Chapter 4

PERFORMANCE EVALUATION OF GENETIC ADAPTIVE PLANS

4.1 Introduction

In the preceding chapters we have introduced a
class of genetilc adaptive aslgerithms for study, and we
have fooused our attention in partlieular cn the be-
havloral characteristicse of the basic family of plans
Rl on test function Fl. The emphasls has been on under-
standing how these adaptive models operate in finlte tlime
and space., In this chapter we apply the insight gained
by these studles tc¢ the problem of improving the per-

formance of genetic adaptive plans on E.

4,2 The Performance of Rl on E

In the last chapter we studied the effects of chang-

ing the wvarlous parameters of Bl on its performance

on test funetion Fl. In this section we wlll extend
these observations to the performance of Rl on E. As
noted earlier, optimizing the performance of Rl over
its parameter space is prohiblted by the cost of sim-
ulation analysis on exlisting facilities. As before,
however, we extend our insight by analyzing a few well-
chosen members of the family of plans defined by Ri.
Recall that in choosing a particular member in B1,

four parsmeters must be specifled: the population slze

N, the mutation rate Pm' the crossover rate P,, and the
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generation gap G. DBased on the results of the previocus

chapter, the following members were chosen for analysisa
on E:
R P, P, G

R1{ 50,.001,1.0,1.0)

Hl( 50-0001r .8.1-0}

R1{ 50,.001, .6,1.0)

E.l{ 50.‘001' .BI ls}

Rl( 50..01 * -8.1.0}

Hl{ 50.-01 » ¢6|1 'O}

R1{100,.00%, .8,1.0)
R1{100,.001, .6,1.0)

Recall from chapter 1 that, for each fe in the environment

E. local robustness was defined by

T
x (1) = 7 2 folt)
i=1

for on=line performance and

T
xg(m) = 1 f £3(t)

1=1

for off-line performance with the agsoclated global

measures of robustness defined by
_lé:
XE(TJ =\E} < IE(T)

and

* _ 1 »
X (T) _lﬁtg x5(m)
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respectively. Based on previocus experience and with an
eye for practical applleations, T=6000 wasz chosen & a
reasonable bound on the interval of observation. Tables
4.1s and 4.1b summarize the performance measures ob-
tained from this evaluation and there were very few
Eurprizses.

The first three members analyzed differed only in
thelr crossover rates of 1.0, .8, and .6 respectively,
As we observed berore on test function Fl, reducing the
crosaover rate ilmproves both off-line and cn-line pef-
formence. The fourth member analyzed illustrates that
on E a8 well as Fl, reducing the generation gap is not
as effective as reducing the crossover rate., The fifth

and sixth members apalyzed confirm on E the observation
regarding the tradeoff hetween off-line and on-lines
performance presented by changing the mutatlion rate.
The only mild surprise came with the evaluation of the
last two members supporting & population of size 100.
Contrary to our earlier observatlions, increasing the
Population size degraded both off-line and on-line
rerformance indices. Upon reflection, however, the
reagon for this change seems clear. HReeall that our
earller observations over 10,000 trials suggested that
increasing the population size improved long-term
performance at the expense of short-term performance.

By shortening the evaluation period to 6000 trials, we

have put more emphasis on the short-term behavior and
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hence should expect to see a performance degradation.
These results conflrm our earlier observations of
the behavior of RN, and they suggest that the off-line

perforuance of R1(50,.01,.6,1.0) and the on-line per-

formance by R1(50,.,001,.6,1.0) are about the best

that can be expected from these simple genetic plans.

4.3 Elitist Model R2

Earlier observations of the behavior of Rl suggested
that generating N new indivlduals for each new population
A(t+1) was In fact too high a sampling rate, High-
rerformance Individusls were lost before the genetlc
operators were able to produce improvements. An im-
provement in performance was obtained by reducing the
crossover rate and/or the generation gap which, in turn,
reduced the number of new individusls produced for A(t+1).
Moreover, we observed that reducing the crossover rate
produce@ better performance improvements than a corres-
ponding reduction 1n the generation gap. This, we felt,
was due to the fact.that. because of the selection
processes, high~performance individuals were more likely
to survive into the next generation vim & reduction in
the crossover rate than with & reduction in the generation
gap. In this section we conslder the implicatlons of
giving high-performance individuals special treatment
by modifying the basic plan Rl to include the Tollowing
elitist policy:
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Let a'(t) be the best individual generated up to
time t. If, after generating A(t+l) in the usual fashion,
a”(t) 18 not in A(t+1), then include a™{t) to A(t+1)
as the (H+1]th membar,

Such & policy guarantees that the best indlividual
genarated will not be lost from one generation to the
next as a consequence of sampling effects or the appli-
cation of genetlc operetors. From the hyperplane analysls
point of view, this policy willl blas the distribution
of trials in favor of thoss hyperplane partition ¢lements
which have produced the best-performing individual.

This suggests that the effect of such a pollcy on per-
formance may be %o improve local search at the expense

aof global searsh.

In order to evaluate the effects of such a poliecy,
two members of this family were evaluated on E:

E2{50,.001,.8,1.0)
and, 82(30,.001,.6,1.0)

Filgures 4.1 - 4.3 compare the behavior of these planz
with their H1 counterparts on test function Fl. Figure
4.1 1llustrates that the allele loss rate 18 2lightly
bettear with B2, This is probably due to the fact-that
appending the best individual to A(t+1) prevents omne

or two alleles from beilng counted as lost. Filgures 4.2
and 4.3 illustrate that B2 produces both off-lline and

on-line curves for Fl which are significantly better than

thoae produced by RHl.
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FIG U.1s R2 ALLELE LOSS ON f1
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Figure 4.,1: Allele loss for B2 on Pl.
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FIG 4.2: OFF-LINE PERFORMANCE OF R2 ON F1
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Figure 4.2: Off-line performance curves for R2 on Fl.
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FIG. 4.3: ON-LINE PERFORMANCE OF R2 ON F1
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Finally, the azsonlated performance indlces for
both off-line and on=1ine performance are tabulated below

in comparison with their Rl counterparts:

T=6000 E1{.8) R2(.8) Ri(.6) R2(.4)
x;I(T} .199 .178 146 .093
X35 (T) +230 .076 310 .182
2E4(T) § -26.5 ~26.3 -27.2 -27.1
xpy{T) .67 29.61 3.5 26.76
i{u:) 3.75 5.86 z-_56 3.9%
Xg(T) 2.47 1.88 2.06 778 |
T=4000 81(.8) R2(.8) B1({.6} Rz2(.6)
xFliT} 4,27 2,88 3.65 2.71
Tpo(T) 76.8 51.73 76.7 50.46
xpa{T) [ -23.17 -22.9 ~23.3 -2l ,02
xp(T) | 93.2 65.8 89.9 59.92
Xpq(T) 3.1 6.2 6.2 37.49
xE(TJ 37.04 26.74 36,69 25.71

Thegse results confirm our intuition about the behavior
of e}itist plan R2. Because of its more conservative
sanpling policy, on-line performance 12 consistently
jmproved. Off-line performance 1s improved as well,
but notice that the lmprovements come on the unimodal
surfaces, particularly F4, while the performance de-

graded gignificantly on F5.
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4.4 Expected Value Model B3

The problem of premature allele lo=ms and the sub-
sequent convergence to a non-optimal plateau which was
analyzed closely in the previous chapter has still not
been resolved. As we have seen, changling the wvarious
parameters of the genetic models affects both the allele
loas rate and performance curves on test function Fl,
but glves no satisfactory solution to elthar. In this
section we explore the possibilisy of resolving these
problems by modifying the sampling techniques used in
El and R2.

We begin by focusing our attention again on the
two competing hyperplanes associated with a particular
gene position. As we have seen, test functlion Fl has
the characteristic that 1t has the same average wvalue on
both partition elements, so that neither hyperplane theo-
retlcally has any selective advantage over the other.
However, the next generation A(t+l) is produced by taking
& finlte number of samples from A(t) using'a selaction
distributlon computed from sample means. Thls opens the
door for stochastic side effects from two sources: the
error involved in the sample means (and hence the selection
probabilities), and the error involved in only taking a
finite sample from A(t) using the selectlon dlstribution.
The error in the sample means 1s, of hourse. a function
of the population size and the variance of Fl on the

assoclated hyperplenes, and can be resclved, as we have
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seen, by increasing the population size at the expense

of initial performance. The Markov process gslmulations
in the section on genetic drift modelled the second
source of srror which, we have seen, cannot be ignored.
In Kkl and B2 this sampling process 18 uszed to produce

the offspring of individuala in A{t). As a consequence,
the actual nuwber of offsgpring produced by an individual
can differ markedly from the expected number of offspring.
As We saw in chapter 2, the offspring determine the
number of trials allocated to a particular hyperplane 1in
the next generation. Hence, the sampling side-effects
can lead to considerable disparities between the expected
and actual number of trials allocated to competing palrs
of hyperplanes. Thls suggests that we conslder'redev
fining the sampling process used in Rl and R2 in gsuch a
way as to force the sctual number of of fspring to more
closely approximate the expected number.

Genetlc adaptive plan R} attempts to accompl ish this
in the following way. The expected number of offepring,
ulay4)/8(t), is computed and mssociated with each individ-
ual &,¢ in A{t) before selectlon begins. Each tlme an
tndividual is selected as a partner for crossover, tte
assoclated offspring count is decremented by .5. Each
tipe an individual is selected to produce an offspring
without applying crossover, its associsted offepring
count 18 decremented by 1. Hheh the offspring count

falls below zerc, an individual is no longser avallable
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for selection.

This modification to the selectlon process forces
the actual number of offspring to always be less than
u{ait)fﬁ?§3 + 1 and generally less than u(ait}/ﬁ?zi + .5,
regulting in a levellng effect on the sampling error.

I the high rate of allele l03s exhibited by Hl and K2

on F1 1s due 1n part to this sampling error, B3 should
exhibit a reduced rate of allele loss and a correspondling
improvement in performance.

In order to evaluate these hypotheses, the following
three members from the family of plans defined by B3 were

chosen for evaluation on E:

R3{50,.001,1.0,1.0}
R3{50,.001, .8,1.0)
B3{50,.001, .6,1.0)}

Figures 4,4 — 4.6 compare the behavior of R3(50,.001,.6,1.0)
on Fl wlth ita corresponding El and B2 counterparts,
Figure 4.4 $1lustrates that, as we had hoped, the allele
loss rate is consilderably reduced with the modified
sampling technique. Figures 4.5 and 4.6 compare the
performance curves of RL, R2, and R3 for test function Fl.
Notlice that R} performed significantly better than E}
onn F1, but not qulte as well ag HZ,

Pinally, the assoclated performance indlces for
bhoth off-line and on-line performancé of R3 on E are

tabulated below in comparison with Hl and H2:
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FIG 4.4: R3 ALLELE LOSS ON F1
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FIG 4.5: OFF-LINE PERFORMANCE OF R3 ON F1
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FIG. Y.6: ON-LINE PERFORMRANCE OF R3 ON Fi
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T=6000 || BR3(1.0) B3(.8) B3{.6) R2(.6) B1(.6)
xpy (1) 210 130 .166 .093 146
xpo (T) A28 .213 364 .182 .310
xp4(T) || -27.3 -27.1 -27.2 -27.1 -27.2
x5y, (T} 21.17 20,22 21.07 26,76 4.5
;;S(TJ 4,31 2.86 3.20 3.95 2.56
XE(T] .196 -.735 - 483 778 2.06
T=6000 || B3{1.0) BE3{.8) R3(.6) B2(.6) R1{.6)
Xpq (T) 3.53 2.41 3.42 2.71 3.65
Xpo (T) 65.65 b6 .64 55.15 50.46 76.7
Tpq(T) [| -24.6 -24,87 -24.94 -24,02 -23.3
IFu{T) 48.28 49.08 bh,18 59,92 89.9
:EQ(T} 36,46 32.29 37.31 37.49 36,2
Xp(T) 25.46 | 21.68 22,65 25.31 36.69
These results yield two interesting observations, Rirst.

note that R3{.B) performed slightly better on E than

R3{.6), suggesting that, by reducing the sampling error,

a higher sampling rate can be supported.

Secondly,

rote that, although HZ2 outperformed R3 on Fi, B3 showed

an overall improvement in robustnese on E.

Both of thess

observations confirm our intuition about the behavicr

of the elltistf and expected Value models,
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4.5 Elitist Expected Value Modasl R4

At this point in the snalysis of genetic adaptive
plans, it 1s difficult to reslst combining the two pre-
Ticus models to produce an sxpected value model with an
elitlat policy. The motivatlon here is to increase our
confldence in the observations and inferences made 50
far about the behavior o¢f genetliec plans, rather than pro-
viding new insights. If our analysisz of the preceding
sections 1s correct, we should expect that adding an
ellitist poliey to RBR3 should improve its performance on
the unimodal surfaces at the expense of multimodal per-
formance.

In order to evaluate this hypothesils, two members
of BY4 were chosen for analysls on E:

BRL(50,.001,.8,1,0)
R!"(sng '{}01..6.100)

Figures 4.7 - 4.9 compare the behavior of B4{.8) on
test function Fl with its R2 and H3 counterparts.,
Figure 4.7 11lustrates agaln that adding an elitist
policy reduﬁes glightly the allele loss rate on Fi.
Figures 4,8 and 4.9 illustrate the improved off-line and
on-line performance curves generated by Rl

Finally, the asscclated performance indices for
both off-line and on-line performance of B4 on E are

tabulated below in comparison with E3 and R2:
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FIG 4.7: RY ALLELE LOSS ON Fi
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FIG 4.8: OFF-LINE PERFORMANCE OF RuU ON F1
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Figure 4.,8: Off-line performance curve for B4 on Fi,
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FIG. Y4.9: ON-LINE PERFORMANCE OF R4 ON F1
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t=6000 || B4{.8) | B¥(.6) | R3(.8) | R3(.6) | R2(.6)
131 (T) 097 113 130 166 093
x5, (T) .201 .221 ‘213 + 364 .182
xp4 (D) |-27.5 |-28.2 [-27.1  |-27.2  |-27.1
(T [[ 18,20 | 17.62 | 20.22 | 21.07 | 26.76
xpg(T) || 2.98 3.3% | 2.86 | 3.20 3495
Xg(Tr || -1.20 } -1.38 =735 | -.483 .778
1=6000 || B4(.8) | B4(.6) | B3(.B) | BI(.6) | B2(.6)
Xpq (T) 2.41 | 2.32 | 281 | 3u42 | 2.71
xpg(T) || 35-46 | 34.76 | 46.64 | 55.15 | 50.46
Xpq(T) || ~25.35 | ~26.49 | -24.87 | -24.94 | -24.02
xpe(T) || 82.53 | 40.73 | 49.08 | L4,18 | 59.92
pc(T) || 33.59 | 4.3k | 32.29 | 35.31 | 37.49
Xg(T) 17.73 | 17.12 | 21.68 | 22.65 | 25.31

These results suggest that our intuition about the effects
of an elitist policy on the behavior of these genetlc

plans is correct. The performance on the unimodal sur-
faces (Fi-Fi4) is conslderably improved at the expense of

performance on the difficult multimodal surface F&.
Notice however that performance on F§ was only slightly
affected (an observation which will be explored more
fully later) and, as = consequence, RY generated the best

overall performence we have geen on E.
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It 1s worth ccnsidering at this point whether the
performence generated by BU{50,.001,.6,1.0) is about the
best R can 4o on E. We have been evaluating these
particular parameter settings to provide strailghtforward
comparisong with the precedlng models. Howaver, the
changes we have made %o the genetlc algorithm may also
affect the cholce of the parameter settings. To answer
thie quegtion, the performance of the following members of
R4 was evaluated on E:

R4(.5C,.001,.8,1.0)

R4( 50,.001,.6,1.0)

R4{ 50,.001,.%.1.0)

Bit{ 50,.01 ,.6,1.0)

R4( 50,.05 ,.6,1.0)

B4( 50,.001,.6, .8)

R4( 50,.001,.6, .6)

B4(100,.001,.6,1.0)
Tables 4.28 and %.2b compare the off-line and on-line
performance indices for each of the parameter settlngs.
The first three members evaluated differ only in thelir
crossover rates and they suggest that a crossover rate
of .6 18 still a ressonable cholce. Notlce, hoWeverT,
that because of the overall improvement 1n performancs,
Rt is considerably less sensitive than Rl to changes in
the orossover rate. The fourth and fifth members illus-
trate the effects of an increazed mutation rate. Heare
the results differed from before. Increasing the muta-
tion rate degraded both the off=-1ine and on-line per-
formance of Rl. This observation will be explored 1n

mors detail later. The sixth and sevanth members illus-
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trate again the negative effect on performance generated
by reducing the generation gap. And the last member
avaluated 1llustrates again that lncreasing the population
size degrades parformance over the interval of observatlom.
In summary, then, these results suggest that the
performance generated by B4(50,.001,.6,1.0) is asbout the
best BY can do on E. It is ilmportant, however, to
emphasize the extent of the lmprovements in performance
we have achieved by moving to type B4 genetic plans.
Becsall from the evaluaticﬁ in appendix C that, 1f on-line
performsance is desired, one simply cannot arford to use

random search. Even the simplest genetic plan generates

significantly better cn-line performsnce. However, when
measuring off-line pérformance, we saw that rendom search
gave Rl considerably stiffer competition and preduced
in several cases better performling individuals <¢ver the
interval of obsEervation. To illustrate the lmproved
performance of R4, figures 4.10 - 4.14 compare the off-
1ine performance curves of random search on each ¢f the
tesat functions in E with the best curves generated by
B and B4 as well as the (umattainable) optimal off-line
curve glven by

t*(t) = MIN(£) , t=1,...,7
On test functions Pl and F2 plan B4 located the minimum
without difficulty within the interval of observation.
On the larger search spaces assoclated with P3 and Fi,

the minimum was not found within 6000 trials. PBut notice
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FIG. 4.10: OFF-LINE PERFORMANCE ON F1
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FIG. Y.11: OFF-LINE PERFORMANCE ON F2
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FIG 4.12: OFF-LINE PERFOAMANCE ON F3
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FIG. %4.13: OFF-LINE PERFORMANCE ON FU
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FIG. 4.14: OFF-LINE PERFORMANCE ON FS
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that the problem of pre-mature convergence to a non-
optimal plateau 1is no longer evident, Consistent pro-
gress is made over the entire intarval of observation.
Only on the difficult multimcdal surface defined by F5
do we still see convergence to s non~optimal plateau.

It 1s this problem which will be addressed in the next

gactlons,

4,6 Improving the Performance of Bb on F3

As noted in the previous section, conalderable
progress has been made in lmproving the performance of
finite génetic models on E. By modifying the sampling
technigue used 1n Rl so that the actual nunber of off-
spring more closely approximate the expscted number, the
allele loss rate due to stochastic side-effects has been
reduced congiderably with a corresponding improvement
in performance. Ir additlion, by addling an elitist
pollecy to B3, signhificant improvement on the unlimodal
aurfaces was observed. Figure 4,15 summarizes the re-
malning fly in the ointment: the performance of gemetlc
plans on F5. By golng to plan B3, the premature con-
vergenca generated by Bl was replaced by an off=line
performance curve Which made slow but steady progress
over the interval of observation. Adding the alitist
policy to B3 improved initial off-line performence, but
once again we observe convergence to a non-optinal

plateau., This also suggesta an explanation to the
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FIG. H.15: OFF-LINE PERFORMANCE ON FS
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observation noted in the previous section that adding an
elitist policy to B3 did not degrade ths performance
indices for R4 on F5 as much as had been expected. As
figure 4,15 illustrates, the average values {performance
indices) of the off-line curves generated by H3 and BY
are very nearly the same. Over a longer tlme interval,
the negative effeacts of the premature convergence with
E4 would have been more clearly seen, In thié section
we address the problem of laproving the global search
propertles of B4 without, hopefully, having %o give up
the lmproved local performance,

We begin by considering this problem in terms of
the hyperplane analysle lntroduced in chapter 2. Recall
that genetle plans have the property that the best of
competing hyperplanes ware allocated an exponentially
increasing number of trials relative to thelr competltors.
This property was shown to be a consequence of the fact
that the number of lnstances of a partiecular hypsrplane
in A{t) changed over time in proportion to the hyper=
plane's performance relative to its competitors. If a
particular hyperplane outperforms its competitors for
s relatively amall number of generations, we saw that
the number of instances of that hyperplane in A(t)
increased exponentlally to a point of complete dominance,
when such a hyperplane is in fact the best, this 1s pre-
cisely what we want to happen with the corresponding

allele loss effecting a reduction in the search space,
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However, we are working with finlte genetic planz whioch
maintalin reasonably small populatlons which evaluate
hyperplane performance via sample meang based on A rela-
tively small number of samples. AsS a consequence, it ls
not 4i1fficult to ilmagine that some of the premature allele
loss observed may be the result of non=-optimal hyperplanes
appearing to be the best for a sufflclently long time to
effect a reduction in the search space. More to the
polnt, it is easy to lmaglne that on the difflcult sur-
face defined by F5 a hyperplane assoclated with a rela-
tively good local optimum could gqulckly dominate A(t)
and cause the observed premature convergence, These
ohservatlcons suggest that the premature allele lossg rate
and the performance of genetic plans oan multimodal func-
tiong could be improved by making it more difficult for
hyperplanes to dominate A(t}, It should be clear,
however, that overall performance on E may be serlously
degraded unless a solutlon 12 chosen carefully, since

it i=2 preclisely thls expomentiasl increase in trisie
which generates the kind of performance exhibited by

R+ on the unimodal surfaces. What we saek is a solutlon
which permits exponential exploitation of the observed
best without allowing them to readily dominate a finlte
population. Thls suggeste that, rather than allow ex-
ponential growth untlil total dominance occurs, genetic
plans should admit “controlled” growth in the form of

an "S" curve ag illustrated below:
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POP_MAX T

Suech an approach permlts initial exponential exploit-
ation of hyperplanes for rapld performance improvements,
while at the same time maKing 1t considerably more
difficult for a hyperplané to completely dominate aA{t).
The difficulty, of course, is in finding a reason=
able implementation for this conceptually simple solu-
tion. Consider for a moment the alternatives within
the R4 framework. Lncreasing the population slze
serves both to improve the sample means and increase
the time required for a hyperplane to dowinate A(t).
As We have seen, however, this results in a significant
degradation in performance over the }nterval af ob-
sarvation. Increasing the generation gayp reduces the
rate at which decisions are made and hence the rate of
dominsnce. However, within the genetlo context, a
value larger than 1.0 makes no sense, Increagsing the
erossover rate has the opposite effect from that desired.
As We saW ln chapter 2, crossover beoomes increasingly
less likely to interfere with hyparpiane growth as it

begins to dominate A(t). Increasing tha mutation rate
seems to be the only possible solution within the RU
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framewark. As the number of Instances of a parficular
hyperplane begin to dominate A{t), the number of their
offspring expected to undergo mutatlion lncreases and
effects a reduction in the hyperplane's growth rate.

In order to explore the aspects of such a solutilon,
the performance of B4 wes evazluated on F5 with mutatlon
rates of .001, .005, .01, end .o;. respectively. Flgure
L.,16 1llustrates clearly the erffect that increasing the
matation rete has on the off«line performance of B4 on F5,
As the mutation rate increases, the shape of the off=-line
performance curve changes to reflect less dramatic initial
performance and more uniform progress over the entire in-
terval of observation. Note that R&4{,01) very nearly
converges to the minimum within 6000 triels. However,
its initisl performance 1g less lmpresslve than Eh(.ooi}.
This sugegests an explaratiocn to the observation noted in
the previous section that, unlike H;, the performance of
R4 on E was actually degrading slightly by increasing the
mutation rate from 001 to .01. With Rl, lncreasing the
mutation rate served to reduce its high rate of sllele loes
and. improve performance. However, with Ri's reduced
allele loss rate and tmproved local performance, inecreasging
the mutation rate generated an lmprovement in longer-term
performance at the expense of initlal performance. Had we
eveluated R4 over a longer time interwval, the long-term
inprovements would have been more clearly vialble.

Finally, figure 4.17 1llustrates clearly what we have
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FIG. 4.16: OFF-LINE PERFORMANCE OF R4 ON FS
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FIG. 4.17: ON-LINE PERFORMANCE OF RuY ON FS
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geen before. If one-line performance is required, any in-

creage in the mutation rate seriously degrades performance.

4.7 Crowding Factor Model RS
Holland has suggested that the kind of controlled

growth we seek in finlte genetic models occurs in nature as
a consequence of crowding. That is, as more and more llke
individuals dominate an environmental niche, the competi-
tion for limited rescurcesg increases rapidly resulting in
lower life expectancies snd birth rate. In this =zection we
consider the effects of including such a feature in genetic
adaptive plane as an alternate to increasing the mutation
rate in order to lmprove performance con multimedal surfaces.
If we think of the genetic plans in terms of the overs
lapping generatlon models, connections between the natural
and artificial systems are more intuitive. In particular,
congider a model in which only a few offgpring are pro=
duoed each generation (e.g. G=.1), Flans of this sort
produce A(t+l) as follows:
~ produce G#N offspring using selection and the
genetio operators
- using a uniform distribution on A(t), insert the
G#N offapring intc A(t) by selectlng G#*N
individuals to “"die”.
Stated in this form, the concept of 1life expectancy 12 more
clearly defined for these artifioial syatems. And, as we

noted in chaptsxr 3, the expected number of offspring of an
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individual is directly related to the numberlof generations
1t survives. What we seek ls a method for reduclng the
1ife expectancy of individuals which are instances of a
hyperplane rapldly dominating A{t}.

Cne intereeting approach te this problem i1z as follows.
When selecting an individual in A(t) to die, pick seversal
candidates initialliy and choose that one which is most sia-
1lar to the new individual being inserted into the popula-
tion. For the genetlc models under study here, gimilarity
15 defined in terms of the number of matching binary
alleles. Intultively, this approach has the right charac-
teristics. Until a hyperplane begins to dominate, the
modified replacement policy has llttle effect, allowing
initial exponential growth. However, as a hyperplane beglns
to dominate A(t), instances of that hyperplane become in-
creasingly more likely to be replaced by other insatances,
resulting ln reduction in the hyperplane growth rate.

This approach will clearly incresse the gmount of pro=-
cessing regulred to produce the mext generation, Additional
information (which, incidentally, has a derivative-like
flavor) is being computed at each time step to contrcl the
allocation of trials. In this section, however, we will
ignore the processing time tradeoffs and concentrate on the
effects of this approach on the performance of genetic plans
on E.

In order to gain further insight into thls approach to

contraolled growth, a rfifth parameter was defined for the
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genetic plans under study: & crowding factor parameter CF
which specifies the number of individusls initlally se-
lected ag candidates to be replaced by a partlcular off-
gpring. CF=1 18 equivalent to no crowding factor, and as

CF incTeases, the more likely it becomes that simllar in-
dividuals replace one snother, As an lnitial atudy of

the effects of the crowding factor, the behavior of the
following four members of this new clasa of genetle plans
was apalyzed: BR5(50,.001,.6,.1,CF) where CF =1, 2, 3, and
L, Pigure 4.18 1llustratea the allele loss rates of each

of the plans on test function Fl. Recall that, because of
the symmetry of F1, theoretlically there should be no allele
lo0s8, AS one can see, increasing the crowding factor re-
sulte in e dramatic decrease in the allele loss rate. Fig-
ures %.19 and 4,20 give the off-line and on-line performance
curves generated by these plans on test function F5. BRe-
call that these studies were motivated by the obsarvatlon
that the off-line performance curves of BY on F5 suggested
that premature convergence was still a prbblam on multimod-
al surfaces. Figure 4.19 illustrates that the crowding
foactor has in fact the right effect on F5 with R5(2) very
nearly comverging to the global minimum within the interval
of observation. Pigure 4,20 illustrates that, like mutation,
increasing the crowding facter adversely affects on-line per=-

formance. Thig, of course, 18 due to the constraints placed

on tha number of samples allocated to the observed best.
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FIG 4.18: RS ALLELE LO3SS ON F1
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FIG. 4.19: OFF-LINE PERFORMANCE OF RS ON FO
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FIG. U.20: ON-LINE PERFORMRNCE OF RS ON FS
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Any reduction slows the overall improvement rate.
Kotice, however, that these negative effects are not
nearly S¢ savere with increases in the crowding faqtor
as they are with increases in mutation. The reason
gseemsd obvious. Mutation contreols the growth rate by
randemly changing allele wvalues, an approach which be-
comes more likely to produice performance degradation

as adaptatlon progresses. On the other hand, the crowd-
ing factor provides the seme kind of controlled growth
rate by redueing the numbér of offspring produced by
instances of domlnating hyperplanes, rather than modify-
ing offspring allele values,

Wa began thls analysis of the crowdlng factor by
arbitrarily choosing an overliapping generation model for
which G=,1., S3ince we saw in previous studies that in-
ereaeing the generation gap led to improved performance,
it 1= of interest to explore that possibility here. In
this situatlon we do not have quite_the freedom in choos-
ing G that we had hefore since as G increases beyond .5,
the concept of the crowding factor becomes less meaning-
ful, and makes little sense at all 1f nearly all the pop-
ulation 18 being replaced. As a consequence, the effects
of crowding were analyzed for two gther values of G,

.2 and .4, Filgures 4,21 and 4.22 glve the off-line
performance curves for each of these settings and 1llus-
trate two points of interest. The first obaservation 1s

that, for the same crowding factor, increaslng the



FIG. U4.21:

143

OFF-LINE PERFORMANCE OF RS ON FS
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FIG. 4.22: OFF-LINE PERFORMANCE OF RS ON FS
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generation gap actually degraded the off-~line performance

curves of HS on F5. In each case an ilncrease in the

crovwdlng factor was requlred to preserve the gsame kind

of performance curve. These observations suggest an

interesting interactlon between crowding and generation

gaps: the larger the generatlon gap, the less aeffective

crowding becomes, One possible explanation for this

Intersction is as follows. As the generation gap increases,

the lifespan {in terms of_generations} of an indlvidual

18 reduced with & compensating increase in the numbepr

of offspring per gemeratlon. The crowding factor operates

by reducing the lifespan of individuals and, hence, ﬁibh

shorter mverage lifespans ifs effectlveness 1s reduced.
Finally, it rewains to be seen what effect crowding

hag on the overall performance of genetic plans on E.

Ta analyze these effects, the following nmembers of BS

were evaluatad on E:

B5{50,.001,.6,.1,2)
R5(50,.001,.6,.1,3)
R5(50,.001,.6,.1,4)
R5(50,.001,.6,.2,2)
R5(50,.001,.6,.,2.3)
R5(50,.001,.6,.2,4)
B5(50,.001,.6,.4%,3)
R5(50,.001,.6,.4,4)

Tables 4.3a and 4.3b glve the corresponding offeline and
on=line performance indices computed over 6000 trilals.

As in the previous section these results indicate quite
clearly the tradeoffs 1in performance we face. Ineluding s

crowding fector in genetic plans improves significantly
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thelr performance on multimedal surfaces at the expense

of rapitd convergence on the unimodal surfaces. On the

other hand, the distinction between these tradeoffs
becomnes less evident as the interval of cbservation

increases and more emphasis is placed on convergence.

k.8 gGeneralized Crossover Model R6

Recall from the hyperplane analysis introduced 1n
chapter 2 that genetic plans generate near-optimal
allocation of trials to competing hyperplanes whose
definition length (the shortest gene segment contalning
all the fixed positions) was short relative to the
chromosome length f. This was due to the fact that
crogsover disrupted the allocation of trials according
to performance with a probability directly proportional
to the definition length of a hyperplane. This means
that the performance of the genetic plans under study may
in fact be representation dependent. That is, one
binary repregsentation of the space to be searched may
be less affected by crossover than another represente-
tion because high-performance groups of alleles are
physically ¢loser together. One solutlon to this prob-
lem is to mllow the representaticon itself undergo adapta-
tion be introduclng a genetic inversion operator which
physically permutes genes on a chromosome without loss
of functional position. Studles by Franz (1972) suggest
that changes effected by inverslon are difficult to
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detect axcept perhaps in long-term behavior. ©Since we

are concerned with practical applications, we explore
an alternate approach in this sectlon: the possibility
of modifying the crossover eperator Ltself to reduce
representation dependencies.

Recall agaln how crossover has been defined to
this peint. After selecting two indlviduals, a crassover
point 1s selected uniformly from the 1-1 positlons be-
tween the Y| genes. The offspring consists of the flrst
segment of the first parent up to the crossover point and
the remaining segment of the second parent. If we think
of a chromosome as a cirecle with the first gene immedi-
ately following the last
then 1t becomes immedliately clear that there are 1ln fact

2 crossover polnts: one fixed at poaltlon zera and the

other randomly selected,

x11x2|x3 vos Xe| Xt | X2 ([ o

Yi1{y¥2][¥3 .. Yeivityz,|, -

- e o ow A T ——

thrundom t}lxed

An iummediate generalization to the present crosscver

operator is to sliow both crossover points to be randomly
selected, FPurther generalizatlon can be made by allowing
an arbitrary number of crossaver polnts. But notlce

that the actual number of crossover points 1s always
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an even number since (from the circular viewpoint)
you always end up beck where you started,

In order to understand what effects these changes
have on the allocation of trials to competing hyperplanses,
we generalize the diacussions of chapter 2. We need to
computa the probabllity that an oI'fspring after crossover
1l1es In a different hyperplane partition element than
lts parent. If we let Xy, x,, <+, xp be the-k positions
dafining & hyperplane, then the offspring will certalnly
lie in the same hyperplane 1f there were an even number
of crossover polnts between each conseoutlve palr of
rixed points (xi.IJ). Hence, Lf we think of the hyper-.
plane's ¥ Tixed polnts as dilviding a chromosome into k
segments {in the circular viewpoint), the probability of
staying ln the same hyperplane is at leanst as great as
the probability that each segment contains an even number
of croszover points. Hestating this as the probability
of the loss of an offspring to snother hyperplane, wa
have: .

Fr (grcssover 1055] €1 = Ppy
where P, 18 the probability that each of the k segments

received an even number (including zero} of the n=2m
crosgover points,

In order to get s feeling for how these probabilities
change by increasing the number of crossover points,
conslder the sffects on second-order hyperplanes., They

divide the chromosome up into two segments of length
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21=xz-xl and R2=ﬂr(xz-x1) with the probability of a
randomly selected crossover point falling in one of them
given by !1[&. If we assume the convention that whenever
an odd number of crossover points are randomly selected,
the final even crossover point 1s defined to occur at
position zero, then we have:

m
21 -21
gg n

Prha = (rzli) g'l'
R A
1=0
where n is the number of randomly selected crossover
points with m=n/2 (integer division).

Figure 4.23 illustrates how the loss probabllity
1-Pnz changeé both as a function of the definition
length Rl and the number of randomly selected crossover
points n for second order hyperplanes with a chromosome
length of l=30. Notice that there are two distinct
families of curves: one for n even and one for n odd.
When an odd number of crossover points are randomly
selected, the probability of loss for widely spaced
fixed points remains high since 1t remalns likely that
all the crossover points will fall in the long segment
defined by the two fixed points. On the other hand,
randomly selecting an even number of crossover polnts
immediately drops the loss probabilitles to +«5 or less
with 1/2 spaclngs becoming the most llkely victims.

How these generallzations of the crossover operator
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will affect the performance of genetic plans is not clear.
We may find that they reduce representation dependencies
at the cost of lower overall performance on E. On the
other hand one can lmagine that perhaps a modest lncrease

in the number of randomly selected crossover points may

generate performance improvements while larger numbers
of crossover points may be too disruptive to the allo-
cation of trials to higher order hyperplanes.

To explore these possibilities, plan RBR5 was mod-
1fied to accept a sixth parameter, CP, which specifies
the number of crossover polnts to be randomly selected.
Up to this point we have been lmplicitly using a value
of CP=1. If CP is odd, the final crossover point 1s
assumed to occur at positlon zero.'

AS an initial attempt to understand the implications
of generalized crossover, five members of R6 were eval-

uated on test functlion Fl:

36{50,.001..6
R6(50,.001,.6
R6(50,.001,.6
R6(50,.001,.6
R6(50,.001,.6
Figure 4.24 depicts the allele loss generated by these
members of BR6 on test function Fi, and illustrates that
the allele loss rate actually increases as CP does.
This is a surprising observation for which an explanation
18 not immediately clear. It may very well be the case
that the previous disruption of the allocation of trials

to the longer hyperplanes may have counteracted some
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FIG 4W.24y: A6 ALLELE LOSS ON F1
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Figure 4.24: Allele loss for R6 on F1 as a functilon
of the number of crossover points.
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of the stochastic side-effects of genetic drift and, hence,
the removal of some of this disruption opened the door
for increased allele loss.

Figures 4.25 and L4.26 glve the off-line and on-line

performance curves generated by these members of R6 on
Fi. In general, increasing the number of crossover
points seems to degrade slightly the off-line performance
of R6 with R6(8) exhibiting the old problem of premature
convergence., Thls 1is probably due to the previously
noted increased allele loss rate., It 1s also interesting
to note that 1initial on-line performance also degrades
somewhat as CP increases, suggesting that increasing the
number of crossover points leads to a less conservative
sampling policy in the initial stages of adaptation.
Finally, to evaluate the effects of generalized

crossover on the performance of R6 on E, the behavior

of the following members was analyzed on E:
B6(50,.001,.6,1.
BR6(50,.001,.6,1.
R6(50,.001, .6,
R6(50,.001,.6,
36(50.0001 » 16.
R6(50,.01, .6,
R6(50,.001,.6,

Tables Y4.4a and 4.4b summarize the off-line and on-line

performance indices for these evaluations over 6000 trials.

The first five members analyzed differed only in the

number of crossover points selected. The best overall

off-line performance was achieved with CP=2, chlefly

on the basis of its performance on F4, Note that
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FIG. 4.25: OFF-LINE PERFORMANCE OF R6 ON F1
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Off-line performance curves for R6 on F1
as a Tunction of the number of crossover

points.
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FIG. Y.26: ON-LINE PERFORMANCE OF R6 ON F1;
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Figure 4.26: On-line performance curves for R6 on Fi
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performance of F5 degrades significantly as CP increases,
indicating again how important a low allele loss rate lis.
As we saw on F1, on-line performance degrades signifi-
cantly as CP increases.

The last two members were chosen as llkely candidates
to improve the off-line performance of RS on E. Time
and resources prohibited a more detalled enalysls of
the six parameters defining BR6. However, sincé we had
earlier noted the increased allele loss rate of R6 on
F1, the two most likely candidates for improvement
were incressed mutation rates and the crowding factor.
One instance of each was chosen; neither improved off-
line performance over 6000 trials and, as we have seen

before, both degrade on-llne performance.

4,9 Summary
We began this chapter by analyzing the performance

of the bastic family Rl of genetic plans on E. While this
family outperforms random search on E, we noted that
there was consilderable room for improvement. To this
basic plan we added an ellitist policy which biased the
allocation of trials slightly toward the hyperplanes
which produced the currently best individual. This

resulted in improved performance on E, particularly

on the unimodal surfaces. In fact, performance on F5
was degraded suggesting that an elitist policy lmproves

the local search properties of genetic plans. As an
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alternative, expected value model B3 was introduced
which attempted to improve performance by minimizing

the difference between the actual and expected number of
offspring produced by individuals in A(t). This produced
a significant increase in performance on E., R3 was then
modified to include the previously mentioned elitist
policy. Agaln the performance on E was improved to the
extent that on test functions F1-Fi, there were no signs
of premature convergence over the interval of observation.
Rather, R4 generated steady progress toward the minimum
with convergence within 6000 trials on F1 and F2. F5,
however, remained a difficult challenge. To that end,
several members of the R4 family were analyzed on F§

to see whether a change in parameters would improve the
off-line performance curve. Increasing the mutation
rate to .01 seemed about the most effective change for
F5 but resulted in an overall decrease in coff-line
performance on E. As an alternative approach to im-
proving the global search properties of R4, a crowding
factor model was introduced which attempted to slow

the growth rate of hyperplanes beginning to dominate

the finite population A(t). Iike increasing the muta-
tion rate, the crowding factor improved off-line perform-
ance on F5 at the expense of on-line performance, but

the tradeoff was less pronounced. Finélly. generalized
crossover model R6 was introduced in an attempt to

alleviate possible representation problems caused by
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the disrupting effect crossover has on long-definition
hyperplanes. By allowing several crossover polnts to
occur when generating an offspring, the disruptiveness
on long-definition hyperplanes can be conslderably
reduced. Although time did not permit a complete anal-
ysis of the effects, no significant improvement 1in
performance on vaas noted. In fact overall performance

was seen to degrade as the number of crossover points

increased.



