Controllers

```
Algorithm 1 Bang-Bang Controller
    \(i \leftarrow\) idealDistance
    while true do
        \(z \leftarrow\) readSensor()
        if \(z<i\) then
            moveAway()
        else if \(z>i\) then
            moveTowards()
        else
            driveStraight()
        end if
    end while
```

The function $\operatorname{set} \operatorname{Vel}(\dot{x}, \dot{\theta})$ takes two arguments, \dot{x} which is the forward velocity, and $\dot{\theta}$ which is the angular velocity (how fast it's turning). In Player, set_cmd_vel() is like setVel, but it takes a few more arguments.

If we are close to our ideal distance, we don't want to move towards, or away as aggressively as if we are further away. We can make our angular velocity, $\dot{\theta}$ proportional to the actual distance (as measured by our sensor, z) we are from the ideal distance (i).

$$
\begin{equation*}
\text { Dist }=|z-i| \tag{1}
\end{equation*}
$$

In the P-Controller algorithm, K_{P} is a constant. Try different values for K_{P} until you find one that works best. Depending on if you are left, or right wall following, K_{P} may need to be negative.

```
Algorithm 2 P-Controller
    \(i \leftarrow\) idealDistance
    while true do
        \(z \leftarrow\) readSensor()
        \(\operatorname{setVel}\left(1.0, K_{P} \cdot(z-i)\right)\)
    end while
```

If we compare our current sensor reading to the previous sensor reading, we can determine if we've been moving towards or away from our ideal distance. This can help prevent overshooting our target.

$$
\begin{equation*}
\frac{\Delta \text { Dist }}{\Delta t} \approx z_{\text {curr }}-z_{\mathrm{prev}} \tag{2}
\end{equation*}
$$

```
Algorithm 3 PD-Controller
    \(i \leftarrow\) idealDistance
    \(z_{\text {prev }} \leftarrow \operatorname{readSensor}()\)
    while true do
        \(z_{\text {curr }} \leftarrow\) readSensor()
        \(\operatorname{set} \operatorname{Vel}\left(1.0, K_{P} \cdot\left(z_{\text {curr }}-i\right)+K_{D} \cdot\left(z_{\text {curr }}-z_{\text {prev }}\right)\right)\)
        \(z_{\text {prev }} \leftarrow z_{\text {curr }}\)
    end while
```

K_{D} is another constant parameter. As with finding K_{P} in the P-Controller, experiment to find the best K_{D} for your application. K_{D} will generally have the opposite sign of K_{p}.

$$
\begin{align*}
\operatorname{Err}_{t} & =\operatorname{Err}_{t-1}+\left(z_{\text {curr }}-i\right) \tag{3}\\
\operatorname{Err} & =\sum_{t} z_{\text {curr }}-i \tag{4}
\end{align*}
$$

One problem with the Integral term is that it is unbounded. It may grow too large, in which case the Integral term dominates the output of the controller. One solution is to provide bounds for e (i.e. add in an "if $e<\min$ then $e=\min$, if $e>\max$ then $e=\max ^{\prime \prime}$).

```
Algorithm 4 PID-Controller
    \(i \leftarrow\) idealDistance
    \(z_{\text {prev }} \leftarrow \operatorname{readSensor}()\)
    \(e \leftarrow 0\)
    while true do
        \(z_{\text {curr }} \leftarrow\) readSensor()
        \(\operatorname{setVel}\left(1.0, K_{P} \cdot\left(z_{\text {curr }}-i\right)+K_{I} \cdot e+K_{D} \cdot\left(z_{\text {curr }}-z_{\text {prev }}\right)\right)\)
        \(z_{\text {prev }} \leftarrow z_{\text {curr }}\)
        \(e \leftarrow e+\left(z_{\text {curr }}-i\right)\)
    end while
```

