
ec.simple.SimpleEvolutionState : ec.EvolutionState: ec.Singleton: ec.Setup

ec.util.Output

ec.util.ParameterDatabase :
java.util.PropertyList

ec.Evolve

ec.util.
MersenneTwister

Fast

Mersenne Twister Random Number
Generators, one per thread, i.e.,
Max(eval threads, breed threads) Database of user-provided run

parameters. Parameter values are
stored in various tables and are
accessed using ec.util.Parameter

Threadsafe, checkpointsafe
logging facility. The right way to
write output. Holds a table of
ec.util.Log s. Each log has a
unique number.

ec.util.Log

number of breed threads

number of eval threads

should we checkpoint?

checkpoint file prefix

how often do we checkpoint?

should we garbage-collect?

how often do we garbage-collect?

do we garbage-collect aggressively?

do we quit when we find a perfect
individual?

current generation number

max number of generations

ec.simple.SimpleInitializer:
ec.Initializer: ec.Singleton:

ec.Setup

Responsible for initializing the
population. Default does this by
having the ec.Subpopulation s
populate themselves.

ec.simple.SimpleFinisher:
ec.Finisher: ec.Singleton:

ec.Setup

Responsible for cleaning up
the population at the end of a
run. Default does nothing.

ec.simple.SimpleExchanger:
ec.Exchanger: ec.Singleton:

ec.Setup

Hooks for doing inter-population
exchanges, inter-process
exchanges, etc. Default does
nothing.

ec.simple.SimpleBreeder:
ec.Breeder: ec.Singleton:

ec.Setup

Performs simple,
non-coevolved, multithreaded
generational breeding

ec.simple.SimpleEvaluator:
ec.Evaluator: ec.Singleton:

ec.Setup

Performs simple, multithreaded
generational evaluation. Holds a
prototypical problem, which is
copied as necessary, one per
thread, to evaluate individuals.

ec.gp.koza.KozaStatistics:
ec.simple.SimpleStatistics:
ec.Statistics: ec.Singleton:

ec.Setup

Prints out statistics to various
ec.util.Log s.

ec.Population: ec.Group:
ec.Setup

Holds an array of
ec.Subpopulation s,
each of which holds a
subpopulation of individuals

ec.Subpopulation:
ec.Group: ec.Setup

creates

See Additional Page

ec.app.regression.
Regression:

ec.gp.GPProblem:
ec.Problem: ec.Prototype:

ec.Setup

See Additional Page

ec.util.
Checkpoint

writes to
checkpoints

using

restarts
from

checkpoints
using

ec.simple.SimpleEvolutionState holds the complete state of an evolution run. Performs a simple breed-evaluate
loop on individuals in its population. Every object stored within this object is serializable, and so can be written out to a
checkpoint file using ec.util.Checkpoint. The evolution state is also passed around to among objects a lot so they can
access its random number generators, parameter database, and logs. This is done, of course, in a threadsafe manner.

Legend
Static objects

Instances

Data

. . .

. . .
. . .

ec.app.regression. Regression: ec.gp.GPProblem: ec.Problem: ec.Prototype: ec.Setup

ec.gp.ADFStack: ec.Prototype: ec.Setup

Legend
Static objects

Instances

Data

ec.app.regression. RegressionData:
ec.gp.GPData: ec.Prototype: ec.Setup

The prototypical data object, copied once per
thread, each time a generation of individuals
needs to be evaluated, and passed between
ec.gp.GPNode s to transfer data between then
when they are executing. For Symbolic
Regression, this object holds the floating-point
value returned by functions.

x: floating-point return value

Stack

ec.gp.ADFContext:
ec.Prototype: ec.Setup

. . .

ec.gp.ADFContext:
ec.Prototype: ec.Setup

. . .

ec.gp.ADFContext:
ec.Prototype: ec.Setup

. . .

ec.gp.ADFContext:
ec.Prototype: ec.SetupSubstack

Reserve

Prototypical
ADF Context

A prototypical ADF Stack object, copied once per thread, each time a generation of individuals needs to
be evaluated. ADF Stacks holds current contextual state of ADF function calls in two special stacks of
ec.gp.ADFContext objects, one ADF Context per pending ADF function call. A prototypical ADF
Context object is copied when new ADFContext objects are needed; old ADFContext objects are held
in a Reserve to prevent excessive object construction. For more information on this complicated
mechanism, see the class documentation. Since Symbolic regression doesn’t have ADFs, this facility is
left unused.

ec.gp.ADFContext: ec.Prototype: ec.Setup

ec.gp.ADF:
ec.gp.GPNode:

ec.Prototype: ec.Setup

ec.gp.RegressionData:
ec.gp.GPData: ec.Prototype:

ec.Setup
ec.gp.RegressionData:

ec.gp.GPData: ec.Prototype:
ec.Setup

. . .

x: floating-point return value
x: floating-point return value

Return results
from ADF’s
children

Prototypical Regression Data The ADF Node that was
executed

An ADF Context holds the current execution context of an ADF function call. The ADF ("Automatically Defined Function", see Koza-I and Koza-II) called is
stored in the context, as is the returned data from its children nodes. A prototypical data object is also held from which new children results are created if
necessary. This data object is typically the same kind of prototype as the one used in the problem, in this case, ec.app.regression.Regression. ADF Contexts
are also used for ADMs ("Automatically Defined Macros"). Since Symbolic Regression doesn’t have ADFs, this facility is left unused.

ec.Subpopulation: ec.Group: ec.Setup

Legend
Static objects

Instances

Data

java.io.File

ec.gp.koza.KozaFitness:
ec.Fitness: ec.Prototype:

ec.Setup

ec.gp.GPSpecies: ec.Species

ec.gp.GPIndividual:
ec.Individual:

ec.Prototype: ec.Setup

During population initialization, the number of
times to retry generation of an individual if it is a
duplicate of one already in the Subpopulation

ec.gp.GPIndividual:
ec.Individual:

ec.Prototype: ec.Setup
ec.BreedingPipeline:

ec.BreedingSource:
ec.Prototype: ec.Setup

The Filename of the file we
read the subpopulation from, if
we’re doing that instead of
initializing randomly.

The prototypical fitness class
copied and attached to new
individuals or newly-bred
individuals. Implements
Koza-style fitness
(raw/standardized/adjusted/hits)

. . .

The "species" for individuals in this subpopulation. Defines the prototypical
individual from which all the individuals are initially copied, and a set of
prototypical breeding pipelines with which to breed individuals into new ones.

An array of individuals. These are
the actual individuals evaluated and
bred in the evolutionary system.

 The raw fitness value

ec.gp.GPIndividual: ec.Individual: ec.Prototype: ec.Setup

ec.gp.koza.
KozaFitness: ec.Fitness:

ec.Prototype: ec.Setup

 The raw fitness value

Has this individual
been evaluated
already?

ec.gp.GPTree: ec.Prototype: ec.Setup (also: GPNodeParent)

. . .

ec.gp.
GPNode:

ec.Prototype:
ec.Setup

ec.gp.
GPIndividual:
ec.Prototype:

ec.Setup

ec.gp.GPTreeConstraints: ec.Clique: ec.Setup

ec.gp.koza.
HalfBuilder:

ec.gp.GPNodebuilder:
ec.Prototype: ec.Setup

ec.gp.GPType:
ec.Clique:
ec.Setup

ec.gp.GP
FunctionSet:

ec.Clique:
ec.Setup

. . .

Constraints
name

The fitness object for
this individual —
originally copied from
the subpopulation’s
prototype.

The root node
for this tree

The individual
containing this
tree. This is a
reference
pointing to the
outside
containing
individual in this
diagram. The constraints for this tree. This is shared with other trees in the same

tree-position in other individuals. The tree does not have a unique copy.

The tree forest associated with this individual. For Symbolic Regression, the tree forest is of size 1. For ADFs or other
purposes, the tree forest is often bigger.

An individual is the fundamental unit of evolution — it is the thing that is bred, evaluated, and assigned a fitness.

The function set for
nodes in this tree.

Responsible for creating
initial trees of this kind
using ramped
half-and-half algorithm.

The return type of
this tree. Regression
is typeless, so this is
a solitary ec.gp.
GPAtomicType .

See Additional Page

See Additional Page

See Additional Page
See Additional Page

Legend
Static objects

Instances

Data

ec.gp.GPFunctionSet: ec.Clique: ec.Setup

ec.gp.GPFuncInfo:
ec.Prototype: ec.Setup

. . .

ec.gp.GPNode:
ec.Prototype:

ec.Setup

Prototypical node
for this function

Function Set Name

A table of GPFuncInfo objects, each
containing a GPNode. These
GPNodes are the prototypical nodes
for each function (nonterminal or
terminal) in the function set. In
Symbolic Regression, this includes
nodes for Sin, Cos, X, +, -, /, *, Log,
and ERCs. These are stored in
ec.app.regression.func.*

ec.gp.GPNode: ec.Prototype: ec.Setup

ec.gp.
GPNodeParent

ec.gp.GPNode:
ec.Prototype:

ec.Setup

. . . Argument position of this
node in its parent (byte)

The node’s shared
GPNodeConstraints (a
byte index instead of an
object to save space)

My node parent, ether
another GPNode, or (if
I’m the root), a GPTree Child arguments to this node.

ec.gp.GPType:
ec.Clique: ec.Setup

Type name

Type index

ec.gp.GPNodeConstraints: ec.Clique: ec.Setup

Constraints
index

ec.gp.GPType:
ec.Clique:
ec.Setup

ec.gp.GPType:
ec.Clique:
ec.Setup

. . .

Constraints
name

The return type for
this kind of node.
Regression is
typeless, so this is a
solitary ec.gp.
GPAtomicType

Argument types for the
children to this kind of node.
Regression is typeless, so
these are all the same
ec.gp.GPAtomicType

ec.BreedingPipeline: ec.BreedingSource:
ec.Prototype: ec.Setup

ec.gp.
GPBreedingSource:
ec.Prototype: ec.Setup

. . .

Probability of being picked as
the parent’s breeding source

An array of either ec.SelectionMethod s
(like: ec.select.TournamentSelection)
or ec.gp.GPBreedingPipeline s which
feed individuals into this pipeline. Here’s
an example which does Koza-style "point
mutation": ec.gp.koza.MutationPipeline

(example)
ec.select.

Tournament
Selection:

ec.SelectionMethod:
ec.BreedingSource:

ec.Prototype:
ec.Setup

Probability of
being picked
as the
parent’s
breeding
source

(example) ec.gp.koza.MutationPipeline: ec.gp.GPBreedingPipeline:
ec.BreedingSource: ec.Prototype: ec.Setup

ec.gp.koza.Koza
NodeSelector:

ec.gp.
GPNodeSelector:

ec.Prototype:
ec.Setup

ec.gp.koza.
GrowBuilder:

ec.gp.
GPNodeBuilder:

ec.Prototype:
ec.Setup

How many times to try to breed a
valid individual before giving up
and just copying the old one.

The maximum valid depth
of a newly-bred individual

Grows new
subtrees for the
mutation process

Selects points in the old
individual to replace with
a new subtree.

Tournament
size

ec.gp.
GPBreeding

Source:
ec.Prototype:

ec.Setup

. . .

Array of sources
feeding the pipeline
(acutally one source)

