
Controllers

Algorithm 1 Bang-Bang Controller
i← idealDistance
while true do

z← readSensor()
if z < i then

moveAway()
else if z > i then

moveTowards()
else

driveStraight()
end if

end while

The function setVel(ẋ, θ̇) takes two arguments, ẋ which is the forward
velocity, and θ̇ which is the angular velocity (how fast it’s turning). In
Player, set cmd vel() is like setVel, but it takes a few more arguments.

If we are close to our ideal distance, we don’t want to move towards, or
away as aggressively as if we are further away. We can make our angular
velocity, θ̇ proportional to the actual distance (as measured by our sensor,
z) we are from the ideal distance (i).

Dist = |z− i| (1)

In the P-Controller algorithm, KP is a constant. Try different values for
KP until you find one that works best. Depending on if you are left, or
right wall following, KP may need to be negative.

1

Algorithm 2 P-Controller
i← idealDistance
while true do

z← readSensor()
setVel(1.0, KP · (z− i))

end while

If we compare our current sensor reading to the previous sensor read-
ing, we can determine if we’ve been moving towards or away from our
ideal distance. This can help prevent overshooting our target.

∆Dist
∆t

≈ zcurr − zprev (2)

Algorithm 3 PD-Controller
i← idealDistance
zprev ← readSensor()
while true do

zcurr ← readSensor()
setVel(1.0, KP · (zcurr − i) + KD · (zcurr − zprev))
zprev ← zcurr

end while

KD is another constant parameter. As with finding KP in the P-Controller,
experiment to find the best KD for your application. KD will generally
have the opposite sign of KP.

Errt = Errt−1 + (zcurr − i) (3)
Err = ∑

t
zcurr − i (4)

One problem with the Integral term is that it is unbounded. It may
grow too large, in which case the Integral term dominates the output of
the controller. One solution is to provide bounds for e (i.e. add in an ”if
e < min then e = min , if e > max then e = max”).

2

Algorithm 4 PID-Controller
i← idealDistance
zprev ← readSensor()
e← 0
while true do

zcurr ← readSensor()
setVel(1.0, KP · (zcurr − i) + KI · e + KD · (zcurr − zprev))
zprev ← zcurr
e← e + (zcurr − i)

end while

3

