slmiltanecusly hy

Bi. It is thls parallelism which gives even simple repro-
ductive plans like Rl thelr surprising adaeptive capabll-

tt£ies8,

2.8 Summary

In this chapter we have defined s class of genetio
adaptive models called reproductlive plans. These artific-
ial systems are motivated by the kinds of models used in
population genetics to explain the adaptive behavior of
netursl systems. The central feature of thesge reproductive
plang is that new =olutions to the problem for adaptation
are generated by selecting 1lndividusls from the current
population on the basis of their observed performance
to produce offspring via genetic gperstors. By focusing
our attention on hyperplanes on A reather than individual
elements of A, we were able to characterize the way in
which reproductive plans search A, and the characterization
provided a criterion for genetie operators., PFlnally, we
saw that even the sjimple reproductive plan Bl, beosuse of
lts abllity to simultanecusly allocate trials at a near-
optimal rate to & large number of hyperplanes on A, exhibit

¢onslderable improvement ovar random search.



