
A Dynamical Systems Analysis of Collaboration Methods in Cooperative
Co-evolution.

Elena Popovici and Kenneth De Jong
George Mason University

Fairfax, VA
epopovic@gmu.edu
kdejong@gmu.edu

Abstract

Cooperative co-evolution is often used to solve difficult opti-
mization problems by means of problem decomposition. In
order to do so efficiently, one must have a good understanding
of co-evolution’s dynamical behavior. To build such under-
standing, we have constructed a methodology for analyzing
co-evolution based on dynamical systems theory. In this pa-
per we show how it can be applied to investigate the effects
that collaboration methods have on performance and to iden-
tify a problem property relevant in this respect.

Introduction

The goal of our research is to better understand the behav-
ior of co-evolutionary systems in order to improve their ap-
plicability as a problem solving tool. In this paper we fo-
cus on cooperative co-evolutionary algorithms (CCEAs) as
a method of static function optimization (Potter & De Jong
2000). Their usage as such has been closely investigated
((Potter 1997), (Wiegand 2004)) in order to uncover their
strengths and weaknesses.

This research pointed out that the way the problem was
decomposed and the pieces assigned to different popula-
tions was a key issue for performance. However, the na-
ture of the relationship between problem decomposition and
problem difficulty was not a trivial one to investigate. Pre-
vious research on this topic ((Wiegand, Liles, & De Jong
2001), (Wiegand, Liles, & De Jong 2002)) was mainly in
the context of analyzing the effects on performance of the
inter-population collaboration mechanism used for evalua-
tion. It suggested that these two aspects (problem decompo-
sition and collaboration mechanism) are tightly coupled.

It is easy to see that when the function is linearly separa-
ble and the decomposition of the function matches its sepa-
rability, using the simple single-best collaboration method
is enough for tackling the problem. What is not clear is
when would one need more complex schemes for evalua-
tion. (Wiegand, Liles, & De Jong 2001) shows that the sim-
ple presence of non-linear interactions between the pieces
of the problem represented in different populations is not
enough to necessitate more complex evaluation schemes.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

(Wiegand, Liles, & De Jong 2002) and (Wiegand 2004)
take the analysis further to see what type of such cross-
population epistasis can really cause problems for the single-
best collaboration method. In the context of a study on
pseudo-boolean functions, the hypothesis offered is that to
blame is the contradictory cross-population epistasis, a situ-
ation in which “the linear effects of lower order components
existing in different populations are opposite in magnitude
and direction of the higher order blocks” and thus “the al-
gorithm is tricked into believing that the lower order com-
ponents accurately predict the total function value, when in
fact they are misleading”.

The analysis follows an epistasis-focused approach. Prob-
lems with and without contradictory cross-population epis-
tasis are constructed and the results of running a CCEA
with varied collaboration mechanisms are recorded. The ob-
served performance agrees with the hypothesis. It seemed
like this was the end of the story. In this paper we show that
is not the case.

We introduce two functions for which the natural decom-
position introduces contradictory cross-population epistasis,
yet the effects on performance of the single-best collabora-
tion method are quite opposite. What other property differed
in these functions to generate such results? To answer this
question, we used methods inspired from dynamical systems
theory to investigate the run-time behavior of the algorithm
and how it reflects on performance.

From the analysis we infer a different problem property
to be responsible for the effects on the optimization perfor-
mance of the single-best collaboration method. We use this
knowledge to predict the results on a set of functions picked
from the literature and show that the experiments agree with
the prediction.

A Counter-example

We start by showing that contradictory cross-population
epistasis is not necessarily a good indicator of difficulty. We
do this by presenting two functions that both exhibit this
kind of epistasis for the natural decomposition (one piece
per function parameter), however for one of them the single-
best collaboration method is all there is needed to solve the
problem, whereas for the other this method does poorly and
can be significantly improved upon.

These functions were initially introduced in (Popovici &



De Jong 2005) and we reproduce them here for complete-
ness.

The first function used for the experiments reported here
was the one pictured on the left side of figure 1. Its mathe-
matical expression is given by: oneRidgen(x, y) = n + 2 ∗
min(x, y) − max(x, y). It has a single maximum of value
2 ∗ n at point (n, n) and one ridge going diagonally from
(0, 0) to (n, n) along which the function value increases
from n to the maximum 2∗n. The ridge separates two planar
surfaces. The function has two minima of value 0 at (0, n)
and (n, 0). n = 8 was used in all experiments.

The second function studied is much like the first, as can
be seen in the right side of figure 1. It has the same maxi-
mum and the same two minima. The difference is that in-
stead of a single ridge it has two ridges symmetrical w.r.t.
the diagonal. The function is given by the following for-
mula:

twoRidgesn(x, y) =







n + n−3x+4y

2
if y < 4x−n

3
;

n + x+y

2
if y < 3x+n

4
;

n + n+4x−3y

2
otherwise.

To see the contradictory interaction of the X and Y com-
ponents for the first function, consider any point along the
diagonal ridge. Changing the x value while keeping the
y constant will result in a decrease in function value, re-
gardless of whether x is increased or decreased. Similarly,
changing the y value while keeping the x constant will al-
ways result in a decrease in function value. However, if both
x and y are changed together, in some cases the function
value will increase (e.g. moving up along the diagonal) and
in other cases it will decrease (e.g. moving down along the
diagonal). Here’s a concrete example:

oR(5, 4) < oR(4, 4)
oR(4, 5) < oR(4, 4)

}

oR(5, 5) > oR(4, 4) and

oR(3, 4) < oR(4, 4)
oR(4, 3) < oR(4, 4)

}

oR(3, 3) < oR(4, 4) ,

where oR = oneRidge.

There are also cases when both the change in x and the
change in y independently have the effect of increasing the
function value, and such changes combined can either in-
crease it or decrease it. Take for example the point (4, 3).
We have both following situations:

oR(3, 3) > oR(4, 3)
oR(4, 4.5) > oR(4, 3)

}

oR(3, 4.5) < oR(4, 3) and

oR(3.5, 3) > oR(4, 3)
oR(4, 3.5) > oR(4, 3)

}

oR(3.5, 3.5) > oR(4, 3)

An infinite number of points with such behaviors exist. The
same is true for twoRidges. As an example,

tR(5.5, 6) > tR(7, 6)
tR(7, 6.5) > tR(7, 6)

}

tR(5.5, 6.5) < tR(7, 6) and

tR(6.5, 6) > tR(7, 6)
tR(7, 6.5) > tR(7, 6)

}

tR(6.5, 6.5) > tR(7, 6) ,

where tR = twoRidges. Additionally,

tR(7, 6) < tR(5.5, 6)
tR(5.5, 6.5) < tR(5.5, 6)

}

tR(7, 6.5) > tR(5.5, 6)

and
tR(7, 4) < tR(6, 4)
tR(6, 3) < tR(6, 4)

}

tR(7, 3) < tR(6, 4) .

1
Best

1 Best + 1
Random

1 Ran−
dom

2 Ran−
dom

3 Ran−
dom

4 Ran−
dom

5 Ran−
dom

11
12

13
14

15
16

Collaboration scheme

B
es

t o
f r

un
 fi

tn
es

s

Figure 2: Best of run statistics for the different collaboration
methods on the oneRidge function. Maximization problem
– bigger is better.

An infinite number of points with such behaviors exist for
this function as well.

We ran a two-population CCEA on both problems, with
one population evolving values for x and the other for y and
the goal of maximizing the functions. In each case we exper-
imented with 7 collaboration methods: single-best, single-
best plus one random, one random, two, three, four and five
random collaborators. These were selected per individual
rather than per generation. The other settings of the algo-
rithm were common ones and are detailed in the next sec-
tion. The results are shown in figures 2 and 3. These plot
the distribution over 100 runs of the best-of-run fitness. As
these were maximization problems, bigger values are better.

Clearly, the single-best collaboration method has quite
opposite performance on the two functions. For oneRidge,
it is largely outperformed by all other methods. For
twoRidges, all methods are in the same ballpark, with the
single-best method however giving slightly better results
then all other methods (its mean is statistically significantly
larger then all other means with 95% confidence).

For two problems with the same type of contradictory
cross-population epistasis, the single-best collaboration me-
thod is in one case the best method and in the other case
the worst method. How do these functions differ to generate
such behaviors for the CCEA? Our approach to answer this
question is to look inside the black box of the algorithm and
analyze its run-time dynamics.

Dynamics Analysis

Dynamical systems theory proved a good source of inspira-
tion for constructing methods of analysis for co-evolutionary
algorithms. In the literature the term co-evolutionary dy-
namics generally refers to population-level dynamics. For
cooperative settings, (Wiegand 2004) introduced a technique
for tracking the percentage of the best individual in the
population. For a particular type of competitive settings



x

0

2

4

6

8

y

0

2

4

6

80

5

10

15

x

0

2

4

6

8

y

0

2

4

6

80

5

10

15

Figure 1: Left: The oneRidge function. Right: The twoRidges function.

1
Best

1 Best + 1
Random

1 Ran−
dom

2 Ran−
dom

3 Ran−
dom

4 Ran−
dom

5 Ran−
dom

11
12

13
14

15
16

Collaboration scheme

B
es

t o
f r

un
 fi

tn
es

s

Figure 3: Best of run statistics for the different collaboration
methods on the twoRidges function. Maximization prob-
lem – bigger is better.

(namely, frequency based evolution), (Ficici, Melnik, & Pol-
lack 2000) analyzes trajectories of the population state.

In this paper we use the term to refer to dynamics of in-
dividuals rather than population(s). Specifically, we analyze
the time trajectories of best-of-generation individuals across
the search space. We employ a technique that has already
been used in (Popovici & De Jong 2004) and (Popovici &
De Jong 2005) to gain insight into the way co-evolutionary
algorithms work, whether cooperative or competitive.

Before moving on to the analysis, we describe the de-
tails of the algorithm under investigation. We employed a
two-population CCEA. Each population used a real-valued
representation, a non-overlapping generational model except
for elitism of one, binary tournament selection, and gaus-
sian mutation with a fixed sigma of 0.25 operating at a rate
of 75%. The population size was 10. When more than one
collaborator was used for evaluation, the fitness was chosen
to be the best of the obtained values. For the cases with
more than one random individual, their selection was done
with replacement. Populations took turns evolving, i.e. only
one was active per generation (in other words, the update
timing was sequential (Wiegand 2004)). The stopping cri-
teria for all experiments was reaching 1000 function eval-
uations, therefore using more collaborators per individual
meant fewer generations.

The oneRidge function.

Figures 4, 5, 6 and 7 show typical runs1 for the oneRidge
function for collaboration methods single-best, single-best
plus one random, one random and five random. Two, three
and four random are omitted for brevity and their features
are basically an interpolation between one and five.

The plots are displaying one point per generation, marked
with a black dot, and the points are connected chronologi-
cally by grey lines. Each point represents the best individual

1We generated plots for all 100 runs and visually investigated
them. Figure 4 displays two runs, all other plots display a single
run.



of that generation (and corresponding population) coupled
with the collaborator from the other population to which it
owes its fitness. The beginning of the run is marked with
a circle and the end with a bullet2. As the total number of
evaluations per run was kept constant, more collaborators
per individual meant fewer generations, and this is reflected
in the varying number of black dots in the plots.

The plots also display the so-called best response curves,
a notion that was introduced in (Popovici & De Jong 2004).
These are properties of the problem, independent of the al-
gorithm. The bestResponseX curve is obtained by plot-
ting for each y the x that produces the best function value in
combination with that particular y. bestResponseY is sim-
ilarly obtained as a function of x. For oneRidges, the two
best response curves are one and the same, namely the main
diagonal. This is displayed in the figures by two thick su-
perimposed lines of different color and pattern. Along them,
the function value monotonically increases from 8 in (0, 0)
to 16 in (8, 8). In this paper we deal only with functions for
which the best responses are unique (i.e. for each x there
is a single y that optimizes the function value, and similarly
for y).

As one can see from all four plots, the dynamics of best
individuals are strongly influenced by these curves. For the
single-best collaboration method (figure 4), the trajectory
evidently can move only horizontally and vertically. All
points on the diagonal are equilibria points and once such a
point is reached, the algorithm is stuck there. This happens
fairly quickly after start-up and on a diagonal point close to
the starting location. Unless the algorithm starts close to the
global optimum, it will not get close to it. The best of a run is
thus highly dependent on its start-up. This explains the high
variance in performance over multiple runs and the gener-
ally poor results of the single-best collaboration strategy, as
shown by the corresponding boxplot in figure 2.

Once a random collaborator is used, the trajectory of best
individuals is no longer forced to move only horizontally
and vertically, but it can take any direction. Additionally,
elitism no longer guarantees ever increasing fitness. This
means that the end of the run is not necessarily the best of
the run as well. To figure out how close a run got to the
global optimum, we need to track the inflection points of the
trajectory, marked by small black dots.

Adding a random collaborator to the single best one has
the effect that the trajectory can (and does) take big jumps
towards areas of high fitness (upper right corner), regardless
of where it started. The usage of the single best still keeps
the trajectory fairly close to the diagonal corresponding to
the best response curves (see figure 5). This results in big
performance improvements compared to using only the sin-
gle best as a collaborator.

While the best-of-run statistics showed that using a single
random collaborator for each individual gives roughly the
same performance as using both a random and the best, it
gave us no clue as to why that is, and one might assume that
the two variants of the algorithm behave the same internally.

2In figure 4 the trajectory for the second run starts with an
empty triangle and ends with a filled triangle

0 2 4 6 8

0
2

4
6

8

X

Y

bestResponseY(x)
bestResponseX(y)

Run 1: start−>stop>
Run 2: start−>stop>

Figure 4: oneRidge - Best-of-generation trajectories for the
single-best collaboration method. Two runs.

By comparing figures 5 and 6 we can see that this is not
the case. The algorithm using a single random collaborator
per individual is a lot more explorative and it can visit areas
of quite low fitness, far away from the diagonal or towards
its lower-left end. However, in this wandering around, it
inevitably hits points very close to the global optimum, thus
giving good best-of-run statistics.

Using five random collaborators generates dynamics sim-
ilar to those obtained when using a single random and the
single best (compare figures 5 and 7). This is no surprise, as
with a population size of 10, picking 5 random individuals
with replacement has 50% chances of hitting the best.

Increasing the number of random collaborators from one
to five has the effect of making the algorithm less explorative
and more exploitative. The trajectory moves closer to the
upper-right corner (good, higher function values) and closer
to the diagonal (bad, danger of getting stuck). Combined,
these two directions average out and best-of-run statistics
are not statistically distinguishable.

The twoRidges function.

Performing the same type of analysis for the twoRidges
function illuminates us why in this case the single-best col-
laboration method has the best performance rather than the
worst, with respect to best-of-run statistics. For this func-
tion, the bestResponseX and bestResponseY curves dif-
fer and they are shown in figures 8 through 11 with thick
lines, dashed grey and continuous black, respectively. The
two best response curves intersect in the point that is the
global optimum of the function.

We expect that in the case of the single-best collaboration
method the trajectory will alternate vertical steps towards
the bestResponseY curves with horizontal steps towards
the bestResponseX curve. Indeed, this is what we see in
figure 8 and it causes the trajectory to climb like on a ladder
towards the global optimum.

Introducing randomness in the collaboration mechanism



0 2 4 6 8

0
2

4
6

8

X

Y

bestResponseY(x)
bestResponseX(y)

start−>stop>

Figure 5: oneRidge - Best-of-generation trajectories for the
single-best plus one random collaboration method. One run.

0 2 4 6 8

0
2

4
6

8

X

Y

bestResponseY(x)
bestResponseX(y)

start−>stop>

Figure 6: oneRidge - Best-of-generation trajectories for the
one random collaboration method. One run.

0 2 4 6 8

0
2

4
6

8

X

Y

bestResponseY(x)
bestResponseX(y)

start−>stop>

Figure 7: oneRidge - Best-of-generation trajectories for the
five random collaboration method. One run.

0 2 4 6 8

0
2

4
6

8

X

Y

bestResponseY(x)
bestResponseX(y)

start−>stop>

Figure 8: twoRidges - Best-of-generation trajectories for
the single-best collaboration method. One run.

causes the algorithm to move away from this focus towards
the global optimum. In the case of the single-best plus
single-random method (figure 9), the algorithm can take big-
ger steps toward high function values at the beginning, but
fails to take the small steps required at the end to get really
close to the optimum.

Using a single random collaborator (figure 10) generates
again a lot of exploration at the cost of almost no exploita-
tion. For this function however, due to the nature of its best
response curves, exploitation alone is a guaranteed way of
reaching the optimum, while exploration alone will get there
only by luck. Increasing the number of random collabora-
tors (figure 11) reduces exploration, but fails to increase ex-
ploitation to the level of using the single-best.

The analysis of the dynamics thus explained why we ob-
served the results in figures 2 and 3 and it provided ad-
ditional understanding of how the collaboration methods



0 2 4 6 8

0
2

4
6

8

X

Y

bestResponseY(x)
bestResponseX(y)

start−>stop>

Figure 9: twoRidges - Best-of-generation trajectories for
the single-best plus one random collaboration method. One
run.

0 2 4 6 8

0
2

4
6

8

X

Y

bestResponseY(x)
bestResponseX(y)

start−>stop>

Figure 10: twoRidges - Best-of-generation trajectories for
the one random collaboration method. One run.

0 2 4 6 8

0
2

4
6

8

X

Y

bestResponseY(x)
bestResponseX(y)

start−>stop>

Figure 11: twoRidges - Best-of-generation trajectories for
the five random collaboration method. One run.

under investigation work. Specifically, the best response
curves, which are a property of the problem, have a strong
impact on the dynamics of the algorithm. Different collabo-
ration methods interact with this property in different ways,
affecting optimization performance.

In particular, the overlapping of the best response curves
in more than one point is bound to cause problems for
the single-best scheme, as it makes the algorithm get stuck
quickly in one of these points. Which of the points will at-
tract the trajectory largely depends on the initial configura-
tion, rather than the function value at those points. Thus, for
functions that have different values across these overlapping
areas, the single-best collaboration scheme will exhibit poor
performance at finding the optimum.

Predictive Power

The key insight from the previous section is that one needs
to take a close look at the run-time dynamics of a co-
evolutionary system to understand the effects that certain pa-
rameters of the system (in this case the collaboration mecha-
nism)3 have on its problem solving performance. Addition-
ally, we have identified some problem features (namely the
best response curves) that have a direct influence on the be-
havior of the algorithms.

In this section we show how the knowledge gained from
this analysis of dynamics can be used to predict effects of
collaboration methods on new problem domains.

We use for that two functions from the literature that were
previously analyzed with respect to collaboration methods in
(Wiegand, Liles, & De Jong 2001), namely rosenbrock and
offAxisQuadratic. We reproduce them below for com-
pleteness:

rosenbrock(x, y) = 100(x2 − y)2 + (1 − x)2,
x, y ∈ [−2.048, 2.048];

3In (Popovici & De Jong 2005) the same was shown for the
population size.



offAxisQuadratic(x, y) = x2 + (x + y)2,
x, y ∈ [−65.536, 65.536].

The task for the cooperative co-evolutionary algorithm
will be to minimize these functions.

We start by determining the best response curves for
these functions. For rosenbrock they look like in figure
12 and they almost overlap along the curve y = x2, x ∈
(0,

√
2.048). In fact, they only intersect in (1, 1), where

the function reaches its minimum/optimum, but for x ∈
[1,

√
2.048] the distance between bestResponseY (x) and

bestResponseX−1(x) is less than 10−3. Along the curve

y = x2, x ∈ (0,
√

2.048) the function value decreases from
1 in (0, 0) to 0 in (1, 1) and then increases to 0.185833 in

(
√

2.048, 2.048).
Our CCEA using the single-best collaboration method

will soon after start-up get stuck somewhere on this area
of overlapping, the position depending on the start-up po-
sition. It will get close to the optimum only by chance (if
it starts close to it), therefore we predict poor performance
for this case. Introducing a random collaborator is likely to
increase exploration and visit several points along the over-
lapping curve, thus increasing the chances of getting closer
to the optimum. We therefore expect these methods to give
better results than the single-best, in a manner similar to the
oneRidge function.

Indeed, by running our CCEA with the same 7 collabora-
tion methods as before, we get the results plotted in figure
14, which confirm our expectations. Note that since these
were minimization problems, smaller values are better.

For the offAxisQuadratic function, the best response
curves look like in figure 13. They intersect in a single point,
(0, 0), and this is where the function reaches its minimum.
The trajectory of best individuals for our CCEA using the
single-best collaboration method will alternately move hor-
izontally towards the bestResponseX curve and vertically
towards the bestResponseY curve. This will direct the al-
gorithm smoothly towards the point of intersection of the
best response curves, thus towards the global optimum. In-
troducing random collaborators can only disrupt this focus.
Exploitation alone will solve the problem, exploration is not
needed and in fact can be harmful. We predict the results
will be similar to the ones obtained for the twoRidges func-
tion, and figure 15 confirms this.

Discussion and Conclusions

To efficiently use co-evolution (whether cooperative or com-
petitive) as a problem solving tool, one must understand the
effect that the combination of problem properties and algo-
rithm properties has on the system’s performance. The pre-
vious body of co-evolution literature has shown that such
systems can display quite complex phenomena. Therefore,
we believe there are benefits to taking a divide-and-conquer
approach to analyzing the dependency problem properties
+ algorithm properties → system performance. Namely,
we split it into two more basic ones that should be easier to
analyze: problem properties + algorithm properties →
run-time system properties and run-time system prop-
erties → system performance.

−2 −1 0 1 2

−
2

−
1

0
1

2

X

Y

bestResponseX(y)
bestResponseY(x)

Figure 12: Best response curves for the rosenbrock func-
tion.

−60 −40 −20 0 20 40 60

−
60

−
40

−
20

0
20

40
60

X

Y

bestResponseX(y)
bestResponseY(x)

Figure 13: Best response curves for the
offAxisQuadratic function.



1
Best

1 Best + 1
Random

1 Ran−
dom

2 Ran−
dom

3 Ran−
dom

4 Ran−
dom

5 Ran−
dom

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Collaboration scheme

B
es

t o
f r

un
 fi

tn
es

s

Figure 14: Best of run statistics for the different collabo-
ration methods on the rosenbrock function. Minimization
problem – smaller is better.

1
Best

1 Best + 1
Random

1 Ran−
dom

2 Ran−
dom

3 Ran−
dom

4 Ran−
dom

5 Ran−
dom

0
2

4
6

8

Collaboration scheme

B
es

t o
f r

un
 fi

tn
es

s

Figure 15: Best of run statistics for the various colla-
boration methods on the offAxisQuadratic function.
Minimization problem – smaller is better.

In this paper we show how the use of this approach pro-
vides new insights into the way the collaboration scheme
used by the algorithm affects optimization performance.
Namely, the collaboration scheme (an algorithm property) in
combination with the nature of the best-response curves (a
problem property) determine the type of best-of-generation
trajectories (a run-time property), which in turn determine
optimization power (system performance).

This paper is not the end of the story either, but rather
a beginning. We intend to further use the methodology for
understanding effects of various algorithm parameters and
for discovering important problem properties. For example,
here we studied the effects of collaboration methods in iso-
lation from other algorithm parameters, and when varying
several of them at the same time the dynamics may change.
In (Popovici & De Jong 2005), the effects of varying the
population size were studied in isolation. An immediate next
step could be to investigate the collective impact of the col-
laboration method and the population size on performance.
Such knowledge can then be used to build heuristics on how
to tune the algorithms to the problems.

The functions used in these experiments were all contin-
uous and quite smooth. We believe that the influence of the
best-responses transfers to more rugged domains, although
larger population sizes may be required to observe the same
kind of results.

This paper exposed one type of predictive analysis: infer
the effects of a certain algorithm when the problem proper-
ties can be identified. However, for more complex problems,
it may be difficult to identify their properties. We believe
the techniques introduced in this paper may still be of use in
such cases. The best-of-generation trajectories may be ob-
served at run-time and the heuristics constructed from pre-
vious knowledge be applied to infer what are the properties
of the problem and then accordingly tune the algorithm.

References
Ficici, S. G.; Melnik, O.; and Pollack, J. B. 2000. A game
theoretic investigation of selection methods used in evolu-
tionary algorithms. In Genetic and Evolutionary Confer-
ence.

Popovici, E., and De Jong, K. 2004. Understanding com-
petitive co-evolutionary dynamics via fitness landscapes.
In Luke, S., ed., AAAI Fall Symposium on Artificial Multi-
agent Learning. AAAI Press.

Popovici, E., and De Jong, K. 2005. Understanding coop-
erative co-evolutionary dynamics via simple fitness land-
scapes. In Genetic and Evolutionary Computation Confer-
ence. to appear.

Potter, M., and De Jong, K. 2000. Cooperative coevo-
lution: An architecture for evolving coadapted subcompo-
nents. Evolutionary Computation 8(1):1–29.

Potter, M. 1997. The Design and Analysis of a Computa-
tional Model of Cooperative Coevolution. Ph.D. Disserta-
tion, George Mason University, Computer Science Depart-
ment.

Wiegand, R. P.; Liles, W.; and De Jong, K. 2001. An
empirical analysis of collaboration methods in cooperative



coevolutionary algorithms. In Spector, L., ed., Proceedings
of GECCO 2001, 1235–1242. Morgan Kaufmann. Errata
available at http://www.tesseract.org/paul/papers/gecco01-
cca-errata.pdf.

Wiegand, R. P.; Liles, W. C.; and De Jong, K. A. 2002. The
effects of representational bias on collaboration methods
in cooperative coevolution. In Proceedings of the Seventh
Conference on Parallel Problem Solving from Nature, 257–
268. Springer.

Wiegand, R. P. 2004. An Analysis of Cooperative Coevo-
lutionary Algorithms. Ph.D. Dissertation, George Mason
University, Fairfax, VA.


