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In this article, we present a geographically explicit agent-based model (ABM), loosely
coupled with vector geographical information systems (GISs), which explicitly captures
and uses geometric data and socioeconomic attributes in the simulation process. The
ability to represent the urban environment as a series of points, lines, and polygons not
only allows one to represent a range of different-sized features such as buildings or larger
areas portrayed as the urban environment but is a move away from many ABMs utilizing
GIS that are rooted in grid-based structures. We apply this model to the study of
residential segregation, specifically creating a Schelling (1971) type of model within a
hypothetical cityscape, thus demonstrating how this approach can be used for linking
vector-based GIS and agent-based modeling. A selection of simulation experiments are
presented, highlighting the inner workings of the model and how aggregate patterns of
segregation can emerge from the mild tastes and preferences of individual agents inter-
acting locally over time. Furthermore, the article suggests how this model could be
extended and demonstrates the importance of explicit geographical space in the modeling
process.
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1. Introduction

Many of the applications linking geographical information systems (GISs) and agent-based
models (ABMs) focus on representing space as a series of discrete cells (e.g. Gimblett et al.
2002), and while these ABMs have provided valuable insights into urban phenomena as they
can capture geographic detail, they miss geometric detail. This area is critical to good
applications but is barely touched upon in the literature (Batty 2005). There is a need to
move away from the cellular representation of cities and begin to incorporate the details of
the geometry and geography of the real city (see Xie and Batty 2003, Stanilov 2009 for more
detailed discussions). The ability to represent the world as a series of points, lines, and
polygons permits the inclusion of geometry in the modeling process, thereby allowing for
different sizes of features such as houses and roads, for example, to be more realistically
portrayed and letting one explore how these features might affect the simulation outcomes
depending on the processes being modeled.

This article presents an ABM loosely coupled with a vector GIS, which explicitly
captures and uses geometric data and related attributes in the simulation process. To high-
light this, the model is applied to the study of segregation. In the remainder of this article,
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first, there is a brief description of segregation and a discussion of ABMs that have been
created to study and explore this phenomenon. Second, the basic model is introduced
focusing on the underlying mechanisms and the use of vector-based GIS data. Third, results
from various experiments are presented, highlighting not only the inner workings of the
model but also how the creation of such geographically explicit models helps with our
understanding of such phenomena. This is then followed by discussion and conclusions
concerning this particular modeling approach with respect to the study of urban phenomena.

2. Background and literature review

Segregation is all too clear in most urban areas, where there are clear clusters of economic
and residential groups based on ethnicity, social class, and so on. While we are able to
quantify the degree of segregation within neighborhoods (e.g. Reardon and O’Sullivan
2004), such analysis tells us little about the behavior that leads to or from particular
outcomes. Without this knowledge, trying to prevent such a process or phenomenon
becomes challenging. One might think that individuals must have strong preferences for
these racially or economically homogeneous neighborhoods to emerge. However, empirical
evidence suggests that individuals do not have strong racial preferences but have rather mild
preferences (e.g. Clark 1991). To find clear examples of this segregation process taking place
is difficult, because it only becomes noticeable when it is clearly underway, and by then a
detailed chronology becomes impossible to reconstruct (Batty et al. 2004). To understand
this behavior, we have to examine how the process of individual choice leads to these
outcomes.

Schelling (1971) demonstrated that segregation could emerge through mild preferences
to locate amongst like demographic or economic activity groups; although subsequent
researchers have endorsed his conclusions (see Clark 1991), his work has also received
criticism (e.g. Massey and Denton 1993). Nevertheless, this does not undermine Schelling’s
central insight: marked segregation can arise from rather mild individual preferences for
living amongst one’s own kind. Not only is the model one of the best known ABMs, but it
has additionally continued to inspire theory and research into the segregation phenomena
(e.g. Fossett 2006).

2.1. Agent-based models of segregation

Many ABMs have been inspired by Schelling’s (1971) model or can be seen as extensions to
his original insights; in this section, we will briefly explore some of these. Various neighbor-
hood shapes (e.g. Flache and Hegselmann 2001) and sizes have been investigated to explore
their impact on segregation outcomes. For example, with larger cell neighborhoods, models
took longer to stabilize and more extreme patterns of segregation would arise
(e.g. O’Sullivan et al. 2003, Fossett and Waren 2005). Others have included preferences
for neighborhood status and housing quality, and differing levels of socioeconomic inequal-
ity within and between ethnic populations (see Fossett and Senft 2004), or incorporated
income and cultural preferences for neighborhoods (e.g. Bruch 2006). Benenson et al.
(2002), for example, used individual census records and GIS data representing streets and
buildings to explore ethnic residential segregation in the Yaffo area of Tel Aviv, the model
itself consisting of two interacting layers – one representing agents located on a physical
environment layer representing streets and buildings. Each house is converted into a Voronoi
polygon and the agents’ residential behavior is affected by the ethnic composition of the
neighborhood defined using these polygons.
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The examples presented above can be viewed on a continuum between abstract demon-
strations to real-world applications. Each one brings something new to the basic insights
Schelling first presented. However, many are dependent on regular grids where each cell is
often used to represent a single home, with one agent being allowed to occupy the cell at any
one time (a common feature of ABMs using cell space; however, there are models that allow
more than one agent per cell, such as Benenson et al. [2002], but these are rare). It is often
argued that this is unrealistic, especially within cities; for example, within a block of flats
there can be numerous people but their geographical footprint would be the same and would
be missed by restricting one agent to one cell. Most of these models employ a featureless
plain, paying little attention to physical barriers. Noonan (2005) showed empirically how
physical barriers (such as parks, railroads, and major roads) have impacts on neighborhoods.
Below, we present how individual entities can be created and located within space where
movement is not restricted by cells as our model will not contain any cells. Furthermore,
more than one agent can be located in the same area, and clusters of residential groups can
bridge different areas.

3. A vector-based geographically explicit segregation model

There are many types of segregation, a product of many factors, but the model presented in
this article only explores one such hypothesis, that of Schelling’s (1971) – where many
agents with mild tastes and preferences locate amongst like social groups, segregation will
emerge. The purpose of this article is to simply extend this well-known model so we can
explore the impact of space and geometry; it is a pedagogic demonstration which illustrates a
way of thinking about modeling the built environment in the particular context of segrega-
tion. This section will outline the basic model, while further details of the model, including
the source code, a complete description, data files used in the simulations, animations of
simulation runs, and additional models can be found at http://www.casa.ucl.ac.uk/abm/
segregation.

The model itself is loosely coupled to GIS,1 especially the vector data structure (as model
inputs and outputs are ESRI shapefiles2), which is written in Java and extends a number of
basic operating classes from the RepastJ library, an open source Java-based agent-based toolkit
(Repast 2008). Repast is primarily used for its ability to display model information, scheduling
of model actions, and the importation of GIS vector data (in the form of ESRI shapefiles),
along with its recording change classes. The model additionally utilizes other Java-based
libraries, namely the JTS Topology Suite (JTS 2008), which provides general 2D-GIS func-
tions such as line intersection and buffering algorithms, and OpenMap (2008), which provides
a simple GIS display with pan and zoom, and query functions with respect to GIS layers.

Within the model, we consider agents as virtual households with the ability to search the
virtual world and make residential choices. These agents possess an ethnic status which we
denote, for example, as red and blue with these labels of course being arbitrary. These
households have preferences for co-ethnic contact specified in terms of the percentage of
co-ethnic households found in their ‘neighborhood’ in which the household lives or to where
it is considering moving. Preferences can be the same or different between different ethnic
groups. Unlike many models exploring segregation, these households are not restricted to
discrete cells and can move to areas that are already occupied by other agents.

Translating GIS methods into agents and their environment, the model is composed of
two vector layers – the urban environment that is represented as a series of polygons created
directly from the ESRI shapefiles, and agents that are represented as points. It is the
information held within fields of the environment layer that is used to create the point agents,
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but also the environment layer defines the boundary of the world which the agents occupy
using the spatial analysis operation known as union. The distribution of the types of point
agents (representing ethnic groups, say) as observed through aggregate census population
counts forms the initial starting conditions for the model. Such counts or other attributes in the
environment layer could also be used to represent capacity constraints, such as maximum
number of agents in an area if desired. For example, Figure 1a represents four areas dimen-
sioned to wards in the City of London, each with their own hypothetical attribute information
stored in a data table where each row relates to a specific ward (e.g. Ward 1 has a population of
ten red, five blue, four green, and two white agents). The model reads this data and creates an
environment polygon for eachward and for the desired agent population based on the data held
in the fields (Figure 1b). Note that the underlying color of the polygon (ward) always
represents the predominant social group in the area (accomplished by counting the number
of agents of different types within each polygon). The agents are initially randomly placed
within each polygon. This provides a city landscape that is integrated at initialization.
However, these agents could be placed in precise locations if they were known (see Crooks
2007 for further details). The basic model is designed to work on many different geographical
scales and areas (e.g. boroughs and output areas) without the need for its reconfiguration of the
model code (i.e. the geometry of the environment is not hard-coded into themodel but relies on
the shapefile used). This was considered important as most socioeconomic data, for example,
census and geo-demographic data, come in this format. This functionality was created so that
the model could be easily replicated in other areas in the quest to allow the modeler to see if the
same rules can be applied to different areas and at different scales.

The ability to represent the urban system as a series of spatial objects – points, lines, and
polygons each with a spatial reference describing the location of the object rather than just as
a series of cells – leads to conceptual problems in defining neighborhoods. Furthermore, it
makes definitions of the ways in which agents move and search their environment difficult.
To overcome these problems, the model relies on a series of spatial analysis operations,
specifically buffering, union, line intersection, and point(s)-in-polygon analysis utilizing the
JTS library. It is to these that we now turn.

Unlike the case of cellular space models where neighborhoods are often calculated using
Moore or von Neumann neighborhoods or variations of these (Batty 2005), representing

Figure 1. Populating the model with agents: reading in the data and creating the environment and the
agents.
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agents as points means different tools are needed to calculate neighborhoods, specifically
when incorporating physical boundaries (e.g. rivers and motorways) into the modeling
process. For the point agents, buffers are created to calculate neighborhoods. This involves
the creation of a circular region around the point. The radius of the circle is defined by the
analyst using euclidean distance. Figure 2a highlights how a geographical feature (such as a
river) is incorporated into the model when calculating neighborhoods for point agents.
Within Figure 2a, the black circle represents the agent of interest. This agent wants to
know which agents are within a specified distance and in the same geographical area.
A buffer polygon is created at this specified distance based on the centroid of the agent.
However, in this case, the buffer crosses the river, which is stored in the urban environment
layer, resulting in a multipart polygon (one part on each side of the river) being formed. In
such a case, the agent calculates which part of the multipart polygon it is within through a
point-in-polygon operation and only counts agents in the same multipart polygon as itself.
Therefore, the black agents on the other side of the river are not classed as neighbors,
although they are within the buffered region (light gray line). The gray agents, who are on the
same side of the river as the agent of interest, are within the agents’ defined multipart
polygon buffer region and are classed as neighbors. However, if the two regions were
connected, the agents on both sides of the river would be considered neighbors as the buffer
would only be a single-part polygon as demonstrated in Figure 2b.

As the agents are represented as a separate layer to the environment they reside in, one
needs to relate objects in one layer to objects in another. This is achieved through a point-in-
polygon analysis. This allows the model to determine whether or not a given agent lies inside
a specific polygon, which allows for more aggregate statistics to be computed such as
population counts. These counts are derived bottom-up, through the interactions of agents
observed and modeled at micro scale.

The above GIS operations allow an ABM to be created where spatial and geometric
relationships are explicitly incorporated into the simulation. Each type of agent knows its
position and can use the operations such as buffering and point in polygon to find out more
about its neighborhood and the urban environment it resides within (Figure 3). Once the

Figure 2. (a) Defining neighborhoods with the inclusion of geographical features (constrained
buffer); (b) defining neighborhoods where the two areas are connected.
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environment and the agents have been created, each agent uses its neighborhood function to
query the surrounding neighbors, calculating if it is currently satisfied with its current
neighborhood environment, taking into account physical features of the urban environment.
Figure 3 highlights this process, where an agent is selected at random and it ‘evaluates’ the
ethnic mix in its immediate neighborhood. If the agent is satisfied based on its preferences, it
does nothing. On the contrary, if it is dissatisfied with its current neighborhood, the agent
moves to the nearest location where its preferences are met.

As with other segregation models, the time frame within the model is purely hypothetical
but could be considered as yearly intervals. At each time step (iteration), all the agents are
given the option to move if they are dissatisfied with their current neighborhood configura-
tion. The movement process involves two stages. In the first instance, the agent randomly
searches its immediate area for a given number of moves, each time moving to a new
location up to 100 m from its previous location, calculating the neighborhood composition
using the buffering mechanism. If the agent is still dissatisfied after a given number of
random movements, it moves to a location within 100 m of its nearest neighbor of the same
type based on the euclidean distance from its initial location (this was done to speed up the
searching process and assumes agents want to locate nearby other agents of the same type).
Once the agent has moved to a location near to its nearest agent of the same type, it locally
searches this new area for a neighborhood composition that satisfies its needs. If the agent
cannot be satisfied, it moves to the location of its next nearest agent and so on, until all the
area has been searched. If the agent is still not satisfied, it is removed from the system.

Once all the agents have had the option to move, the model advances one iteration and
again all agents who are dissatisfied with their neighborhood have the option to move. This
process continues until all the agents are satisfied with their current neighborhood config-
uration or the model is stopped by the user. While such a search criterion is abstract and
simple and does not reflect the complex decision-making process of residents (such as the
associated cost of moving), the model does capture the dynamics within neighborhoods,

Figure 3. Basic model structure.
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such as how people moving in and out of areas affect the overall composition of that area.
Furthermore, it demonstrates how with bounded rationality, agents (i.e. agents do not know
what all the potential neighborhood configurations are) locate in areas where their prefer-
ences are met, minimizing the distance traveled.

4. Results from selected experiments

While numerous experiments, variations, or extensions of the model are possible, the
following subsections highlight how certain assumptions affect the outcome of the model
and how changes can easily be made to the model. Not only do these demonstrate the
structure of the model but they emphasize the rationale as to why such features were included
in the model (for other experiments such as density constraints, the reader is referred to the
website). Each simulation was run multiple times and the results and subsequent discussion
present average outcomes.

4.1. The role of preferences

As with Schelling’s (1971) model, agents only have preferences for their own group and it is
this preference that causes agents to seek out different areas in the city. However, Clark
(1991) demonstrated that preferences for specific compositions of neighborhoods were
varied among cities. This section will, therefore, explore how the degree of segregation
changes because of different preferences and explores how the preferences of individuals for
their own group influences the degree of segregation seen within an area.

The only model parameter that changes within the simulation is the agents’ preferences
for the percentage of their same type to be located within their neighborhood. The world the
agents occupy is a 1.5 km2 polygon, which could be considered as representing a small
cityscape. One could imagine this as the checkerboard that Schelling originally used.
However, neither agents’ neighborhoods nor their movement was restricted to a cell-based
environment and multiple agents can occupy one area. As with Schelling’s original model,
we have equal numbers of two types of agents, 2000 of each color, placed randomly within
the area.

Figure 4 highlights the typical final patterns of segregation that emerge from different
preference parameters for neighborhood composition where the radius was set at 100 m. As
the percentage of neighbors of their same type increases, the pattern of segregation becomes
more noticeable. It is only when preferences rise above 80% that agents are forced to leave
the system as a result of their preferences being unable to be matched. Increasing the
percentage of neighbors of the same type within the agents’ neighborhood, more agents
are forced to move at least once during the course of a simulation. For example, when
preferences are low (e.g. �20%), little movement occurs. However, as the preference for a
minimum neighborhood increases, so does the total number of agents that move
(e.g. �40%), along with the degree to which neighborhoods are segregated, as highlighted
in Figure 4.

4.2. The effect of different neighborhood sizes

Neighborhoods mean different things to different people. Some may perceive a
neighborhood as houses that are directly associated with their home (e.g. Benenson
et al. 2002), whereas others may consider it as a street, or a collection of streets. As
already stated, neighborhoods within the model are calculated using a buffer at a
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specified radius around the agent. To test the influence of neighborhood size on the
resulting pattern of segregation that emerges, various neighborhood sizes were tested,
ranging from a radius of 50 to 1000 m. All other parameters within the simulations
were kept the same. The smallest neighborhood would only encompass the agents’
immediate neighbors, for if an agent were to be dissatisfied with the area, this would
reflect the composition of the agent’s immediate neighbors. For larger neighborhoods,
agents would consider larger areas, with the agent not considering its immediate
neighbors per se but its overall neighborhood composition (which would therefore
include on average a greater number of agents).

Typical patterns of segregation resulting from different neighborhood sizes are presented
in Figure 5, which clearly shows the influence of neighborhood size on the outcome of the
pattern of segregation. Smaller neighborhoods result in small segregated areas and larger
neighborhoods result in larger segregated areas in proportion to the size of the buffer used.
As with the O’Sullivan et al. (2003) model, when neighborhoods became larger, the
simulation took longer to stabilize and more extreme patterns of segregation emerged.
Another feature of the model is that at the boundary of these neighborhoods, agents appear
to be more clustered than in the center of the neighborhood, which is an artifact of the search
criteria (see Section 3): when agents are trying to find a location where their preferences are
met they in the first instance search their immediate area.

4.3. The impact of geographical features

Areas within cities are bounded by features such as highways, railway lines, and rivers that
can act as boundaries between residential groups. The model presented here was designed to
explore the effect these features have on the outcome of a particular simulation. Thus the
segregation model is not only capable of exploring segregation but also examining the effect
geographical features have on the pattern of segregation that emerges. Within the model
presented in this article, we consider all geographical features as obstacles, but depending on

Figure 4. Typical patterns of segregation with different percentage preferences for neighborhood
composition.
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the context geographical features may not act as barriers; to include such contexts within the
model, one would need to code which features act as barriers or not and include this in the
neighborhood calculation. In this section, we demonstrate how neighborhoods can be
influenced by the geometric features of the urban environment and how this impacts on
the pattern of segregation. To achieve this, the segregation model will be compared to a
variation that does not include geographical features (geometry) when neighborhoods are
being calculated.

An arbitrary area was used to represent the urban space as shown in Figure 6. The dark
gray area represents locations that agents can inhabit, whereas the light gray area represents
areas where the agents cannot be located and could be considered void areas, such as water
features. The void spaces act as barriers in the neighborhood calculations of the basic
segregation model, where buffers are created and constrained by geographical features. As
illustrated in Figure 6, agents located directly opposite to each other but separated by void
space would not be considered as neighbors when calculating neighborhoods (in contrast to
the variation of the model that does not include geometry when calculating neighborhoods).
Agents are randomly placed at the start of the simulation and all want to be in a neighborhood
where 50% or more of its neighbors are of the same type. Neighborhood size was set to
200 m to allow for agents on the fringes of geographical features to consider as neighbors
agents on the other side of these fringes where geographical features are not considered in
neighborhood calculations.

Figure 7 shows two final patterns of segregation, one from the basic segregation model
and one from the model where geometry was not included (the extent is the same as shown in
Figure 6). The patterns are similar, suggesting that the influence of geometry in

Figure 5. Example patterns of segregation when all agents are satisfied for different neighborhood
sizes.
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neighborhood calculations is quite subtle. The influence of geometry is most obvious at the
fringes of geometric boundaries, specifically the top left and center of the images as shown in
the two zoomed-in areas of Figure 7. In the segregation model where geometry is not
included in neighborhood calculations, one can clearly see that agents are considering as
neighbors agents across the void on opposing spits, and thus agents of different types are
located in proximity to each other although each others’ preferences are met. Where
geometry is considered, it can be seen that agents of different types are not located in the
same areas as they would not consider agents on the opposite side of the void as neighbors
and thus their preferences could potentially not be met. This forces them to locate in more
homogeneous neighborhoods. From these simulations, one can see the effect that geometry
has on neighborhood formation, which is not normally explicitly included in Schelling-type
models in particular or ABMs in general.

Figure 7. Final patterns of segregation when all agents are satisfied for different geometric and non-
geometric segregation models.

Figure 6. How geographical features impact on the pattern of segregation: an example of constrained
and unconstrained buffers used in neighborhood calculations.
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4.4. Small minority populations

The simulations presented above have presumed 50/50 populations, which is rarely the case
within cities. Often within populations, there are small minority groups that cluster in
specific areas of the city. The ability to model more than two groups thus allows one to
explore differences between the numbers of dominant and subdominant groups within a
population and we will extend the model this way here.

Here, we explore a population of 4200, composed of 37% red, 34% blue, 24%
green, and 5% white agents in seven areas, where the white agents are only located in
one area.3 This experiment was designed to explore how this minority population
group can change and cluster over the course of a simulation run as agents search for
neighborhoods where 50% or more of their neighbors are of the same types as
themselves. Figure 8 highlights a typical simulation run with the majority of the
white population staying and clustering in the area they originated in. The number
and type of predominant social groups in the area are on average the same as when
the model was first initialized.

4.5. Addition and removal of agents

All cities and regions change by both growth and decline. However, as there is no
mechanism for population turnover within Schelling’s basic model, households are
‘immortal’ and thus a satisfied household can reside in the same location for ever
(Fossett and Waren 2005). The previous simulations were designed to study how estab-
lished groups participate in constructing the city’s social-spatial pattern. This section
highlights how an additional dynamic process can be added to the more traditional

Figure 8. A typical simulation portraying the initial, first, and last iteration until all agents are
satisfied when only 5% of the population is white.
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Schelling-type model, through the addition and removal of agents, and how an area’s
social-spatial pattern might change through such a process. This could be considered as
immigration and aging and the death of population in urban areas.

The model itself varies from others presented thus far in a number of ways. First,
all the agents are given a new attribute: ‘age’. At the end of each step, the agent’s age
increases by one. In the previous versions of the model, agents were only removed
from the system if they could not find a suitable neighborhood. In this version, agents
are also removed from the system when their age reaches 50. The second variation to
the model is the addition of 100 new agents at the end of each step. These new agents
are given a random social class and an age of 0 and placed randomly in the urban area
when first created. The new agent then evaluates its neighborhood, and if dissatisfied
it moves to an area where its preferences are met. If the new agent cannot become
satisfied with the area, it is removed from the system.

The initial population was 700 agents (390 of type red [56%] and 310 of type blue
[44%]) with ages randomly assigned values between 0 and 50. These agents were
spread over several polygons. Each agent wanted to be in an area where 50% or more
of its neighbors are of the same type. By the 100th iteration, the percentage of both
red and blue agents becomes approximately equal and remains roughly constant.
However, the degree to which one group dominates one area varies over the course
of each simulation as agents are added and removed (Figure 9). As agents are added
and removed from the system, the predominant social group of each area changes as
can be seen from the underlying polygon color in Figure 9. Additionally, clusters of
groups do not stop at boundaries of areas (Figure 9). So while the aggregate data
suggest that the area is predominantly of one type, clusters of distinct groups appear
throughout the area and cross the boundaries between areas. These clusters would
have been lost by purely using aggregate information.

Figure 9. The effect of adding and removing agents to the system and the resulting patterns of
segregation.
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5. Conclusions

The model presented here demonstrates how the representation of individuals through
simple rules governing their behavior and interaction over space and time at the micro
scale can result in recognizable patterns emerging at the macro scale. The model departs
from other typical models of segregation based on Schelling’s ideas in a number of ways. To
reiterate, most ABMs exploring segregation use a regular partition of space, or polygons, to
represent the location of households. However, to date little research has been carried out on
how the geometry of the environment affects the model outcomes. The model presented here
is tightly bound to the vector GIS data model, thus resolving the lack of geometry, and the
inability to represent objects of various shapes and sizes. We have demonstrated that the
environment and agents can be derived from GIS features by using the coordinate repre-
sentation of each feature, which allows them to move freely within the urban environment.
Agents’ movement is not restricted to discrete empty cells or areas. In addition, most
relationships between agents can be evaluated within vector GISs using standard overlay
operators such as point in polygon, buffering, intersection, and so on, making it possible to
determine where agents are situated in relation to other agents and their environment. More
specifically, neighborhood rules are available for evaluating adjacency, distance, and so on.

The experiments highlight not only how individual actions can lead to more aggregate
patterns’ emerging but also how agents can be linked to geographic locations and how
geometry can be incorporated directly into the simulation process. Furthermore, the experi-
ments can be considered as sensitivity tests of the model and highlight the effects of the
underlying model assumptions on the simulation outcomes. This exploration provides a
detailed understanding of the implications of each assumption but also allows one to
evaluate the logic behind the model. This includes the influence of the size of neighbor-
hoods, the influence of geographical features, and the degree to which segregation changes
when agent preferences for neighborhood composition change. These explorations show
that the geometry of an area can act as a physical barrier to segregation and that by increasing
agents’ preferences to reside in a specific group, marked segregation can emerge but not in a
linear progression. The model illustrates how small minority groups cluster in areas and how
these clusters remain persistent over time when agents are added and removed, outcomes
which are well beyond what Schelling showed in his initial model. Furthermore, the model
raises the importance of incorporating space and geometry when modeling urban systems.
Additionally, the approach the model takes allows us to relate closely to ‘real’ urban form,
while many other ABMs use stylized forms to represent the urban environment.

The analyses of the results from the simulations in Sections 4.4 and 4.5 demonstrate an
important issue relating to the scale of analysis of model results, especially for the segrega-
tion phenomena. In particular, as we aggregate, we can unwittingly lose patterns that the
agents enable us to explore. Aggregation can thus confuse our identification of coherent
patterns that make sense in terms of basic human decision making. For example, in the
simulations, distinct micro-clusters of different types of agents can be seen as a result of
agents’ decisions to locate in areas based on their mild tastes and preferences to be among
similar agents. Moreover, it is also clear that clusters do not stop at boundaries but cross them
as well. These clusters would be lost if we were only to consider aggregate-level data
(e.g. total number of agents of different types in an area) and we might assume that the
area is perfectly mixed, which is not the case. The model presented here was purposely kept
simple, mainly to explore how space and geometry impact on Schelling’s segregation model
and to highlight how this approach can be used to study urban phenomena. It is envisaged
that the models can easily be extended by others if so desired from the provision of source
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code. For example, one could include extra variables in the agent’s choice of location, such
as economic preferences about an area or income (e.g. Crooks 2007). With regard to making
the models more operational, one could use fine-scale data sets to represent the built
environment (e.g. the United Kingdoms (UK) MasterMap products), and population data
could be synthetically micro-simulated to populate such a model. Ethnicity data could be
obtained for individual addresses from the surnames and forenames of the UK electoral role
(seeMateos et al. 2007) and used to link the micro-simulated data to actual buildings (as both
would contain ethnicity information). From such data, detailed empirical analysis could be
carried out for neighborhood preference values, sizes, and so on. Such data could be used to
calibrate the model, in the sense that calibration of transition rules such as neighborhood
preferences could be based on values that closely correspond to the actual values seen within
the system.

In summary, we have outlined the model implementation, making explicit the compo-
nents of the model and the key mechanisms that drive the model findings. Clear description
of how the model is implemented along with the source code helps with verification of the
model, thus furthering our ability to model urban systems. The model provides the essential
ingredients for cumulative scientific inquiry with a clearly specified model that facilitates
replication and extension, which is the key mission of traditional science. Furthermore, the
model highlights how theories and concepts pertaining to urban phenomena can easily be
abstracted within geographically explicit ABMs, helping further our understanding of how
processes within cities operate and thus raising the importance of incorporating space and
geometry when modeling urban systems.

Notes
1. For a discussion on advantages and disadvantages of coupling approaches the reader is referred to

Castle and Crooks (2006).
2. A proprietary but widely available vector file format from ESRI.
3. The background color of the polygons represents the predominant social group of the area. For

example, if the polygon is shaded red, there are more red agents in this area than any other type of
agent, while a polygon shaded gray has equal numbers of at least two types of agents, for example,
red and blue.
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