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Coevolutionary computation (CoEC) is the subfield of evolutionary computation (EC)

centered around the notion of interaction among simultaneously evolving entities. While it

promises important problem-solving advantages, coevolution also brings many challenges.

A practitioner trying to use a coevolutionary algorithm (CoEA) to solve a problem is

generally interested in how the choices made in designing the algorithm affect its perfor-

mance on that particular problem. In other words, they would like to have information

about the dependency: problem properties + algorithm properties→ performance.

For traditional evolutionary algorithms (EAs), our understanding of this dependency has

reached reasonably satisfactory levels. For CoEAs it has not, as they have proven noto-

riously more complex and less intuitive. The main contribution of my dissertation is ad-

vancing the understanding of this dependency for traditional two-population coevolutionary

algorithms.

The way I achieve this is through extensive analysis that connects algorithm, problem

and performance through one key aspect: dynamics. While the importance of understand-

ing the dynamics of coevolutionary systems has been pointed out by previous research, this

dissertation is the first study that “glues” all four pieces together.

Additionally, an important feature of the analysis is that it spans subareas of CoEC that

were previously studied independently (compositional cooperative and test-based competi-

tive). It bridges them by identifying a problem property and introducing tools for analyzing



this property that are applicable across subareas, thus providing a more holistic perspective

of the field of CoEC.

The analysis is performed both for previously unstudied aspects of CoEAs and for ones

that have been investigated using other techniques. The power of the new analysis approach

is particularly visible in the latter case, where it is shown to explain prior “mysterious”

results.



Chapter 1

Introduction

This chapter starts with a short description of what evolutionary and coevolutionary com-

putation are and what they are used for. It then presents the motivations for the work

conducted and the contributions resulted from this work. The chapter concludes with a

roadmap for the contents of the dissertation.

1.1 Evolutionary Computation

Evolutionary Computation (EC) (De Jong, 2006) is the field of computer science that studies

computational methods inspired by the Darwinian concept of evolution through natural

selection. These computational methods, generally referred to as evolutionary algorithms

(EAs), have been successfully used for a variety of purposes such as search, optimization,

learning, adaptation, artificial life and even artificial creativity.

The algorithms maintain a set (population) of potential problem solutions (individuals)

and refine it by repeatedly applying mechanisms of variation and selection with the goal

of finding optimal (or high quality) solutions. The key features of the variation mechanism

are inheritance (“child” individuals are similar to the “parent” individuals that generated

them) and stochasticity. The selection mechanism is biased by the quality (fitness) of the

solutions with respect to the problem solving goal; it can be stochastic or deterministic.

The pseudocode for a generic EA is shown below:

Initialize population

Evaluate population (i.e. assign fitness to all individuals)

while not Termination criteria

Select parents from population based on fitness

1
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Produce children from parents (variation with inheritance)

Evaluate children

Select survivors for next population

The stochastic nature of evolutionary algorithms creates difficulties for their study. How-

ever, many years of research have shed some light on the behavior of EAs, pointing out their

general operation patterns, their strengths and weaknesses as well as their sensitivity to var-

ious domain features and design decisions. Additionally, this research has exposed a number

of possible extensions to EC, which would broaden its area of applicability or improve its

performance. One such extension, namely coevolutionary computation, is the topic of this

dissertation.

1.2 Coevolutionary Computation

As the next chapter will show, the subject of coevolutionary computation is a complicated

one, starting with its definition. For now we shall adopt the simple view that a coevolu-

tionary algorithm (CoEA1) is an EA in which the fitness of an individual is dependent on

its interactions with other evolving individuals. Coevolutionary computation (CoEC) is the

subfield of computer science that is concerned with the study of CoEAs and their applica-

tion to problem solving. Although, as will be conveyed in this chapter and the next, the

field draws a lot from biology, the focus of this dissertation will be on the computational,

problem-solving aspects. To convey this more clearly, rather than using the general term

coevolution, I will use the following more specific terms:

• CoEAs – referring only to the algorithms;

• CoEC setup – referring to a CoEA being applied to a problem;

• CoEC – referring to the field, encompassing the algorithms, the way they are applied

to problem solving and the analysis of CoEC setups.

1In the literature, coevolutionary algorithms have actually been abbreviated to CEAs. I prefer CoEA
over CEA for two reasons: 1) it is consistent with CoEC; and 2) the letter “C” has been used to abbreviate
the word compact in CGA (compact genetic algorithm).
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The following chapter presents a framework for CoEC that will explain in great detail

what CoEAs are and what type of problems they are applied to.

1.2.1 Advantages of CoEAs

Coevolutionary algorithms emerged at the intersection of efforts from two directions: first,

the simulation of those processes taking place in nature, where reciprocal evolutionary

change occurs between interacting species or populations2; second, the need for a compu-

tational method to tackle domains in which performance of a potential solution can only

be expressed based on interactions with other potential solutions. Later on, a third direc-

tion was established by arguing that decomposing a complex problem into smaller pieces

and applying an EC method based on interactions between those pieces could improve the

problem solving performance.

The second direction was expanded and CoEAs were applied more generally to domains

in which the problem solving goal could not be translated into a fitness function for a

traditional EA to use. This could be for one of several reasons: 1) the goal was not even

theoretically testable (e.g. find a chess playing program beating all other possible programs);

2) testing the goal was computationally intractable (e.g. find a sorting network that sorts all

binary input sequences, when the number of inputs is high); 3) the goal was computationally

testable, but it was expensive to do so for each evaluation during the algorithm (e.g. in

the sorting networks domain when the number of inputs is small (Hillis, 1990)); and 4) the

goal may not translate into an evolution-friendly fitness function (e.g. evaluating a game

player against a set of expert opponents may provide no gradient for the search). The

hope of CoEC was to have an algorithm achieve the problem solving goal without explicitly

encoding it internally into fitness.

Here are a few more detailed examples of the situations described above. Consider the

task of evolving game playing computer programs. It is extremely hard or even impossible

to come up with a fitness function that can assess how good a player is without having it

play games with other players. Similarly, in a sorting network domain, it is hard to figure

out if a sorting network is correct without running it on all (relevant) input sequences. In

2This is the meaning of the term coevolution in biology (Ridley, 1993) and, as we shall see, it is different
from the regular usage of the term in EC.
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the first case, playing games with all possible players means enumerating the whole search

space, which is clearly not an option. In the second case, testing a network on all input

sequences is possible, but it is very computationally expensive to do so for each and every

network during the evolutionary process. One alternative is to use a fixed set of interacting

individuals (players, input sequences, etc.) for fitness assessment. However, it is not clear

how such a set should be chosen. And even if one knew and could construct such a set,

evolving against it is prone to the well-known effect of over-fitting. Another alternative is to

randomly generate interacting individuals for each fitness evaluation or for each generation.

In order to avoid high computation costs, the number of random individuals has to be

small (compared to the size of the set of all possible interacting individuals), in which case

they are no longer a representative sample. Additionally, the noise introduced may be

harmful to the search process. CoEAs were sought in hope of avoiding such problems, by

providing a dynamic gradient for search to follow. For example, in the sorting networks

problem described above, a CoEA would use two populations, one evolving networks and

one evolving input sequences. The networks would receive good fitness if they sort many

of the input sequences, while the input sequences would receive good fitness if they are

not sortable by many networks. For the game playing problem, one could use either this

two population approach or, alternatively, use a single population and have programs be

evaluated by playing games against other programs in that same population.3

Additional motivation for using and studying CoEAs comes from their potential role

in generating complexity and diversity. There are two different trends of opinions on this

subject, but in both cases the conclusion is that CoEC needs further investigation. Those

that believe in its ability to generate complexity and diversity (Sims, 1994; Hillis, 1990;

Hamilton, 1982) see it as a solution for chronic problems with regular EAs such as prema-

ture convergence (loss of diversity) and difficulties in evolving complex structures. Those

that argue that in biology there is a relative lack of empirical evidence to support such

claims (Floreano and Nolfi, 1997), see computer-based coevolution as the perfect test-bed

for simulating and analyzing what would be hard to study in nature in a timely and con-

trolled manner. The understanding coming out of this simulation-oriented type of research

3The debate on whether such a single-population algorithm should be called a CoEA will be discussed in
the following chapter.
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also bears hope for learning how to construct artificial self-adaptive systems.

1.2.2 Challenges

Thus, coevolutionary algorithms have been implemented and applied with several different

goals in mind and their performance varied widely across all these goals. The efforts to

improve performance discovered that, while CoEAs were a natural extension to traditional

EAs, the intuitions and heuristics we have about the latter did not directly transfer to the

former. Research was invested to understand why this was the case. Unfortunately, even

the analysis techniques through which knowledge about EAs was acquired failed on many

occasions to provide any insights into how CoEAs work. New, CoEC-specific techniques

needed to be developed. Section 2.5 provides a review of CoEC analysis.

The most informative analysis techniques proved to be the ones that focused on what

happened at run-time in CoEC setups, in other words, the dynamics. This type of analysis

identified an unfortunately large number of ways in which CoEAs can fail (reviewed in

section 2.4.3). These were fairly complex behaviors, sometimes even difficult to characterize,

often difficult to detect, and always difficult, if not impossible, to predict.

The important consequence of this situation is that for CoEAs (unlike for traditional

EAs) there are currently no design guidelines. A CoEC practitioner has little, if any,

information on how to setup their system in order to obtain the desired results or how to

change a system in order to improve performance.

1.3 Goal, Hypothesis, Contributions

As conveyed in the previous section, CoEAs’ promise is a better approach to several differ-

ent kinds of problems. Thus, it would be really useful if we could harness these algorithms.

However, this has proven a difficult thing to do. Previous research has uncovered some of

the mysteries behind coevolutionary failure. But, as I will argue at the end of the follow-

ing chapter (section 2.6), it has only answered the question “How can CoEAs fail?” and

not “Why (in what circumstances) do CoEAs fail?”. Without answering this latter ques-

tion, one cannot move on to determine how to design successful coevolutionary algorithms.

Treating the symptom (how they fail) rather than the cause (why they fail) is an unreliable
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Figure 1.1: Connected approach for CoEC analysis.

strategy (they will fail in a different way on the next problem).

The goal of this dissertation is to provide insights into the dependency problem

properties + algorithm properties→ performance in a way that would answer the

aforementioned “why” question with respect to both failure and success.

My hypothesis on how to achieve this goal is two-fold:

- in light of previous research, dynamics should hold the key to understanding CoEC

setups; but, unlike previous research:

- a holistic analysis approach is required, connecting the interplay of problem properties

and algorithm properties to dynamics and dynamics to performance, as shown in Figure

1.1.

Throughout the dissertation, a large amount of evidence is brought in support of the

hypothesis, by performing such “connected” analysis and generating answers of the following

type: because the problem had property set P and the algorithm had property set A,

at run-time, dynamics set D occurred, and this is reflected in the observed performance.

Algorithm properties considered include both general EA properties (e.g. population size

and elitism) and CoEA-specific properties (e.g. controlling how individuals and populations

interact). Some known problem properties are revisited (e.g. linearity, modality) and a new,

CoEC-specific property is introduced. Performance is evaluated mainly in terms of quality

of the best solution found by the algorithm, given a certain amount of time. Dynamics

(time-dependent system properties) include solution-quality-related properties and search-

space-exploration properties and are investigated by introducing new analysis tools.

With these means, this dissertation makes the following key contributions to the field
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of coevolutionary computation:

• The first integrative, connected analysis of traditional two-population coevolu-

tionary computation, relating the interplay of problem and algorithm properties to

performance through run-time behavior (dynamics), as depicted in Fgure 1.1. This

yields deeper insights into the behaviors of two-population CoEAs and suggests

some heuristics for tuning these algorithms to the problems (e.g. when to use larger

population sizes and when smaller ones, or when to have populations communicate

more often and when less).

• A new, CoEC-specific problem property, which I have named best responses. This

property exerts a major influence on the dynamics and performance of traditional two-

population CoEAs. It is orthogonal to previously known properties and this allows

it to bridge subareas of CoEC that were so far studied independently (compositional

cooperative and test-based competitive, defined in chapter 2).

• New qualitative and quantitative tools for analyzing the dynamics of traditional

two-population CoEAs. These tools, based on tracking best individuals, are targeted

at studying the effect of a problem’s best-response curves on the algorithm’s behavior

and performance.

• A collection of CoEA test suites built around the aforementioned problem property.

In addition, the background chapter provides a framework for the maturing field of

CoEC. Parts of this framework emerged in recent years, as the CoEC research community

joined in a collective effort to eliminate the confusions and controversies that have been

historically plaguing the field. As a member of that community, I have been a contributor.

Some fragments of this framework can be found scattered in different publications, while

others consist only of verbal consensus at conferences and workshops. The background

chapter is my attempt to unify this knowledge in a single document.

1.4 Organization

The remainder of this dissertation is organized as follows.
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Chapter 2 presents the recently emerged framework for “mature” CoEC. It is, to the best

of my knowledge, the first attempt to summarize this framework in writing. In addition, it

provides the reader with background material necessary to understand the remainder of the

dissertation. In particular, it describes two classes of problems that will be the subject of

the analysis in subsequent chapters: compositional cooperative and test-based competitive.

This chapter also includes a review of analytical research in CoEC, pointing out open issues,

some of which will be addressed by the analysis in this dissertation.

Chapter 3 provides a first example of how dynamics analysis provides insights into the

dependency problem properties + algorithm properties→ performance. It does so

in the context of using a CoEA for optimization by means of problem decomposition. The

particular algorithm properties under investigation are ones common to simple EAs as well,

namely population size and elitism. New tools for analyzing the dynamics of CoEAs are

introduced and their use exposes a problem property, named best-response curves (or simply

best responses), that has a high influence on performance. To better study this property, a

tunable family of problems is constructed and used as a test suite for further analysis both

in this chapter and the next. Subsets of the material in this chapter have been published

in (Popovici and De Jong, 2005c, 2006a).

Chapters 4 through 6 perform the newly introduced type of analysis for incrementally

more complex compositional cooperative problems.

Chapter 4 employs the previously introduced test suite and analysis tools to investi-

gate the performance effects of three CoEA-specific properties (parameters): collaboration

method, communication frequency and communication flow. The best-response curves are

shown to be influential in all three cases. Additionally, the knowledge gained from the anal-

ysis of the test suite is used to make and confirm performance predictions for other problems

commonly used as test beds in the literature. In all cases, the problems consist of functions

given in closed-form and with known optima. The best responses for these functions can

thus be analytically computed and are uniquely defined and continuous. Previous versions

of the studies in sections 4.1, 4.2 and 4.3 of this chapter have been published in (Popovici

and De Jong, 2005a, 2006b,c), respectively.

Chapter 5 raises the complexity of the problems one level up in terms of possible relation-
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ships between the best responses. The first section focuses on discontinuous best responses,

the second section on locally-best responses. Two new test suites are introduced that fea-

ture these properties. The third section uses a test-suite from the literature to illustrate

possible effects of asymmetric best responses. The functions are still given in closed-form,

the best responses are computable and the optima are known. The same type of analysis as

before is performed for the effect of collaboration methods on the first test suite, the effect

of population size on the second test suite and the effect of the starting population on the

third test suite.

Chapter 6 raises the complexity level once more, by featuring a problem that is not

available in closed form, the best responses are not analytically computable and the op-

tima are not known. Instead, the values of the function to be optimized are the result

of a simulation. Some landscape-probing techniques are applied and they reveal that this

problem actually combines the features of the test suites from the previous chapter. The

performance effects of collaboration methods and population size are once again analyzed,

and the results align to a reasonable degree with those obtained on the test suites.

Chapter 7 switches to test-based competitive problems, and shows that best responses

are still an influential problem property and the analysis tools introduced are still applicable,

thus providing a link between two areas previously studied in isolation. The work in this

chapter has been published in (Popovici and De Jong, 2005b).

The dissertation concludes in chapter 8 with a review of contributions and a discussion

of limitations and potential extensions of the presented work.



Chapter 2

Background

The field of coevolutionary computation is a fairly young one. While the first papers on

the subject date back in the early 1990s, dedicated venues for publication, in the form of

workshops and tracks appeared only after 2000. As CoEC researchers began interacting at

these venues, a lot of ideological and terminological controversies were raised, painting a

fairly confusing picture for the field. Starting in 2004, with a terminology discussion held at

the Genetic and Evolutionary Computation Conference (GECCO), a collective effort was

set in motion to attempt to improve the situation. Out of this effort, to which I myself

contributed, a framework for CoEC has emerged, and a first tutorial on CoEC, authored by

myself and Paul R. Wiegand, was presented at the Congress on Evolutionary Computation

in 2005. Two more tutorials followed in 2006 at GECCO.

This chapter is the first attempt to summarize this framework in a single document.

Additionally, a review of CoEC analysis is included, presented from the perspective of the

framework and pointing out open issues that this dissertation addresses. The chapter also

serves the purpose of providing the reader with background material needed to understand

the remainder of the thesis. Namely, it describes what makes a problem a coevolutionary

problem and how coevolutionary algorithms approach such problems. While several classes

of coevolutionary problems are described, only two such classes are addressed by the analysis

in the dissertation, namely compositional cooperative with ideal team as a solution concept

(used in chapters 3 through 6) and test-based competitive with optimum expected utility

as a solution concept (used in chapter 7).1

1The reader interested only in the minimum amount of information may skip subsections Role Symmetry
and Infinite (Variable) Number of Roles from 2.2.1, read only the two solution concepts mentioned above
from 2.2.4 and skip sections 2.4 and 2.5 all together.

10
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2.1 Framework Overview

CoEC is a currently maturing field whose boundaries are still being defined. What does or

does not deserve the name of coevolution within EC has been (and occasionally still is) a

debatable issue among researchers. At the beginnings of the field, there was work that was

not labeled as coevolution when first published, but assigned the name later on (Axelrod,

1989; Angeline and Pollack, 1993; Holland, 1985). Additionally, there has been work called

coevolution by its authors at publication time, which does not fit any of the current views

on CoEC (Juillé, 1995; Angeline and Pollack, 1994).

This confusing situation is becoming more and more a thing of the past. However,

it is useful to review its causes, as it was understanding them that led to solutions for

constructing the framework described in this chapter.

The first reason was ambiguous cross-field terminology. CoEC and EC itself have drawn

inspiration from biology, but during the import process, the ideas and the terms have been

altered to suit computational goals. There is a tradeoff to be made between facilitating

communication with other sciences (mainly biology) and facilitating research in computer

science. Some biological aspects may not be useful for computational purposes and some

computational approaches may not be biologically realistic or plausible, yet still be useful.

In recent years, the balance seems to have leaned in favor of using those terms that most

closely fit the concepts needed to reason about algorithms. Still, it is a good practice, for

terms highly overloaded with meanings, to state which semantics are used in a particular

context.

While this is especially important when presenting / publishing work for multidisci-

plinary audiences, with CoEC there are many terms which are have multiple meanings

within the field. Thus, the second and, in my opinion, more important reason for past con-

fusion was ambiguous terminology within CoEC. As mentioned in the introduction, CoEC

has multiple roots, which for a while developed in parallel, without much exchange of infor-

mation between them. As a result, separate (and sometimes conflicting) terminologies were

introduced. By the time it became apparent that the different subareas had many things in

common and could benefit from exchanging information, terms like cooperation, competi-

tion or Red Queen each had at least three different uses. Moreover, the meanings associated
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with the different uses were often defined loosely rather than formally. Additionally, CoEAs

turned out to exhibit many phenomena that were not encountered in traditional EAs, and

thus they needed to be named. Unfortunately, these phenomena were quite complex, thus

difficult to understand and even to describe, causing all the more terminology problems.

The effort to reconcile terminology within CoEC resulted in a major, yet somewhat

basic realization that any meaning of any term would fall in one of three separate categories:

problem-related, algorithm-related or system-run-time-related.

Indeed, at the highest level of generality, the important and distinct aspects of any

computational setup are as follows:

• static aspects – those that are predefined and / or explicitly designed into the system;

– problem properties;

– algorithm properties:

• dynamic aspects – those that vary with time while the system is running and may

be emerging (there was nothing specifically implemented to generate them) – I shall

refer to these as:

– time-dependent system properties (or, in short, dynamics).

The newly emerged CoEC framework is thus structured around these three aspects:

problem, algorithm and dynamics. Each of them is discussed in detail in a separate section.

Terms are defined in their appropriate category (or categories). In certain cases, it was dis-

covered that a term is really difficult to define in a category in which it had been previously

loosely used. The recommendation made in such cases is that the term no longer be used

in that category.

The presentation in the coming section 2.2 is largely mathematically formalized. This

was deliberate: while I realize it may slow down the reader, I felt it was necessary, given the

above mentioned terminological issues and the potential for ambiguity of natural language.
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2.2 Coevolutionary Problems

Perhaps the most important aspect of a problem specification is some sort of description

or characterization of what constitutes a solution to that problem. Although it may sound

strange, often times in the past coevolutionary algorithms have been used without such a

description of what the solutions sought were. Acknowledging this issue and addressing it

was an important part of the effort leading to the CoEC framework, therefore the notion

of solution is central to this section.

One aspect specific of CoEA-approachable problems is that, either by nature or by

approach, they involve multiple elements that interact in some way. Examples of such

elements were used in the previous chapter: players of a game; sorting networks and input

sequences; components of a design. A problem specification will include descriptions of

these elements, the way they interact and how they relate to solutions. This section presents

categorizations of problems based on the various aspects of problem specifications.

As a basis for the vocabulary of this presentation, I use a subset of the formalisms

proposed by Ficici in chapter 2 of his PhD dissertation (2004), yet I diverge from it.

2.2.1 Domains

An interactive domain D is a tuple (n,B1,B2, ...,Bn,O, f) with n ≥ 2.

• i = 1, 2, ..., n are called roles;

• Bi is the behavior set associated with role i;

• b ∈ Bi is called a behavior;

• a tuple e = (b1, b2, ..., bn) ∈ E = B1×B2× ...×Bn is called an event; behaviors obtain

meaning only in the context of some event;

• O is a set of outcomes for events;

• f : E → O is a function defining the outcomes of events; sometimes O will be equal to

E and f will be the identity function, yet in general they may be different and there

may be some “effort” associated with transforming elements of E into elements of O
through f .
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A non-interactive domain is simply a behavior set B (i.e. n = 1 and there is no O and no

f , as these make no sense for n = 1). Some non-interactive domains may be reformulated

as interactive domains (e.g. through decomposition of the set B into B1 × B2 × ... × Bn).

Some domains are intrinsically interactive (e.g. games). Using coevolutionary algorithms

only makes sense for domains formulated as interactive.

A domain D becomes measurable when it has some metrics associated with it: Dm =

(n,B1,B2, ...,Bn,O, f,M1,M2, ...,Mn)

• Mi is the metric set associated with role i;

• mi ∈ Mi is called a metric of behavior; mi : E × O → R; for e = (b1, b2, ...bi, ..., bn)

and o = f(e), mi(e, o) denotes the success of behavior bi in the context of event e that

generated outcome o.

Given e and o, there is usually no effort associated with computing mi(e, o). Addition-

ally, computing some mi(e, o) and mj(e, o) should require only one call to the function f in

order to compute o = f(e). This understood, I will define metrics as functions of a single

parameter, mi : E → R, mi(e) = mi(e, f(e)).

The cardinality of Mi sets and the way the metrics are used in the definition of a

problem’s solution concept will determine whether whether we are dealing with a single- or

multi-objective problem.

Role Symmetry

Role symmetry is a domain property that must be taken into consideration when construct-

ing a CoEA to solve a problem in that domain. I define it here and will return to it later

on in section 2.3.1.

Consider a domain Dm = (n,B1,B2, ...,Bn,O, f,M1,M2, ...,Mn). Roles i and j, i 6= j

(for simplicity, assume i < j) are called symmetric if:

• Bi = Bj = B;

• ∃g :Mi →Mj a bijection such that:
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• ∀(b1, b2, ..., bn) ∈ B1 × B2 × ... × Bn,∀mi ∈ Mi : mi(b1, b2, ..., bi, ..., bj , ..., bn) =

g(mi)(b1, b2, ..., bj , ..., bi, ..., bn).

In other words, roles i and j share the same behavior set and for any two behaviors in this

set, their corresponding successes in an event, while possibly different from each other, do

not depend on which one is used in role i and which in role j. These successes will still

generally depend on the event’s behaviors for the other roles.

As defined, the role symmetry relationship is transitive, i.e. if roles i and j are symmetric

and roles j and k are symmetric then roles i and k are symmetric. It is also clearly reflexive

and symmetric, thus equivalency classes can be defined. Any two roles that do not belong

to the same equivalency class are asymmetric.

If two roles share the same behavior set, but the success of a (common) behavior depends

on which role uses it, I shall argue that equality of the roles’ behavior sets is really irrelevant

(i.e. the nature of the domain would not change if we simply renamed the behaviors in one

of the sets).

Two types of domains are most common in CoEC practice:

• all roles are asymmetric (more accurately, any two roles are asymmetric or, equiva-

lently, all equivalency classes have size 1); or

• all roles are symmetric (more accurately, any two roles are symmetric or, equivalently,

there is a single equivalency class which contains all the roles).

The remaining domains are less common and can be described as ones having n ≥ 3 roles

and at least one equivalency class of size k, 2 ≤ k < n.

When all roles are symmetric, events are multisets of size n rather than tuples:

E = µn(B) = {η : B → N|
∑

b∈B

η(b) = n},

and all metric sets can be collapsed into a single one whose elements are of type m :

B × µn(B)→ R, m(b, η) defined iff η(b) ≥ 1, in which case m(b, η) denotes the success of

behavior b when participating in the event defined by behavior-multiset η.

Games and multi-agent domains often feature symmetric roles. Games where there is

a notion of starting player are by default asymmetric, but they can be reformulated as
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symmetric by averaging over events that only vary the starting player. Examples of such

domains can be found in: (Rosin and Belew, 1995) – Tic-Tac-Toe, Nim, Go; (Angeline

and Pollack, 1993) – Tic-Tac-Toe; (Reynolds, 1994) – Tag. Other games are symmetric

by nature: numbers games (Watson and Pollack, 2001); robot competitions (Stanley and

Miikkulainen, 2002); virtual creatures competitions (Sims, 1994); Tron (Funes and Pollack,

2000); prisoner’s dilemma (Miller, 1996; Axelrod, 1989). All of the above involve only two

roles.

Examples of domains with two asymmetric roles include: sorting networks and input

sequences (Hillis, 1990); cellular automata and initial conditions (Juillé and Pollack, 1998;

Pagie and Hogeweg, 2000; Pagie and Mitchell, 2002; Williams and Mitchell, 2005); pursuit

and evasion behaviors (Cliff and Miller, 1994, 1995; Floreano and Nolfi, 1997; Wahde and

Nordahl, 1998); finite two-player games given by trees (Koza, 1991), attack and defense

scenarios (Skolicki et al., 2005). The classic example of domains with more than two asym-

metric roles is multi-parameter function optimization (Potter and De Jong, 1994; Potter,

1997; Wiegand, 2004).

Infinite (Variable) Number of Roles Role symmetry allows for an interesting type of

domains that can be formalized as Dm = (n = ∞,B1 = B2 = ... = B,O, f,M1 = M2 =

... =M), with:

• E = µ(B) = {η : B → N|∑b∈B η(b) ≥ 1}; and

• M = {m : B × µ(B)→ R|m(b, η) defined iff η(b) ≥ 1}

In other words, there is a single behavior set, and there is no constraint on the number of

behaviors that participate in an event (as long as there is at least one). Order of behaviors

is not important and repetitions of the same behavior are allowed (which is why events are

modeled as multisets).

Examples of domains that can be viewed in this form include ones involving neural

networks with variable number of neurons (Potter, 1997) or multi-agent teams of variable

size. Often however, they are the result of reformulation of non-interactive domains of type

(B = µ(B0),M = {m : B → R}). This is done by extending m to m′ : B0 × µ(B0) → R,
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∀b ∈ B0, η ∈ µ(B0) such that η(b) ≥ 1,m′(b, η) = c(m(η)), where c is a credit assignment

function. Using the identity function for c is a common choice, although it may not always

be appropriate. For more on credit assignment, see sections 2.2.3 and 3.3.3 of (Potter,

1997).

2.2.2 Problems

A problem P is a tuple (Dm,S, C) as follows:

• Dm is a domain with a set of metrics;

• S is the space of potential solutions to the problem; it is some sort of aggregate

over some behavior sets of Dm; the definition of S makes no use of the metric sets;

• C : S → {true, false} is the solution concept that partitions the space of potential

solutions into solutions and non-solutions; it may be extensional or intensional (Ficici,

2004); an extensional solution concept specifies which elements of S are solutions and

which are not without stating any properties or reason for the clustering; an intensional

solution concept describes what properties a potential solution must have in order to

be a solution; this description may depend on behavior sets which do not directly

contribute to the space of potential solutions; the definition of C generally uses some

of the available metrics.

I will say an algorithm solved a problem if it identified (at least) one solution.

One important thing to note is that the cost of search for any algorithm attempting to

solve such a problem will be measured in number of events assessed (i.e. number of calls to

the function f), and not number of points of S assessed. In general, determining whether

an element of S is a solution will require assessing multiple events.

2.2.3 Clustering Criteria

With such an intricate definition of what a problem is, one can obviously think of numerous

criteria for clustering problems. Two of them have recently been devised as important and

qualitatively different. They have been introduced as a replacement for the historical yet
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fuzzy division of the CoEC field into “cooperative coevolution” and “competitive coevolu-

tion”. The first is truly a criteria for clustering problems, while the second is actually a

criteria for clustering domains.

The first criteria is based on the relationship between S and B1,B2, ...,Bn. Based on this

criteria, two main categories of problems have been identified: test-based problems (de Jong

and Pollack, 2004) and compositional problems (Wiegand and Potter, 2006). They are not

complementary, however practical instances of problems that do not fit in either category

are very rare.

The second criteria distinguishes based on relationships between metrics inM1,M2, ...,

Mn. The two main classes are denoted (whether for the sake of history, reuse, correlation

or just for lack of imagination) as “cooperative” domains and “competitive” domains. Yet

I urge the reader to withheld for now from making the connection to the historical division

of CoEC. This connection will be discussed at the end of this section, as it is more holistic

and not referring just to metrics. Note also that these two classes are not complementary

either.

The remainder of this subsection discuses these two criteria. However, neither of them

is concerned with solution concepts. Therefore, the following subsection, 2.2.4, discusses

solution concepts and how they relate to the above clusterings.

Compositional vs. Test-based Problems

Compositional problems are those for which S = Agg(B1) × Agg(B2) × ... × Agg(Bn),

where if X is a set, then Agg(X) is a set whose elements are some sort of aggregation of

elements of X. Examples include (but are not limited to):

• Agg(X) = X;

• Agg(X) = ℘(X) = {Y |Y ⊆ X}, i.e. the set of all subsets of X, also called the power

set of X;

• Agg(X) = µ(X) = {η : X → N}, i.e. the set of multisets over X;

• Agg(X) = Xp = {(x1, x2, ..., xp)|xi ∈ X,∀i ∈ 1..p}, i.e. the set of all words of length

p using X as an alphabet;
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• Agg(X) = △X = {p : X → R|
∫

x∈X
p(x) dx = 1}, i.e. the set of all probability

distributions over X.

Therefore, the simplest example is S = B1 × B2 × ... × Bn. Other cases of interest are

reviewed in section 2.2.4. These problems are often, although not necessarily, the result

of reformulating a non-interactive domain as an interactive one. Examples can be found

both in domains with all roles asymmetric, such as multi-parameter function optimization

(Potter and De Jong, 1994; Potter, 1997; Wiegand, 2004) and in domains with all roles

symmetric, in particular those with an infinite (variable) number of roles, such as variable

size neural networks (Potter, 1997). In the first case, roles are parameters, behaviors are

parameter values, and potential solutions are tuples of values, one for each parameter. In

the second case, behaviors are neurons and potential solutions are multisets of neurons

defining complete networks.

Test-based problems are those for which S = Agg(Bi) for some role i. Of course, the

simplest example is S = Bi, for some role i. Another is ℘(Bi). Again, other cases of interest

are reviewed in section 2.2.4. Recall that while elements of S are some sort of aggregates

over Bi alone, the solution concept C will be described in a way that involves the other roles

as well. Thus, the reason for the name test-based is that the roles which do not contribute

to the definition of S but contribute to the definition of C can be viewed as used for testing

which elements of S are solutions and which are not.

Most often, test-based problems have only two roles, say B1 and B2, with S being some

aggregate over B1 and the elements of B2 being called tests (de Jong and Pollack, 2004).

Should there be three or more roles in the domain, it is unclear whether elements of all

behavior sets not involved in the definition of S would be worthy to be labeled as tests or

tuples of such elements should be labeled as tests.

Test-based problems can also occur both in domains with symmetric roles and in do-

mains with asymmetric roles. The first case is mainly represented by two-player games;

the roles correspond to the players, behaviors are strategies and potential solutions are

also strategies. Examples can be found in: (Rosin and Belew, 1995) – Tic-Tac-Toe, Nim,

Go; (Angeline and Pollack, 1993) – Tic-Tac-Toe; (Reynolds, 1994) – Tag; (Watson and
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Pollack, 2001) – numbers games; (Stanley and Miikkulainen, 2002) – robot competitions;

(Sims, 1994)- virtual creatures competitions; (Funes and Pollack, 2000) – Tron; (Miller,

1996; Axelrod, 1989) – prisoner’s dilemma.

Examples of domains with two asymmetric roles for test-based problems include: sorting

networks (S) and input sequences (tests) (Hillis, 1990); cellular automata (S) and initial

conditions (tests) (Juillé and Pollack, 1998; Pagie and Hogeweg, 2000; Pagie and Mitchell,

2002; Williams and Mitchell, 2005); pursuit and evasion behaviors (Cliff and Miller, 1994,

1995; Floreano and Nolfi, 1997; Wahde and Nordahl, 1998); finite two-player games given

by trees (Koza, 1991). In the last two examples, problems may define S over either of the

roles (tests will correspond to the remaining role).

As previously mentioned and easily noticeable, the compositional and test-based prob-

lem classes are not complementary. The most obvious example of problems that do not fit

in the above categories are those for which S = Agg(Bi1)×Agg(Bi2)× ...×Agg(Bik), where

1 < k < n, ij 6= il,∀j, l ∈ 1..k, j 6= l. For this to be possible, n must be ≥ 3. To some

extent, such problems can be viewed as exhibiting both compositional aspects (S composes

over multiple roles) and test-based aspects (roles not participating in the definition of S
serve for testing C).

Even more generally, one could define S as some sort aggregate that involves more than

one Bi, but does not involve tuple-ing (taking the cross product), e.g. S = Bi ∩ Bj. I am

not aware of any such problems being approached with coevolutionary algorithms.

As a side note, some researchers (Bucci, Wiegand - personal communication) believe we

need a better term as a name for the first class. Their argument is that one could regard

as composition the act of aggregating over the behavior set of a single role, as is the case

for example with ℘(Bi) for test-based problems. Unfortunately, to date a replacement term

has not been proposed.

Cooperative vs. Competitive Domains

Consider Dm = (n = 2,B1,B2,O, f,M1 = {m1},M2 = {m2}). In other words, the domain

has only two roles and the metric sets associated with the roles each have a single element.
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Such a domain is called strictly competitive if:

∀b1, b
′
1 ∈ B1,∀b2, b

′
2 ∈ B2 :

m1(b1, b2) > m1(b
′
1, b

′
2)⇔ m2(b1, b2) < m2(b

′
1, b

′
2)

∧
m1(b1, b2) = m1(b

′
1, b

′
2)⇔ m2(b1, b2) = m2(b

′
1, b

′
2)

Of course, this is equivalent to:

∀b1, b
′
1 ∈ B1,∀b2, b

′
2 ∈ B2 :

m1(b1, b2) < m1(b
′
1, b

′
2)⇔ m2(b1, b2) > m2(b

′
1, b

′
2)

∧
m1(b1, b2) = m1(b

′
1, b

′
2)⇔ m2(b1, b2) = m2(b

′
1, b

′
2)

and also to:

∀b1, b
′
1 ∈ B1,∀b2, b

′
2 ∈ B2 :

m1(b1, b2) > m1(b
′
1, b

′
2)⇔ m2(b1, b2) < m2(b

′
1, b

′
2)

∧
m1(b1, b2) < m1(b

′
1, b

′
2)⇔ m2(b1, b2) > m2(b

′
1, b

′
2)

One can also define a domain to be weakly competitive if:

∀b1, b
′
1 ∈ B1,∀b2, b

′
2 ∈ B2 :

m1(b1, b2) < m1(b
′
1, b

′
2)⇔ m2(b1, b2) > m2(b

′
1, b

′
2)

or alternatively (but not equivalent), if:

∀b1, b
′
1 ∈ B1,∀b2, b

′
2 ∈ B2 :

m1(b1, b2) > m1(b
′
1, b

′
2)⇔ m2(b1, b2) < m2(b

′
1, b

′
2)

So-called constant-sum games from game theory (Osborne and Rubinstein, 1994; Hof-

bauer and Sigmund, 1998) are examples of strictly competitive domains. A domain Dm =

(n = 2,B1,B2,O, f,M1 = {m1},M2 = {m2}) is a constant-sum domain if:

∃c ∈ R : ∀b1 ∈ B1,∀b2 ∈ B2,m1(b1, b2) + m2(b1, b2) = c

Alternatively, this can be written as:
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∀b1, b
′
1 ∈ B1,∀b2, b

′
2 ∈ B2 :

m1(b1, b2) + m2(b1, b2) = m1(b
′
1, b

′
2) + m2(b

′
1, b

′
2)

We could extend the notions of competitiveness to domains where M1 and M2 each

have more than one metric, if there exists a bijection between M1 and M2 and all pairs

of metrics in this bijection obey the corresponding set of conditions, as described above for

(m1,m2). Of course, the existence of a bijection between M1 and M2 implies they have

the same cardinality.

Consider now a domain Dm = (n,B1,B2, ...,Bn,O, f,M1 = {m1},M2 = {m2}, ...,
Mn = {mn}). Such a domain is called strictly cooperative if:

∀b1, b
′
1 ∈ B1,∀b2, b

′
2 ∈ B2, ...,∀bn, b′n ∈ Bn :

m1(b1, b2, ..., bn) < m1(b
′
1, b

′
2, ..., b

′
n)⇔ m2(b1, b2, ..., bn) < m2(b

′
1, b

′
2, ..., b

′
n)⇔ ...⇔

mn(b1, b2, ..., bn) < mn(b′1, b
′
2, ..., b

′
n)

∧
m1(b1, b2, ..., bn) = m1(b

′
1, b

′
2, ..., b

′
n)⇔ m2(b1, b2, ..., bn) = m2(b

′
1, b

′
2, ..., b

′
n)⇔ ...⇔

mn(b1, b2, ..., bn) = mn(b′1, b
′
2, ..., b

′
n)

An example of such a domain is one for which:

∀b1, b
′
1 ∈ B1,∀b2, b

′
2 ∈ B2, ...,∀bn, b′n ∈ Bn :

m1(b1, b2, ..., bn) = m2(b1, b2, ..., bn) = mn(b1, b2, ..., bn)

This is the equivalent of what in game theory is called a variable-sum game with

symmetric payoffs.2 The term payoff has occasionally been used in CoEC as a synonym

for metric of behavior.

Just as for the competitive case, there are two alternative (and equivalent) definitions

(one using < and =, and another using < and >). Also, weak cooperation and extension

to more than one metric per metric set can be defined in a manner similar to competition.

Now that cooperative domains have been defined, it should be apparent why it is difficult

to define competition for more than two roles. As in life, “the enemy of my enemy is my

friend”.
2Note that symmetric payoffs and symmetric roles, as discussed in section 2.2.1, are two different concepts.
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It should also be apparent that there are domains that are neither weakly/strongly

competitive, nor weakly/strongly cooperative (even when there are just two roles).

Role symmetry is orthogonal to this clustering as well. The main four combinations are:

• cooperative with symmetric roles: neural networks with variable number of nodes

(Potter, 1997);

• cooperative with asymmetric roles: multi-parameter function optimization (Potter

and De Jong, 1994; Potter, 1997; Wiegand, 2004);

• competitive with symmetric roles: mainly games (Rosin and Belew, 1995; Angeline

and Pollack, 1993; Reynolds, 1994; Watson and Pollack, 2001; Funes and Pollack,

2000; Miller, 1996; Axelrod, 1989) and robot simulations (Stanley and Miikkulainen,

2002; Sims, 1994);

• competitive with asymmetric roles: sorting networks and input sequences (Hillis,

1990), cellular automata and initial conditions (Juillé and Pollack, 1998; Pagie and

Hogeweg, 2000; Pagie and Mitchell, 2002; Williams and Mitchell, 2005), pursuit and

evasion behaviors (Cliff and Miller, 1994, 1995; Floreano and Nolfi, 1997; Wahde and

Nordahl, 1998), finite two-player games given by trees (Koza, 1991).

The reader may notice that the domains listed as cooperative correspond to those listed

for compositional problems and domains listed as competitive correspond to those listed

for test-based problems. This is because historically, compositional problems have only

been defined in cooperative domains and test-based problems only in competitive domains.

Note however that there is nothing in the definition of these clusterings requiring such a

correspondence.

2.2.4 Solution Concepts

Neither of the two clustering criteria above is based on solution concepts. However, the

opposite holds: solution concepts are dependent (to a certain degree) on the type of domain

and the type of problem. This is natural, because a solution concept is basically a predicate

over the space S, that uses the metrics to decide its values. This section reviews currently
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known and used solution concepts. It also points out some other solution concepts that could

be envisioned. The presentation is driven by the nature of the set S. Some of these solution

concepts have been described in (de Jong, 2005) with notations adjusted (simplified) either

for two-role test-based problems or for multi-role compositional problems. Here, I define all

of them using the general language defined in 2.2.1 and 2.2.2. For simplicity and without

loss of generality, when S is defined over a single role, I will use role 1 rather than role i.

Test-based Problems With S = B1

For these problems the domain has the form:

Dm = (n,B1,B2, ...,Bn,O, f,M1 ⊇ {m1},M2, ...,Mn).

C: maximum cumulative (or expected/average) utility As the name suggests, this

solution concept denotes as solutions those elements of the search space S that have maxi-

mum cumulative utility over all elements of S. Note that maximizing cumulative utility is

equivalent to maximizing expected utility and also equivalent to maximizing average utility.

I exemplify this solution concept using cumulative utility as defined below:

cumulUtil(b1) =
∑

(b2,...,bn)∈B2×...×Bn

m1(b1, b2, ..., bn),∀b1 ∈ B1.

Then the maximum cumulative utility solution concept is defined as:

C : B1 → {true, false},∀b1 ∈ B1 :

C(b1) = ∀b′1 ∈ B1, cumulUtil(b1) ≥ cumulUtil(b′1)

Test-based problems that explicitly specify maximum expected utility as the solution

concept are the previously mentioned sorting networks (Hillis, 1990) and cellular automata

(Juillé and Pollack, 1998; Pagie and Hogeweg, 2000; Pagie and Mitchell, 2002; Williams

and Mitchell, 2005). An algorithm targeted at this solution concept for the case of two

roles has been devised by de Jong (2005) and called MaxSolve. It guarantees monotonic

progress towards the solution concept if the space is finite. It has been tested in the context

of number games.



25

For a variation of this solution concept and more than two roles, an algorithm has

been proposed in (Schmitt, 2003b). Monotonic progress towards the solution concept is

guaranteed if the solution set defined by it is not empty.

C: Pareto-optimality The maximum utility solution concept defined above sums up

the success of a behavior (for role 1) over all events that behavior can be part of and

then compares different behaviors based on this sum. By contrast, the Pareto-optimality

solution concept first compares different behaviors for role 1 based on their success in the

same context (i.e. using events that only differ on role 1) and then aggregates over events.

Here is the formal definition. Let dominates and non-dominated be two predicates:

dominates : B1 × B1 → {true, false},∀b1, b
′
1 ∈ B1 :

dominates(b1, b
′
1) = ∀(b2, ..., bn) ∈ B2 × ...× Bn,m1(b1, b2, ..., bn) ≥ m1(b

′
1, b2, ..., bn)

∧∃(b2, ..., bn) ∈ B2 × ...× Bn,m1(b1, b2, ..., bn) > m1(b
′
1, b2, ..., bn)

Note that ¬dominates(b1, b
′
1) does not imply dominates(b′1, b1).

non-dominated : B1 → {true, false},∀b1 ∈ B1 :

non-dominated(b1) = ∄b′1 ∈ B1, dominates(b′1, b1)

Then the Pareto-optimality solution concept is defined as:

C : B1 → {true, false},∀b1 ∈ B1 : C(b1) = non-dominated(b1)

The set of all b1 ∈ B1 : C(b1) = true is called the Pareto-front. An element b1 ∈ B1 : C(b1) =

true is said to be Pareto-optimal.

The Pareto-optimality solution concept is less restrictive than the maximum cumulative

utility solution concept. This can be easily proven by showing that if an element b1 ∈ B1 has

maximum cumulative utility than it must be Pareto-optimal. The proof is by contradiction.

Let b1 ∈ B1 such that ∀b′1 ∈ B1, cumulUtil(b1) ≥ cumulUtil(b′1). Assume b1 is not

Pareto-optimal, i.e. ∃b′1 ∈ B1, dominates(b′1, b1). This means

∀(b2, ..., bn) ∈ B2 × ...× Bn,m1(b
′
1, b2, ..., bn) ≥ m1(b1, b2, ..., bn)

∧∃(b2, ..., bn) ∈ B2 × ...× Bn,m1(b
′
1, b2, ..., bn) > m1(b1, b2, ..., bn).
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By summation, we get

∑

(b2,...,bn)∈B2×...×Bn

m1(b
′
1, b2, ..., bn) >

∑

(b2,...,bn)∈B2×...×Bn

m1(b1, b2, ..., bn),

which is equivalent to cumulUtil(b′1) > cumulUtil(b1). This contradicts the fact that b1

has maximum cumulative utility, thus the assumption that b1 is not Pareto-optimal must

be false, q.e.d.

This property of being less restrictive can be a caveat for the Pareto-optimality solution

concept. In particular, the Pareto-front may be very large or infinite and thus less interesting

for practical purposes.

C: simultaneous maximization of all outcomes This solution concept also compares

different behaviors for role 1 based on their success in the same context, but it is more

restrictive than the maximum cumulative utility solution concept. A behavior b1 for role

1 is considered a solution if for any (fixed) context provided by roles 2, ..., n, b1 is more

successful in that context than any other behavior for role 1. Formally, this is described by:

C : B1 → {true, false},∀b1 ∈ B1 :

C(b1) = ∀b′1 ∈ B1,∀(b2, ..., bn) ∈ B2 × ...× Bn,m1(b1, b2, ..., bn) ≥ m1(b
′
1, b2, ..., bn)

Here is the proof that simultaneous maximization of all outcomes is more restrictive than

maximum cumulative utility. Let b1 ∈ B1 be a solution for the simultaneous maximization

of all outcomes solution concept, i.e. ∀b′1 ∈ B1,∀(b2, ..., bn) ∈ B2×...×Bn,m1(b1, b2, ..., bn) ≥
m1(b

′
1, b2, ..., bn). Summing over all (b2, ..., bn) ∈ B2 × ...×Bn, we get:

∑

(b2,...,bn)∈B2×...×Bn

m1(b1, b2, ..., bn) ≥
∑

(b2,...,bn)∈B2×...×Bn

m1(b
′
1, b2, ..., bn),

which is equivalent to ∀b′1 ∈ B1, cumulUtil(b1) ≥ cumulUtil(b′1). Thus b1 is also a solution

for the maximum cumulative utility solution concept, q.e.d.

The caveat of the simultaneous maximization of all outcomes solution concept is that

in some domains it may be too restrictive (e.g. describe the empty set). An algorithm

targeted at this solution concept for the case of two roles has been developed by Rosin

(1997) and called the Covering Competitive Algorithm. Monotonic progress towards the

solution concept is guaranteed if the solution set defined by it is not empty.
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Test-based Problems With S = ℘(B1)

The domain for these problems has the same form as before, namely:

Dm = (n,B1,B2, ...,Bn,O, f,M1 ⊇ {m1},M2, ...,Mn).

For each solution concept C : S → {true, false}, a corresponding solution concept

all(C) = C′ can be defined as follows:

C′ : ℘(S)→ {true, false},∀ S ∈ ℘(S) (i.e. S ⊆ S) :

C′(S) = ∀s ∈ S, C(s) ∧ ∀s′ ∈ S\ S,¬C(s′)

In other words, a solution for the current problem is the set of all solutions to our

previous problem. Clearly, for the solution concept C′ there exists a single solution.

Solving a problem with S = ℘(S0) and solution concept C′ = all(C) also solves the

corresponding problem with S = S0 and solution concept C. In general, one would expect

that solving the latter problem should be easier than solving the former, yet there are also

cases when both problems are in the same big-O complexity class.

C: Pareto-optimal equivalence set This is an example of a solution concept that has

S = ℘(B1), yet is not of type all(C0), for some solution concept C0 : B1 → {true, false}.
Instead, this C : ℘(B1)→ {true, false} is defined as follows:

∀B ∈ ℘(B1) (i.e.B ⊆ B1) :

C(B) = ∀b1 ∈ B1, non-dominated(b1)⇒
∃b′1 ∈ B,∀(b2, ..., bn) ∈ B2 × ...× Bn,m1(b1, b2, ..., bn) = m1(b

′
1, b2, ..., bn)

For n = 2 and m1(b1, b2) ∈ {0, 1},∀(b1, b2) ∈ B1 × B2, this is the solution concept S4

described in (de Jong, 2005).

With the Pareto-optimal equivalence set solution concept, one is not looking for the

whole Pareto-front, but for any subset of the front that captures all distinctions between

behaviors in terms of success (as measured by m1). There may be multiple such subsets.

In particular, one could also define a Pareto-optimal minimal equivalence set, by replacing

∃b′1 with ∃!b′1 (exists unique).
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de Jong (2004a) introduced an algorithm called IPCA (Incremental Pareto Coevolution

Archive) that guarantees monotonic progress towards the Pareto-optimal equivalence set

solution concept, if given infinite memory. de Jong (2004c) also proposed LAPCA (LAy-

ered Pareto Coevolution Archive) as an algorithm that makes reliable progress while using

a limited memory.

While all solution concepts described so far have been used primarily in competitive

domains, clearly there is nothing in their definitions to require that. In fact, the definitions

use a single metric m1 for the role on which S is based, while the distinction between

cooperative and competitive domains requires the existence of at least two non-empty metric

sets. Also, all these solution concepts have been used mainly in domains with only two roles.

Note also that one could apply the all operation as described above and obtain new

solution concepts applicable to ℘(℘(B1)).

Compositional Problems With S = B1 × B2 × ...× Bn

For these problems the domain needs to specify at least one metric for each role, i.e.:

Dm = (n,B1,B2, ...,Bn,O, f,M1 ⊇ {m1},M2 ⊇ {m2}, ...,Mn ⊇ {mn}),

and solutions will be tuples specifying a behavior for each role.

C: ideal team This solution concept refers to such tuples as teams and requires maxi-

mization of team success, defined as the sum of the successes for the behaviors composing

the team in the context of that team. Formally, let:

team(b1, b2, ..., bn) = m1(b1, b2, ..., bn) + m2(b1, b2, ..., bn) + ... + mn(b1, b2, ..., bn),

∀(b1, b2, ..., bn) ∈ B1 × B2 × ...× Bn.

Then the ideal team solution concept is defined as:

C : B1 × B2 × ...× Bn → {true, false},∀(b1, b2, ..., bn) ∈ B1 × B2 × ...× Bn :

C(b1, b2, ..., bn) = ∀(b′1, b′2, ..., b′n) ∈ B1×B2×...×Bn, team(b1, b2, ..., bn) ≥ team(b′1, b
′
2, ..., b

′
n).



29

The ideal team solution concept has been used almost exclusively in cooperative do-

mains, under the name of ideal collaboration. However, there is nothing in the definition to

restrict it to such domains. Of course, problems featuring an ideal team solution concept

and a constant sum domain aren’t very interesting, as all elements of S are solutions.

This solution concept was believed to be particularly difficult to be achieved using

coevolutionary algorithms (Wiegand, 2004), but Panait (2006) showed that a CoEA can be

designed that converges to the ideal team solution concept if given infinite populations.

C: pure Nash-equilibria This is a solution concept inspired from game theory (Osborne

and Rubinstein, 1994; Hofbauer and Sigmund, 1998). By analogy, roles can be viewed as

the equivalent of players and behaviors as pure strategies. A tuple of behaviors (one for

each role) is considered a solution, if every behavior in the tuple is the “best response” (i.e.

most successful behavior) for that role, given the context formed by the other behaviors in

the tuple.

Formally, for any i ∈ 1..n let best-responsei be a function defined as follows:

best-responsei : B1 × ...× Bi−1 × Bi+1 × ...Bn → ℘(Bi)

∀(b1, ..., bi−1, bi+1, ..., bn) ∈ B1 × ...×Bi−1 × Bi+1 × ...Bn :

best-responsei(b1, ..., bi−1, bi+1, ..., bn) = {bi ∈ Bi|∀b′i ∈ Bi,mi(b1, ..., bi−1, bi, bi+1, ..., bn) ≥
mi(b1, ..., bi−1, b

′
i, bi+1, ..., bn)}.

Then the pure Nash equilibria solution concept is defined as follows:

C : B1 × B2 × ...× Bn → {true, false},∀(b1, b2, ..., bn) ∈ B1 × B2 × ...× Bn :

C(b1, b2, ..., bn) = ∀i ∈ 1..n, bi ∈ best-responsei(b1, ..., bi−1, bi+1, ..., bn)

The solution concept corresponding to the game theoretic notion of mixed Nash-equilibria

can also be defined, as described below, with S having a different form.

Compositional Problems With S = △B1 ×△B2 × ...×△Bn

The domain is still of type:

Dm = (n,B1,B2, ...,Bn,O, f,M1 ⊇ {m1},M2 ⊇ {m2}, ...,Mn ⊇ {mn}).
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C: mixed Nash-equilibria Remember that for a set X, △X is the set of all probability

distributions over X, i.e. {p : X → R|
∫

x∈X
p(x) dx = 1}. Let exp be a function defined as

follows:

exp : 1..n ×△B1 × ...×△Bn → R

∀i ∈ 1..n,∀(p1, p2, ..., pn) ∈ △B1 × ...△Bn :

exp(i, p1, ..., pn) =
∑

(b1,b2,...,bn)∈B1×B2×...×Bn

p1(b1)p2(b2)...pn(bn)mi(b1, b2, ..., bn).

Also, for any i ∈ 1..n let best-mixed-responsei be a function defined as:

best-mixed-responsei : △B1 × ...×△Bi−1 ×△Bi+1 × ...△Bn → ℘(△Bi)

∀(p1, ..., pi−1, pi+1, ..., pn) ∈ △B1 × ...×△Bi−1 ×△Bi+1 × ...△Bn :

best-mixed-responsei(p1, ..., pi−1, pi+1, ..., pn) = {pi ∈ △Bi|∀p′i ∈ △Bi,

exp(i, p1, ..., pi−1, pi, pi+1) ≥ exp(i, p1, ..., pi−1, p
′
i, pi+1)}.

Then the mixed Nash equilibria solution concept is defined as follows:

C : △B1 ×△B2 × ...×△Bn → {true, false}
∀(p1, p2, ..., pn) ∈ △B1 ×△B2 × ...×△Bn :

C(p1, p2, ..., pn) = ∀i ∈ 1..n, pi ∈ best-mixed-responsei(p1, ..., pi−1, pi+1, ..., pn).

The pure Nash equilibria solution concept can be expressed as a special case of the mixed

Nash equilibria concept. Nash solution concepts have practical utility mainly in games and

economics.

The Nash Memory algorithm described in (Ficici and Pollack, 2003; Ficici, 2004) is tar-

geted at the Nash-equilibria solution concepts.

The domains used in this dissertation have two asymmetric roles. Chapters 3–6 are con-

cerned with compositional problems having cooperative domains with variable-sum sym-

metric payoff, S = B1 × B2 and ideal team as the solution concept. Chapter 7 considers

test-based problems having competitive domains with constant-sum payoff, S = B1, and

maximum cumulative utility as the solution concept.
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2.3 Coevolutionary Algorithms

A coevolutionary algorithm is a specific type of evolutionary algorithm, therefore it will

feature the same key components: representation, evaluation, selection and breeding. Gen-

erally, selection and breeding do not differ between CoEAs and regular EAs3. It is within

representation and evaluation that lies the distinction (even if fuzzy at times). This is not

surprising, since it is into the representation and evaluation components that the problem

description is usually mapped4 and CoEAs are only applicable to specific types of problems

(namely ones for interactive domains).

This section is organized in two parts. The first describes what CoEAs are from a

problem-mapping perspective and what decisions must be made during this phase. The

second presents additional choices available for CoEA design. In both parts the presentation

takes a hierarchical perspective.

While the part of the CoEC framework concerning problems took shape mostly over

the past two years, the algorithms-part of the framework was already fairly well established

starting with Wiegand’s PhD dissertation (2004), that was the first to put together an

extensive hierarchy of design choices (properties) available for coevolutionary algorithms.

One major change since then has been the CoEC community’s realization that the payoff

quality is actually a property of domains and not algorithms. To this I have added my own

realization that some of the design choices (the problem-mapping ones) take precedence

over others, in the sense that they define the very nature of CoEAs. Figure 2.1 is based

on figure 3.1 on page 36 of (Wiegand, 2004), but modified to reflect the above two aspects,

and restructured and extended to cover new algorithms developed since then to the time of

my writing.

The branches displayed with bold font denote the problem-mapping choices and will be

discussed in the first subsection. The remainder are additional design choices described in

the second subsection. Also note that some of the leaf nodes in the hierarchy are displayed

in italics. These are “true” leaf nodes and constitute values for the property in their parent

node. Leaves which are not italicized are properties that can further be expanded, but were

3CoEAs with tuple fitness (defined further on) use selection techniques from multi-objective EAs.
4Occasionally problem-specific knowledge is embedded into the breeding operators.
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not (for space constraints and to keep the figure readable). Their expansion is discussed in

the text.

Before moving on to the review, note that with any algorithm property (parameter)

there is a notion of temporality attached, denoting how a value for that property is chosen.

There are three possibilities:

• static: the value is chosen prior to running the algorithm and it remains fixed through-

out run-time;

• dynamic: the value varies during run-time, as a function of time;

• adaptive: the value varies during run-time, as a function of the internal state of the

algorithm (which in addition to time could include, for example, population diversity,

operator success, etc.).

Clearly, the simplest algorithms are the ones for which all properties have static values.

However, dynamic and adaptive schemes for setting parameters are believed to offer some

advantages and were investigated for traditional EAs (Eiben et al., 1999; Angeline, 1995).

The issue has resurfaced for CoEAs, and some properties lend themselves to dynamic /

adaptive schemes more than others. Notes of this will be made when appropriate.

2.3.1 Problem to Algorithm Mapping

How does one go about using an EA to solve problems in interactive domains? Section 1.2.1

illustrated through an example a number of different alternatives, the most promising one

being CoEAs. Here I give a more detailed description of what CoEAs are and how they

approach such problems.

Regular EAs map elements of the problem search space S into individuals. CoEAs map

behaviors into individuals. Behaviors may or may not be elements of S, since S is defined

as an aggregation over all, some or just one of the behavior sets. Thus, in general, a CoEA

is searching for elements of S by actually operating in other spaces. Even when S = Bi for

some role i, in order to decide if an element of S is a solution, the algorithm must explore

the behavior spaces corresponding to the other roles.
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Figure 2.1: Hierarchical categorization of CoEA properties. Based on figure 3.1 on page
36 of (Wiegand, 2004), but restructured and extended. See text on previous page for font
coding.
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Consider first the case of domains with asymmetric roles only. The behavior sets cor-

responding to any two such roles will be different, therefore the algorithm will have to

maintain different types of individuals for encoding the corresponding behaviors. CoEAs

achieve this by keeping multiple populations, one for each asymmetric role5. Individuals

in a population encode behaviors from the behavior set of the role corresponding to that

population.

Remember that behaviors only acquire meaning in the context of events, i.e. behavior

tuples in which each position corresponds to a role and thus contains a behavior from

the behavior set of that role. Similarly, individuals can only be evaluated in the context

of interactions with other individuals. An interaction is a tuple of individuals in which

each position corresponds to a role and thus contains an individual encoding a behavior

from the behavior set of that role. What this translates into for asymmetric roles is that

an interaction is a tuple of individuals, one from each population, properly placed in the

position corresponding to their population’s role.

Usually, the cost unit for regular EAs is the evaluation of one individual6. The cost

unit for CoEAs is the assessment of one interaction and evaluating one individual usually

requires more than one interaction. The fitness an individual receives is some aggregate

over multiple interactions of values returned by the domain’s metrics when applied to those

interactions. Various techniques for choosing interactions and aggregating metric values

will be discussed later in section 2.3.2. Once fitness is computed, selection and breeding act

independently in each population.

Some domains with asymmetric roles are the result of reformulating non-interactive do-

mains as interactive ones. This reformulation occurs by partitioning the single behavior set

B into B1 × B2 × ... × Bn. Clearly, one has many different choices for performing such a

decomposition (e.g. whether all Bi-s have the same size or not). Choosing a particular

decomposition can be seen as an algorithm design choice, since it determines the number of

populations and what their individuals encode. A few such partitioning choices were ana-

lyzed in (Wiegand et al., 2002; Wiegand, 2004). So far in the literature the decomposition

5In fact, at least one population per role is required, but more than one population per role may be kept,
although this is uncommon in the literature.

6An example where this is not the case is genetic programming, where the evaluation of a tree depends
on its size.
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decision has been made statically.

In the case of domains where all roles are symmetric, there is a single behavior set.

Thus the algorithm will need to maintain only a single type of individuals. The designer

then has a choice of whether to still manage multiple populations, one per role (yet all

populations will explore the same behavior set) or to have a single population.

With the former choice, interactions can still be seen as tuples from the cartesian product

of populations. However, due to symmetry, all populations explore the same space and order

does not matter, therefore interactions can also be seen as multisets over the behavior set

with the additional constraint that each population must contribute exactly one individual

to the multiset. In other words: if there are n symmetric roles sharing the same behavior

set B, and P1,P2, ...,Pn are the current populations (∀i = 1..n,Pi ⊂ B)7, then interactions

take the form ≪ b1, b2, ..., bn ≫∈ P1 × P2 × ... × Pn, where ≪≫ denotes a multiset. With

the latter choice (i.e using a single population) interactions are multisets of size n over the

current population.

Examples of domains with two symmetric roles approached with a single population

can be found in (Angeline and Pollack, 1993; Reynolds, 1994; Miller, 1996; Axelrod, 1989),

while ones approached with two populations can be found in (Rosin and Belew, 1995; Funes

and Pollack, 2000; Stanley and Miikkulainen, 2002). Watson and Pollack (2001) and Sims

(1994) investigated both approaches.

Perhaps the most controversial issue in CoEC is whether or not an algorithm choosing

to use a single population for multiple symmetric roles should be called a CoEA. There

are two reasons for this controversy. The first is that in biology, by definition, coevolution

involves multiple species (Ridley, 1993; Thompson, 1994; Price, 1998). The second reason is

that it has proven very difficult to clearly distinguish the above described single-population

algorithms from some traditional single-population EAs. The EAs in question are ones

using mechanisms such as fitness sharing (Goldberg and Richardson, 1987; Spears, 1994) or

crowding (De Jong, 1975), where fitness of individuals becomes dependent on the contents of

7To be more accurate, this should read Pi ⊂ encoding(B).
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the population, and thus one can claim that there is some interaction between individuals.

Should we call the new single-population algorithms still simply EAs or should we call them

CoEAs but also re-label some old single-population EAs as CoEAs?

This dissertation is only concerned with the analysis of two-population CoEAs, thus

fully elucidating the matter is beyond the scope of my presentation. I refer the interested

reader to (Luke and Wiegand, 2003) and sections 2.2.1 and 3.1.1 (subsection “Methods of

Fitness Assignment”) of (Wiegand, 2004). However, for the sake of clear terminology in the

remainder of this background chapter, I will refer to the new algorithms as single-population

CoEAs. Additionally, I offer the following criteria for distinguishing between them and the

old specialized EAs: interactions’ definition. For single-population CoEAs, there is a

unit of interaction explicitly defined and determined by the problem specification and mul-

tiple such interactions are assessed during each evaluation round. The problem definition

specifies the cardinality of each interaction and metrics of success for individuals partici-

pating in the interaction. For the old specialized EAs, the interaction is not inherent in the

problem specification, but introduced into the algorithm as a feature believed to offer some

advantages. There is no unit of interaction, instead the interaction usually occurs between

all individuals and it is implicitly defined in the way fitness is assigned.

In terms of temporality, the choice between using a single- or a multi-population CoEA

is a static one. Potter (1997) introduced a class of multi-population CoEAs in which the

number of populations is dynamically or adaptively adjusted. These are applicable to

compositional problems defined in a specific type of domains, namely those with an in-

finite(variable) number of roles, all of which are symmetric. As previously described, all

populations explore the same behavior set and an interaction is a multiset with one element

from each population. Populations are added or removed at run-time, usually according to

some improvement criteria (i.e. adaptively). This can be done because of the variability of

the number of roles. If B is the behavior set and k is the number of populations currently

maintained by the algorithm, then µk(B) is currently explored. As k is varied over time,

µ(B) is explored.
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All domains analyzed in this dissertation have two asymmetric roles and are thus ap-

proached with two-population CoEAs.

2.3.2 Additional Design Choices

Representation

Most representation-related properties have been discussed in the problem-mapping sec-

tion. Here I only add one more, which is population structure. Most evolutionary al-

gorithms maintain populations simply as sets8, without any additional structure to them

(structureless). EAs where there is a certain topology associated with a population are

called spatially embedded or spatially distributed (Sarma, 1998) (or also fine grained) and

are believed to be useful for counteracting premature convergence. While population struc-

ture is not a CoEA-specific algorithm property, it is applicable to CoEAs and it is mentioned

in the present hierarchy for two reasons. The first is that choosing a spatial embedding re-

quires additional design decisions to be made concerning interactions between individuals,

as mentioned in the following subsection. The second reason is that spatially-embedded

CoEAs have shown early success in the work of Hillis (1990) and were subsequently used

in a considerable number of papers (Cliff and Miller, 1994, 1995; Pagie and Hogeweg, 2000;

Pagie and Mitchell, 2002), prompting analysis of their properties (Wiegand and Sarma,

2004; Williams and Mitchell, 2005).

All CoEAs in this dissertation are structureless.

Evaluation

Some issues concerning evaluation are pertinent to both single- and multi-population Co-

EAs. Regardless of whether interactions occur between individuals in the same population

or in different populations, decisions need to be made as to what interactions should be

assessed and how the outcomes of those interactions should be aggregated to give individuals

fitness. When using multiple populations, the additional issue of communication between

these populations arises. Each of these three matters will be discussed in turn.

8Unless a mechanism for preventing duplicates is implemented, populations are actually multisets.
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Interactions The definition of interactions was discussed in the previous section. Here

I concentrate on the selection of interactions (also referred to as the interaction method

or, in cooperative domains, collaboration method). The simplest choice is to assess all

interactions possible given the individuals present in the system at evaluation time. This

has been referred to as full mixing or complete mixing. While no additional decisions would

have to be made, this choice has the disadvantage of being very expensive, as the time cost

of the algorithm is counted in interactions assessed. To reduce cost, one must assess only

some of all possible interactions. This immediately raises the question “which ones?”.

There are two main approaches to choosing a subset of interactions: individual-centric

and population-centric. With the individual-centric approach, one individual at a time is

considered, a set of interactions is chosen for that individual to take part in, and after the

interactions are assessed, the individual’s fitness is computed. These interactions may be

reused (but generally are not) for computing the fitness of the other individuals that took

part in them. These other individuals are called opponents in competitive domains and

collaborators in cooperative domains. In this context, the phrase sample size denotes the

number of interactions used per fitness evaluation. Note that if there is no reuse, the number

of interactions an individual takes part in may be greater than the number of interactions

used for its evaluation. Thus, while the sample size may be (and usually is) the same for

all individuals, the number of interactions that individuals are involved in may vary.

A simple and quite common approach is to use a single interaction per fitness evaluation

and have the “other” individuals in this interaction be the best from their respective pop-

ulations. In cooperative domains this has been termed single-best collaboration method by

Wiegand (2004), while in competitive domains it is referred to as last elite opponent (LEO)

evaluation (Sims, 1994).

With the population-centric approach, a topology of interactions is picked such as to

involve any individual in the population(s) at least once, these interactions are assessed

and then fitness is computed for all individuals. Tournaments, such as single-elimination

or round-robin, are the most common examples for single-population algorithms. Both for

single- and for multi-population models, shuffle-and-pair (also called bipartite pairing) is

a population-centric method that simplifies the reuse of assessed interactions (meant to
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reduce computational time). With the single-elimination tournament, different individuals

will participate in a different number of interactions.

Information available from previous evaluation rounds may be used to influence how

interactions are chosen for the current evaluation round. I call this fitness bias. Usually,

individual-centric approaches use such biases, while population-centric ones do not. Clearly,

to be able to perform such biasing, the algorithm must store some information about previ-

ous evaluations. This information usually consists of individuals and their fitness, but can

also be more complex in nature (e.g. include other properties of individuals or relationships

between individuals). The amount of information can range from remembering the last best

individual to remembering all interaction assessments ever performed. With generational

CoEAs, intermediary approaches include saving one or a few (usually the best) individuals

from each previous generation (the Hall of Fame method introduced by Rosin and Belew

(1997)) or saving all individuals in the previous generation. When the information kept

spans more than just the previous generation, it is called a memory or archive (Panait

et al., 2006; de Jong, 2004a,c; Ficici and Pollack, 2003; Oliehoek et al., 2006). Chapter 4

will analyze and compare some biasing mechanisms based on information from the previous

generation.

Additional reviews and comparisons of various methods for selecting interactions can be

found in (Angeline and Pollack, 1993; Panait and Luke, 2002; Sims, 1994).

In terms of temporality, population-centric interaction methods are usually static, as

is the choice between population-centric and individual-centric. With individual-centric

methods, additional choices (in particular the sample size) may be static – as is the case

in chapter 4, but also dynamic (Panait and Luke, 2005; Panait et al., 2006) or adaptive

(Panait and Luke, 2006; Panait et al., 2006; Panait, 2006).

Additional choices must be made when using spatially-embeded CoEAs. These tend to

use individual-centric approaches and interactions are localized in space, namely neighbor-

hood-based. The size of the neighborhood corresponds to the sample size, but the shape is

an additional decision to be made. Fitness-biased selection of interactions can still be used

(generally within the neighborhood).
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Aggregation After an interaction is assessed and its outcome determined, metrics corre-

sponding to the various roles can be computed for that outcome. Thus any individual that

participated in the interaction can obtain a value from that interaction. In this context,

the previously mentioned notion of reusing interactions denotes the fact that more than one

(usually all) individuals involved in the interaction obtain a value from it. No reuse means

only one individual (the one currently being evaluated) obtains a value from the interaction.

If an individual participates in a single interaction, then it must obtain a value from it,

and that value becomes the individual’s fitness. It may also be the case that an individual

participates in more interactions, but the interaction method used is such that the individual

obtains a value only from one of those interactions. Its fitness will then also be equal to

that value. But when an individual participates in multiple interactions and obtains values

from all (or more than one), then a choice must be made on how to aggregate these values.

One approach is to input values from multiple interactions into some computations

and output a single value per individual (to be used as fitness). The computations can

simply use all values obtained by the individual and determine the best, the worst or the

average of those values. A comparison of these three methods can be found in (Wiegand

et al., 2001). Other, more complex computations can take into account values from other

individuals as well, as is the case for competitive fitness sharing (Rosin and Belew, 1995,

1997) or the biasing technique introduced by (Panait et al., 2003, 2004a). The advantage

of the single-value approach is that traditional parent-selection methods can then be used

by the algorithm based on single-valued fitness. The disadvantage is that the different

ways of computing a single value have different (and strong) biases, and it is not always

straightforward to tell which bias is more helpful (or less harmful) for the solution concept

at hand. In particular, when dealing with the ideal team solution concept, the biases of

the averaging method proved harmful (Wiegand, 2004) while choosing the best is helpful

(Panait, 2006).

The alternative is to have fitness be a tuple of values, usually the values obtained

by the individual from multiple interactions. Selecting parents based on such fitnesses

requires more specialized methods, in particular ones akin to multi-objective EAs. The

tuples of different individuals of the same role must be somehow comparable, which imposes
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constraints on the interactions that generated the values in the tuples. The advantage of

this approach is that its bias may be more appropriate for solution concepts such as Pareto

optimality or simultaneous maximization of all outcomes. Algorithms using tuple fitness

are most common in competitive domains (de Jong, 2004a,c; Ficici and Pollack, 2001). An

example using tuple fitness in cooperative domains can be found in (Bucci and Pollack,

2005).

The CoEAs I analyze in the following chapters all use best-single-value aggregation.

Communication When using a CoEA with multiple populations, in order for individuals

in one population to interact with individuals from other populations, the populations must

have access to one another’s contents. This is an issue of communication, and thus entails

choices typical of any distributed system, such as coordination, flow and frequency.

In terms of coordination, the communication can be synchronous or asynchronous.

In the asynchronous case, the populations evolve at their own pace and communicate

with one another through shared memory. They decide independently when to write new

information about their state to the shared memory and when to check the memory for

new information about the other populations (which may or may not be available). Asyn-

chronous CoEAs are uncommon. In the synchronous case, there is a centralized clock

that dictates when the populations exchange information.

In terms of flow, the asynchronous model is always parallel, in the sense that at any

point in time there may be more than one population running9. The synchronous model

can be either parallel or sequential (also called serial). In the parallel case, all populations

run simultaneously for a certain period of time (dictated by the central clock), after which

they all pause and exchange (communicate) information and then they all continue. In the

sequential case, at any point in time there is a single population running and populations

take turns in a round-robin fashion. In Wiegand (2004)’s hierarchy of CoEA properties,

flow is called update timing. I feel the new terminology can reach a larger audience, by

speaking in terms of communication. An analysis and comparison of synchronous parallel

and sequential two-population CoEAs will be presented in chapter 4.

9When a parallel CoEA is run on a single processor, this translates into the fact that there is no guarantee
about the order in which the populations run.



42

Frequency refers to the number of evaluation-selection-breeding cycles that a popula-

tion goes through between two communication events. The frequency may be uniform across

all populations or it may differ from one population to another. Chapter 4 analyzes the

effects of the communication frequency in a synchronous sequential two-population CoEA.

2.4 Coevolutionary Dynamics

As described so far, coevolutionary algorithms seem a natural, highly adaptive search

method for certain kinds of problems. Unfortunately, CoEAs have often disappointed engi-

neers with poor performance and / or counterintuitive behavior. As the first example in the

following chapter will show, even modifying the algorithms often leads to counterintuitive

responses on certain problems. In order to use CoEAs successfully, one needs to understand

why these phenomena happen, and the best way to gain such understanding is to analyze

the time-dependent properties of coevolutionary systems, commonly referred to as their

dynamics.

This section has three parts. The first discusses the reason why CoEAs exhibit complex

behaviors to begin with, namely fitness relativity. The second discuses how to monitor the

behaviors and the third summarizes what behaviors are currently known to occur.

2.4.1 Relativity in CoEC

As presented in the previous two sections, there is a wide variety of CoEC approaches. What

all of them have in common is the fact that fitness is relative. It is in this feature that lie

both the promises and the caveats of CoEC. Section 1.2.1 focused on the promises: providing

a dynamic gradient, helping maintain diversity and incrementally building complexity. In

this section, the focus is on the caveats.

The metaphor most commonly used to describe relativity in coevolution is the Red

Queen. The Red Queen is a character in Lewis Carroll’s novel “Through the Looking

Glass” that perpetually runs without getting very far because the landscape moves with

her. The Red Queen became a metaphor first in biology and subsequently in CoEC. There

are multiple ideas that can be extracted from the scene in the novel, and therefore different

people use the Red Queen metaphor itself to express different things.
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According to Paredis (1997), “biologists use the term Red Queen hypothesis for this

phenomenon in which constant change is needed to survive”. Ridley (1993) writes that in

biology the Red Queen is used to denote the “concept that all progress is relative”.

In CoEC, some researchers use the phrase “Red Queen dynamics”, but even so they

mean different things by it. From (Pagie and Hogeweg, 2000): “two species can show a

continued evolutionary change which can be oscillatory in nature or which is best described

as a runaway process. The . . . outcome . . . is often referred to as ‘Red Queen dynamics’

or an ‘arms race’10”. From (de Jong and Pollack, 2004): “. . . continuously change without

making overall progress, possibly resulting in cyclic behavior. This phenomenon is known

as Red Queen dynamics . . . or mediocre stable states”.

Other researchers talk about a “Red Queen effect”, but again there is no agreement as to

what this means. Wiegand (2004) considers it to be a “diagnostic problem that occurs when

populations seem to be changing, but the internal subjective measure shows no progress is

occurring. This phenomena may describe stagnation or an arms race”. Watson and Pollack

(2001) give a similar definition: “This is the Red Queen effect . . . though the performance

of individuals improves, the performance of their opponents improves at the same time

and they find themselves no better off (subjectively)”. Cliff and Miller (1995) have a much

broader view of the term: “. . . the Red Queen effect: the fitness landscape of one population

is affected by the current strategies of any opponent populations; and the movements of

one population over a fitness landscape can significantly alter the fitness landscapes of the

other populations”.

Regardless of how one uses the Red Queen metaphor, the important issue to be ac-

knowledged is that in CoEC fitness is relative. This generates two problems, discussed in

the following two subsections. The first problem is that comparisons between fitness values

at different evolutionary times are meaningless. Fitness can no longer be used to monitor

progress towards the goal. Different metrics are needed and they are discussed in the fol-

lowing subsection. The second problem is that relativity can generate many intricate and

often undesirable dynamics. These will be reviewed in 2.4.3.

10See subsection 2.4.3 for explanations of this term.
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2.4.2 Instrumenting Coevolutionary Dynamics

As discussed in section 2.2, it is very important to define a goal (solution concept) for the

problem to be solved with a CoEA. What is equally important is to have a way to measure

whether at run-time the algorithm is making progress towards that goal. For CoEAs, this

is particularly problematic due to the relativity issue discussed above.

The behavior of a coevolutionary system over time (its dynamics) can be observed from

two perspectives: the genotypic / phenotypic makeups of individuals and their quality. Of

course, to measure progress towards the goal, one needs to monitor quality. However, to

understand how the algorithm functions, monitoring genotypic / phenotypic change can be

very useful.

Both for quality and for genotypic makeup, one has a choice of whether to measure all

individuals in the population(s) or only select ones (e.g. best). Measuring all individuals can

provide more information, but it may make it difficult to extract the important patterns

within and also pose a challenge for visualization. Additionally, one must beware that

compressing information (e.g. by means of averaging) may actually eliminate important

trends in the data.

For quality measures, the trends one usually looks for include: increase, decrease, stag-

nation, noise, repeated values. For genotypic change, trends include: cycling, convergence,

divergence, chaos, etc.

Quality Metrics

I discuss quality measures first. In this respect, CoEC was plagued by confusion for a while,

due to failure to properly acknowledge the importance of fitness relativity. Wiegand (2004)

cleared matters by providing a clustering of metrics for coevolution based on two criteria:

contextual dependence and influence on the algorithm. I reproduce this clustering here, as

it is essential to this review.

“Definition 1. Objective measure – A measurement of an individual is objective if

the measure considers that individual independently from any other individuals, aside from

scaling or normalization effects.

Definition 2. Subjective measure – A measurement of an individual is subjective if
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the measure is not objective.

Definition 3. Internal measure – A measurement of an individual is internal if the

measure influences the course of evolution in some way.

Definition 4. External measure – A measurement of an individual is external if the

measure cannot influence the course of evolution in any way.” (Wiegand, 2004)

So, based on contextual dependence, metrics can be objective or subjective, and based

on influence on the algorithm metrics can be internal or external. When using both criteria,

four combinations can be formed. As used in EC (not biology), fitness is always an internal

metric. For traditional EAs (not using special techniques such as crowding or fitness shar-

ing), fitness is objective. For CoEAs, fitness is always subjective, as it depends on other

evolving individuals.

Performance of an algorithm towards the problem solving goal should always be mea-

sured with an objective metric. For CoEAs, such a metric has to be external, since fitness,

the internal quality metric, is subjective. In some cases, designers of CoEC systems have

such a metric in mind to begin with (e.g. (Hillis, 1990; Watson and Pollack, 2001)), but for

one reason or another (see 1.2.1) they do not use it as an internal objective metric. In other

cases, when CoEAs are applied without a precise goal (e.g. modeling) or with a non-testable

goal (often), an objective metric either does not exist or cannot be computed. Therefore,

some external subjective metrics of performance are used to tell whether the algorithm is

making any kind of progress. While such metrics tell us something about the behavior of

the algorithm, and can be useful in this respect, they cannot tell us how the algorithm is

doing with respect to the actual goal.

In the following, I review external quality metrics that have been used in the literature.

In the context of a game between string generators and string predictors, without a

specified solution concept, Ficici and Pollack (1998) use an external objective metric to

investigate the dynamics of a CoEA. The metric is domain-specific and uses notions from

information theory, such as entropy and order.

Subjective external metrics tend to be more general and usually rely on the history

of evolutionary runs. The first such metric was introduced by Cliff and Miller (1995) in

the form of CIAO plots. The acronym stands for “current individual ancestor opponent”.
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For a two-population CoEA, a CIAO plot is a matrix in which rows represent generations

of one population and columns represent generations of the other population. Every cell

represents an interaction between the best individual in each population at the correspond-

ing generations. Thus, individuals from later generations of one population interact with

individuals from early generations of the other population (ancestors). The cells are color-

coded on a gray scale, and can be constructed to reflect success from the perspective of

either population.

Floreano and Nolfi’s “master tournament” metric (1997) is basically a compression of

the information in CIAO plots. Averages are taken along lines for one population and across

columns for the other population.

Both these methods are computationally expensive, as they require the evaluation of

n2 interactions, where n is the number of generations. The master tournament metric

makes it easier to identify “broadly-successful” individuals, but the averaging it performs

may obscure some circularities which can be observed using the CIAO plots. An in-depth

critique of CIAO plots is available in (Cartlidge and Bullock, 2004b).

While these metrics were introduced in the context of domains with two asymmetric

roles, they are easily applicable to domains with two symmetric roles, whether approached

by single-population or two-population CoEAs. Additionally, the techniques do not require

imposing any constraints on the success metrics of the domain.

In the context of a domain with two symmetric roles and a two-population CoEA, Stan-

ley and Miikkulainen (2002) introduced a less costly technique called “dominance tourna-

ment”. At each generation, the best individual in each population is determined and the

two of them are paired; out of their interaction, the more successful one is designated the

generation champion. The dominance property is then defined as follows. The champion

from the first generation is automatically considered dominant. In every subsequent gener-

ation, the champion is paired only with previous dominant champions and it is itself labeled

dominant only if it is more successful than all of them. The method is easily applicable to

domains with two symmetric roles and a single-population CoEA. The paper also suggests

a (less straight forward) extension to some domains with two asymmetric roles.

CIAO, master and dominance tournament are all techniques that track only the best of
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generation individual. This was contrasted by Bader-Natal and Pollack (2004) that intro-

duced a “population-differential” technique monitoring all individuals in each generation.

Plots similar to the CIAO plots are produced, but now each cell is an aggregation over

the results of all pair-wise interactions between individuals in the two populations at the

generations corresponding to that cell. This method is clearly more expensive, therefore a

number of memory policies are introduced for reducing time complexity.

All the subjective metrics described so far require performing additional evaluations,

rather than using the ones already performed by the algorithm. Funes and Pollack (2000) in-

troduced a technique that took the latter approach. Their metric, called “relative strength”

is still subjective, as the value it returns for a particular individual depends on the current

history of all interactions, and this history grows with time. The metric is based on paired

comparison statistics and is applicable to domains with two symmetric roles.

Genotypic / Phenotypic Metrics

Cliff and Miller (1995) were also the first to use techniques for tracking genotypic changes

in order to analyze the run-time behavior (dynamics) of CoEAs. They introduce “elite

bitmaps”, “ancestral Hamming plots” and “consensus distance plots” as tools complemen-

tary to CIAO plots. They all work on binary representations. Elite bitmaps simply display

the genotype of best-of-generation individuals next to each other in temporal sequence.

Some additional processing can reveal interesting patterns. Ancestral Hamming plots dis-

play the Hamming distance between elite individuals from different generations. Consensus

distance plots monitor the genotypic make-up of the whole population through the dis-

tribution of Hamming distances from the genotype of each individual to the population’s

“consensus sequence”. All three techniques are applicable to EAs in general, not just Co-

EAs.

Some techniques for tracking genotypic change have also been devised for models of the

algorithms rather than the algorithms themselves. For a domain with two symmetric roles

sharing a behavior set with two elements (the Hawk-Dove game), Ficici et al. (2000, 2005)

track the state of a two-genotype infinite population as a percentage (e.g. the percentage of

hawks in the population). “Cobweb” plots (Alligood et al., 1996) are produced to reflect how
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the population state changes under the influence of various selection mechanisms operating

over frequency-dependent fitness. Ficici and Pollack (2000) further use the technique in a

CoEA with a finite population, while Ficici (2006) extends the method to models with two

genotypes and two infinite populations.

Similarly, Panait et al. (2004b) visualize basins of attraction for the population state

for models with two infinite populations operating in domains with two symmetric roles

sharing a behavior set of size two or three.

Wiegand (2004) uses two-population CoEAs to approach problems where the domain

has two asymmetric roles and symmetric payoff, and the solution concept is ideal team.

He also models the CoEA with infinite populations and discretizes the behavior sets to 8

elements each, then plots two-dimensional “take-over curves” analogue to those of Goldberg

and Deb (1990) from traditional EC.

2.4.3 Known Dynamics

As previously mentioned, the relativity of fitness in CoEAs generated many phenomena that

were not encountered in traditional EAs. Moreover, these phenomena were quite complex,

thus difficult to understand and even to describe, causing once again terminology problems.

However, equipped with the measuring techniques described above, one can do a better job

at understanding and characterizing the dynamics of coevolutionary systems.

The one phrase that is probably as controversial as the Red Queen is arms race .

Outside of CoEC, the general use of the term denotes “any competition where there is no

absolute goal, only the relative goal of staying ahead of the other competitors” (WKP).

This is also the meaning it has for biologists, as they do not have any stake in objective

measurement.

In CoEC, from an external perspective, there is (or there should be) an absolute goal,

even if it may not be testable. And yet, especially in two-population, competitive payoff

CoEC, the phrase arms race has been used to denote increase in the external objective

metric in one population caused by and causing in return increase in this metric for the

other population.

Unless otherwise noted, all other dynamics described in the following are considered
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pathological when using CoEC for optimization. They may however become useful in other

types of applications of CoEC.

Cycling is commonly agreed upon to mean visiting the same areas of the space multiple

times in a repeated sequence. This will generate some repeating patterns in the external

quality metric. Conversely, when such patterns in the metric are noticed, they may be

caused by cycling, but also by other dynamics, such as chaos. Thus, the only reliable way

to trace cycling is by observing changes in individuals at the genotypic / phenotypic level.

A number of different works have shown the occurrence of cycling, and initially it was pre-

sumed to be caused by intransitivities present in the problem’s definition. Subsequent work

(de Jong, 2004b) has shown that cycling can appear even in the absence of intransitivity.

Mediocre stable states (Angeline and Pollack, 1993) is a term whose description

usually includes cycling. Wiegand (2004) explicitly specifies that: “. . .mediocre stable

states . . . here limiting behaviors (either fixed-point or cyclic) . . . at particularly suboptimal

points in the space, from some external perspective”. Similarly, in (Ficici and Pollack,

1998), a situation where “the two populations . . . fall into a circular pattern of convention

chasing” is considered an example of a mediocre stable state, states more generally defined

as those “where the agents in the evolving population(s) . . . discover a way to collude to

give the impression of competition without actually forcing each other to improve in any

objective sense”. The definition of Watson and Pollack (2001) implicitly allows for cycling:

“a condition where the coevolutionary system is not producing improved performance in

the objective metric despite continued adaptive steps in the subjective metric”. What all

these definitions have in common is that they refer to a lack of improvement in the external

objective metric over time, when such improvement could actually be achieved in the search

space. The term “mediocre” seems appropriate to describe this. On the other hand, the

phrasing “stable state” seems less appropriate for all the situations have been included

under it. Some of the definitions above (Ficici and Pollack, 1998; Watson and Pollack,

2001) actually require that some internal change accompany the external mediocrity. In

recent years, the suggestion (agreed upon by many members of the community) is that this

term be dismissed and replaced with other more specific terms.

Another dynamic is the loss / lack of gradient , described as a case “in which one
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population comes to severely dominate the others, thus creating an impossible situation in

which the other participants do not have enough information from which to learn” (Wie-

gand, 2004). As an example, for test-based CoEC, the tests in one population may be so

tough that no learner in the other population can solve. In (Wiegand and Sarma, 2004), the

same problem is presented for cooperative / compositional CoEC as a situation when “the

diversity of a subset of the populations suddenly decreases, leaving the others searching

only a static projection and not the full problem”. More generally, gradient in CoEC has

been defined (CoEC-Wiki) as follows: “Since the evaluation of individuals in coevolution

is dependent on other evolving individuals (evaluation individuals), appropriate evaluation

individuals must be present in order to determine the relative merit of different individu-

als. The information provided by evaluation individuals is called the gradient, as its role is

analogous to that of the gradient in standard optimization problems”.

Abstracting from these definitions, lack of gradient is a situation in which the distribu-

tion of fitness values in (at least) one population is (almost) flat. Loss of gradient is the event

instating lack of gradient. Lack of genotypic / phenotypic diversity always generates a lack

of fitness diversity, but the latter can occur even while genotypic / phenotypic diversity is

still present, simply because fitness is dependent on the contents of the other population(s).

Lack of gradient may be temporary (gradient may be regained due to changes in either

population) or persistent. Lack of gradient will cause genetic drift (Watson and Pollack,

2001), which sometimes can actually lead to regaining gradient. Loss of gradient has also

been referred to as disengagement and claimed to “generally lead to over-specialization”

(de Jong and Pollack, 2004).

Overspecialization is a dynamic in itself and need not necessarily be the result of

loss of gradient; it is the phenomenon that individuals improve on some of the underlying

objectives but fail to do so on others (CoEC-Wiki). A classic example is that of players

discovering an opponent’s weaknesses and exploiting them but failing to learn the task in a

general way (Watson and Pollack, 2001).

While most of the above dynamics have been identified and described in the context of

competitive CoEC, one dynamic found to be problematic for cooperative CoEC is relative

overgeneralization (Wiegand, 2004). It refers to the phenomenon that components that
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perform well in combination with a large number of other components are favored over

components that are part of a global optimum (but do not yield successful partnerships in

general). The equivalent of this behavior in competitive settings is actually often considered

useful.

2.5 Coevolutionary Analysis

With so many things that can go wrong and only a few considered right, it is no wonder

that CoEC as an optimization tool has been described as “sometimes frustratingly slow and

baffling” (Cliff and Miller, 1996). Even being aware of all these pitfalls is a step forward

and it is due to the research efforts invested in CoEC.

This section reviews work analyzing CoEC setups. It does so from the perspective of

the framework described in the previous sections. Moreover, the focus is on pointing out

issues that were not addressed and providing motivation for the particular type of analysis

presented in this dissertation.

At the beginning of the field a lot of the CoEC work was “experimental” and domain-

focused. Namely, the researcher was interested in solving a particular problem (usually

optimization) and was trying out coevolutionary algorithms as a potential method. If the

problem was previously approached using regular EC, the standard practice was to conduct

a comparison between the two methods. Otherwise, the threshold to separate good results

from bad ones was set in a domain-dependent way (occasionally arbitrary). In both cases,

CoEAs’ performance ranged from good to very bad. As the field began to mature, the focus

shifted from the application domain to analyzing CoEAs as a tool. Two different approaches

were taken: analyzing the actual algorithms or analyzing models of the algorithms.

2.5.1 Algorithm Analysis

The vast majority of analyses of algorithms were empirical in nature and can be further

classified as either “black-box” analysis or dynamics analysis. Theoretical analysis of actual

algorithms is much less common.
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Empirical Black-box Analysis

With this approach, the CoEC system was viewed as a black box whose inputs were the

algorithm and the problem, and the output was observed performance (e.g. quality of

solution produced given a certain amount of time). The algorithm and / or the problem

would then be varied and the output of the system re-observed, with the goal of determining

the rules governing the dependency between inputs and outputs.

Two different approaches can be distinguished within the black-box analysis category.

One approach focuses on properties of the algorithms, of the problems or of both. When

algorithm properties were involved, this approach has been referred to as component analysis

(Wiegand, 2004). The other approach varies the algorithm and / or the problem and

compares the resulting performance without a clear isolation of the properties responsible

for the differences in performance.

I discuss this latter approach first. Most works introducing new algorithms are of this

type. This includes some of the early research comparing CoEAs with traditional EAs, such

as (Hillis, 1990; Angeline and Pollack, 1993) for competitive test-based setups and (Potter

and De Jong, 1994) for cooperative compositional setups. Later on, the approach was used

to compare CoEAs amongst themselves, usually “enhanced” algorithms with basic ones.

Examples include (Ficici and Pollack, 2001, 2003; Ficici, 2004; de Jong and Pollack, 2004;

de Jong, 2004a,c, 2005) for competitive test-based setups and (Bucci and Pollack, 2005;

Panait et al., 2006; Panait and Luke, 2006; Panait, 2006) for cooperative compositional se-

tups. Some of the algorithms introduced by these works (de Jong, 2004a, 2005; de Jong and

Pollack, 2004) are backed-up by theoretical results, as I will discuss in a coming subsection.

With the property-focused black-box approach, studies addressed either problem prop-

erties, algorithm properties or the interaction between them. I discuss these cases in order.

Some of the CoEA-versus-EA comparisons were extended to determine the classes of

problems for which one type of algorithm would provide performance advantages over the

other. Such work was performed for cooperative compositional setups by Potter (1997)

and Wiegand and Potter (2006). The scrutinized problem properties were cross-component

interaction (also called separability (Wiegand, 2004) or inter-agent epistasis (Bull, 1998)),
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dimensionality11, noise and relative sizes of basins of attraction of local optima.

For competitive test-based setups, empirical black-box analysis was used to investigate

problem properties such as role asymmetry (Olsson, 2001), intransitivity (de Jong, 2004b)

and dimensionality12 (de Jong and Bucci, 2006). These works introduced specialized algo-

rithms intended to target the respective problem property.

Studies focusing only on algorithm properties investigated either the mechanism for

selecting interactions (Panait et al., 2006; Panait and Luke, 2005; Parker and Blumenthal,

2003; Blumenthal and Parker, 2004) or the mechanism for aggregating the result of those

interactions (Panait et al., 2003; Wiegand et al., 2001; Cartlidge and Bullock, 2002). All

but the last cited work were concerned with cooperative compositional setups.

Finally and perhaps most importantly, some black-box empirical studies analyzed the

effects on performance of the interdependency between algorithm properties and problem

properties. The most studied algorithm property was the mechanism for selecting interac-

tions. The majority of the work targeted cooperative compositional setups (Potter, 1997;

Wiegand et al., 2001, 2002; Wiegand, 2004; Bull, 1997, 2001). The launched hypothesis was

that the performance effects of the interaction method are tightly related to the (previously

mentioned) problem property called separability and the type of cross-population epistasis

that it translates into. This dependency however proved not to be as straightforward as

thought, and I will elaborate more on this in chapter 4. For test-based competitive setups,

two different methods for selecting interactions were analyzed by Panait and Luke (2002),

suggesting that the amount of noise in the problem affects their influence on performance.

For cooperative compositional setups, Panait et al. (2004a) extended their previous work

on the mechanism for aggregating results from multiple interactions by studying how its

performance effects are affected by the problem’s local optima and their basins of attraction.

Wiegand and Sarma (2004) studied the potential benefits of spatially-distributed schemes

for selecting interactions and / or selecting parents on problems with role asymmetry.

Bull (1998) studied the effects of mutation and crossover in the context of “mixed-

payoff” domains (Kauffman and Johnson (1991)’s NKC landscapes) and found them to be

sensitive to inter-agent epistasis.

11Here dimensionality refers to the number of roles.
12Here dimensionality refers to the number of underlying objectives implicitly defined by the test role(s).
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Empirical Dynamics Analysis

While black-box analysis can provide some heuristics for improving performance, it cannot

explain the causes for the observed dependencies between the inputs and the outputs of a

CoEC setup. To understand these causes, one needs to observe the system while running

and track some of its time-varying properties. In EC lingo, this has been called dynamics

analysis. However, it did not go all the way to using the dynamics to explain the connection

between algorithm and problem properties on one side and performance on the other side.

Individual studies connected only a subset of the pieces; they analyzed either:

• dynamics in isolation (Cliff and Miller, 1995; Stanley and Miikkulainen, 2002; Bader-

Natal and Pollack, 2004; Floreano and Nolfi, 1997; Axelrod, 1989; Cartlidge and Bul-

lock, 2004b);

• the connection between problem properties and dynamics (Bull, 2005a);

• the connection between problem properties, algorithm properties and dynamics (Bull,

2005b; Kauffman and Johnson, 1991);

• the connection between dynamics and performance (Pagie and Mitchell, 2002; Juillé

and Pollack, 1998; Ficici and Pollack, 1998; Miller, 1996; Funes and Pollack, 2000;

Paredis, 1997);

• the connection between problem properties, dynamics and performance (Watson and

Pollack, 2001);

• the connection between algorithm properties, dynamics and performance (Williams

and Mitchell, 2005; Pagie and Hogeweg, 2000; Rosin and Belew, 1995, 1997; Cartlidge

and Bullock, 2003, 2004a; Bucci and Pollack, 2003);

The research approach of the proposed dissertation is to tie all the pieces of the chain

together, namely how the combination of algorithm properties and problem properties in-

fluences dynamics and how dynamics influence performance.
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Theoretical Analysis

Theoretical analysis of actual algorithms is still in its early stages, as the mathematics

involved can be very complex.

The most common results are those guaranteeing that if a solution exists, given enough

time, the algorithm will find it. For coevolution, this is not a trivial result, given the

possibility of dynamics such as cycling and the fact that random search, the baseline for

comparison in traditional search problems, is no longer clearly defined for coevolutionary

problems.13

Some of the studies mentioned in the empirical analysis subsection (de Jong, 2004a,

2005; de Jong and Pollack, 2004) include such theoretical guarantees for the new algorithms

they introduce. These proofs hold under various (potentially idealistic) conditions such as

unbounded memory or a finite search space. While the proofs are not problem-dependent,

they do not provide bounds on the amount of time needed to find a solution, which is why

comparisons between different algorithms are still performed empirically. The mathematical

techniques used are mainly ones from algebra and set theory. All cited works dealt with

various solution concepts for competitive test-based problems.

A stronger type of guarantees comes from the works of Schmitt (2003a,b). For a solution

concept that is a variation of maximum cumulative utility and could be applied to both test-

based and compositional problems, the proposed algorithm is guaranteed not only to find a

solution, but to have its populations converge to containing only genotypes corresponding

to the solution(s). Markov-chain analysis is used for the proofs. Bounds on convergence

speed are not given.

The only studies giving such bounds come from Jansen and Wiegand (2003a,b) who per-

formed asymptotic run time analysis of a 1+1 CoEA in the context of function optimization

reformulated as a cooperative compositional problem. While insightful, the results are prob-

lem dependent and the problems used were carefully crafted pseudo-boolean functions. The

math involved is also reliant on the nature of the problems and the simplicity of the CoEA.

Finally, the only theoretical study of the dynamics of actual algorithms comes from

13For coevolutionary problems, the space of potential solutions and the space of events (interactions) are
usually different. The cost of the search is measured in interactions assessed, but an undetermined number
of interactions may be needed to determine if a potential solution is a true solution.



56

Funes and Pujals (2005) who used probability theory to investigate the relationships between

problem properties, algorithm properties and dynamics. Trajectories through the behavior

sets were characterized in terms of their resemblance to random walks.

2.5.2 Model Analysis

To make the math more tractable, some researchers took the approach of studying models

of the algorithms. These models consider various abstractions or simplifications, such as

infinite population sizes, very small, discrete search spaces (e.g. 2x2 games) or lack of

variational operators. The first phase of the analysis consists of deriving formulas that

describe the change of the model state in one step. The behavior of the model over time

can then be analyzed in one of two ways: 1) iterate the formulas using a computer and

observe trajectories and attractors; or 2) mathematically derive properties of the time limits.

Examples of such works include (Chang et al., 2004; Bergstrom and Lachmann, 2003; Ficici,

2004, 2006; Wiegand, 2004; Panait, 2006).

The question that always arises with model analyses is how well the model predicts the

behavior of the actual algorithm, since the algorithm violates one or more of the assumptions

of the model. Therefore, some of the model studies are accompanied by empirical results

from running the actual algorithm. However, Liekens et al. (2004); Liekens (2005) shows,

for example, that there are plenty of cases when small population sizes translate into very

different behavior from infinite population models.

2.6 Open Issues

Clearly, a considerable amount of research has been invested in CoEC, and thanks to this

research we do know more now than what was known at the beginning of the field. How-

ever, I will argue that this knowledge is still incomplete and insufficient from a practical

standpoint.

When a CoEA failed, the question that arose was “Why did it fail?”. What was generally

meant by failure was poor values in the external objective metric. The first step in trying

to answer this question was to analyze the various internal features of the algorithm at

runtime (i.e. the dynamics), like internal fitness, genetic diversity, etc. This type of research
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identified and named the (unfortunately) large number of pathologies of CoEAs described in

section 2.4.3. While valuable, this research answered the question “Why did it fail?” only

at a superficial level. For instance, saying “The CoEA failed in this case because it was

cycling” immediately raises the question “Why did it cycle?”. I believe that the question

that was really answered was “How can a CoEA fail?”, or, more precisely, “What run-time

behaviors can a CoEC setup exhibit and which of them represent failure?”.

The deeper question that was not answered was “What properties of the CoEC setup

caused the observed run-time behavior?”. If we are to understand CoEAs in a way that will

facilitate successful application, we need to start providing answers to this question and

this is what I claim my dissertation does.

This is achieved by means of a holistic analysis that investigates how the interplay

of problem properties and algorithm properties influences dynamics and how dynamics

determine performance.



Chapter 3

New Tools for CoEC Analysis

The main hypothesis of this dissertation is that dynamics hold the key to understanding

coevolutionary algorithms and therefore their analysis should provide insights into the de-

pendency problem properties + algorithm properties→ performance. This chapter

presents an example that supports this hypothesis and also serves as the stage for introduc-

ing the main analysis tools used in the remainder of the dissertation.

The first section shows some intriguing performance effects obtained when attempting

to tune some basic parameters of a simple CoEA on “simple” problems. The following three

sections focus on understanding these effects. Section two introduces a new way of tracking

the dynamics of the algorithm, based on best-individual trajectories. This points to an

influential problem property (named best responses) discussed in section three. Section four

combines all this information in order to explain the observed performance effects. Section

five introduces a family of problems that isolate the best-response property. The results of

re-running the experiments on these new problems align with the explanation provided by

the analysis. In the light of these insights, new, refined hypotheses are formulated and they

will be tested (and confirmed) in the following chapters.

3.1 An Intriguing Example

Consider the task of multi-parameter function optimization, reformulated as a coopera-

tive compositional coevolutionary problem and approached with a CoEA, as described in

section 2.2.3. This section shows how, even for simple functions and a simple CoEA, in-

triguing performance effects are observed when attempting to tune the algorithm for better

performance.

58
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Figure 3.1: Left: offAxisQuadratic. Right: rosenbrock.

3.1.1 Two Functions

The two functions used for the example are common test functions from the EC function

optimization literature, rosenbrock and offAxisQuadratic. These were previously ana-

lyzed both in standard EC and in CoEC settings (Wiegand et al., 2001). They are defined

as follows:

offAxisQuadratic(x, y) = x2 + (x + y)2,

x, y ∈ [−65.536, 65.536];

rosenbrock(x, y) = 100(x2 − y)2 + (1− x)2,

x, y ∈ [−2.048, 2.048].

Figure 3.1 shows the three-dimensional surfaces described by the functions1. Our task is

to find the pairs (x, y) in which the functions reach their minimum value (0 in both cases).

For offAxisQuadratic this is the point (0, 0) and for rosenbrock it is (1, 1).

From a traditional EC perspective, these landscapes are similar with respect to proper-

ties such as continuity, modality, ruggedness, etc. But, as this chapter will reveal, there are

important differences when using coevolutionary algorithms to optimize them.

1All plots in the dissertation were generated using (R Development Core Team, 2006)
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3.1.2 A Simple CoEA

In order to be able to approach such problems with a CoEA, one needs to reformulate

them as compositional coevolutionary problems. The “natural” way of doing this is to have

roles correspond to parameters, role behaviors to parameter values, and potential solutions

to tuples of values, one for each parameter. Also, traditionally, all roles share the same

metric of behavior success, namely the function to optimize. The domain thus defined

features a cooperative, variable sum, symmetric payoff. The solution concept is ideal team,

as defined in section 2.2.4. The CoEA then maps each each parameter (role) into a separate

population. For the above landscapes this results in two populations, one evolving values

for the x function parameter and the other evolving values for the y parameter.

The design decisions for the experiments were based on two heuristics: keep things

simple and use reasonable settings. This led to the use of the “vanilla” CoEA described

below.

Each population uses a non-overlapping-generational EA with a real-valued represen-

tation, binary tournament selection, and a Gaussian mutation operator with fixed sigma.

Sigma was fixed for simplicity, but its value depends on the size of each function’s do-

main: 0.08 for rosenbrock and 2.6 for offAxisQuadratic (namely about 1/50 the size of

the variables’ range). To obtain effects similar to a 1/L bit-flip mutation for the binary

representation, the probability that the mutation alters a gene (and therefore individual)

was set to 90%. The two populations had equal sizes, which were varied as described in the

next section.

The simplest method of evaluating an individual in one population is to couple it with

the current best member of the other population and the value of the function at that point

is assigned as fitness. As mentioned in the previous chapter, in cooperative domains this

has been termed single-best collaboration method by Wiegand (2004), while in competitive

domains it is referred to as last elite opponent (LEO) evaluation (Sims, 1994).

The two populations take turns in evolving, which means that during each generation

only one population of the two is active. Using the communication lingo introduced in

section 2.3.2, this translates into synchronous communication and sequential flow.

The pseudo-code of the algorithm for one X generation is given below for clarity (the
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one for Y can easily be inferred):

- evaluate the X population using the current ybest;

- determine xbest;

- select parents according to determined fitness values;

- breed;

At the begining of each run, both populations are initialized uniformly random across the

domain. The algorithm starts by evaluating the members of the initial X generation in

conjunction with a random y individual. For the first Y generation (second generation of

the run) the xbest used is the actual best x individual from the first (X) generation.

For any experimental setup 100 independent runs were conducted.

3.1.3 Interesting Performance Effects

As is fairly standard with EA applications, we now go through a short tuning exercise to

improve the performance of our CoEA. In this illustration we experiment with different

population sizes and with the inclusion of elitism, while keeping a fixed budget in terms of

the total number of evaluations.

We experimented with a total of 4000 evaluations for the whole system and the following

setups: population size 5 x 800 generations, population size 10 x 400 generations, population

size 20 x 200 generations, population size 50 x 80 generations, population size 100 x 40

generations, population size 200 x 20 generations. For all experiments, both populations

had the same size and during each generation only one population was active (therefore

performing evaluations). Population size 200 was the largest used, as increasing it more

would leave the CoEA with too few generations for any evolution to take place. Elitism

was used in the context of population size 10.

Figures 3.2 through 3.5 show best-so-far (left) and best-of-run (right) fitness statistics,

summarized over 100 runs. Every point on a best-so-far curve corresponds to a certain

number of evaluations and displays the median2 over 100 runs of the best fitness found

after that number of generations. 95% confidence intervals3 for the medians are displayed

2As it was shown in (Popovici and De Jong, 2003), fitness distributions are often not normal, thus using
the median tends to be more appropriate than using the mean.

3(R Development Core Team, 2006) states that the confidence intervals are computed as +/- 1.58
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Figure 3.2: offAxisQuadratic – Effects of elitism.

only every 25 evaluations, for visibility.

Best-of-run statistics are presented in the form of boxplots, which permit concise, com-

parative visualization of the median (center line), the 95% confidence interval for the median

(notch around the median line), the inter-quartile range (box), the outliers (circles) and the

spread of the remaining data (dotted lines and whiskers).

The best-of-run boxplots compare performance in terms of the quality of the best so-

lution found given a certain time budget (number of evaluations). The best-so-far plots

provide less detailed information (only median and its confidence interval) for a particular

time budget, but do so for the history of the whole run. Additionally, they allow extract-

ing performance comparisons in terms of amount of time needed to reach some quality

threshold.

Note that the y ranges for the plots are individually adjusted for best visibility. Specif-

ically, the ranges for best-of-run boxplots are narrower than those for best-so-far plots, in

order to provide zooming in for the end of the run.

IQR/
√

n, where IQR is the inter-quartile range and n is the number of samples. This formula gives roughly
95% confidence intervals, according to Chambers et al. (1983) and McGill et al. (1978) and is said to be
rather insensitive to the underlying distributions of the sample.
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Figure 3.3: rosenbrock – Effects of elitism.
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Figure 3.4: offAxisQuadratic – Effects of population size.
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Figure 3.5: rosenbrock – Effects of population size.

The results obtained are rather surprising. Inspecting the best-of-run plots first, one

can see that on the offAxisQuadratic landscape, introducing elitism improves performance

and increasing the population size has the effect of first increasing performance and then

decreasing it. This is exactly what we would expect based on our experience with standard

EAs. However, on the rosenbrock landscape, introducing elitism resulted in significant

decreases in performance, as did increasing population size!

Turning to the best-so-far plots for additional information, we see that for elitism the

“winning” algorithm is decided very early in the run and, given the slope of the curves,

it appears unlikely that the order of the two would change in the near future, were the

time budget increased. For population size, this is mostly the case for rosenbrock. For

offAxisQuadratic, the smaller population sizes improve at a fast rate at the beginning

and then level off, while the larger population sizes improve at a slower rate but do so for

longer. The point on the population size axis at which the performance trend switches from

increasing to decreasing depends on the size of the time budget. With smaller budgets,

this point will correspond to smaller population sizes, while with larger budgets it will

correspond to larger population sizes.
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Clearly, there is something very different about how the CoEA works on these two

landscapes. We analyze this difference in the remainder of this chapter, by looking into the

dynamics of the algorithm.

3.2 Best-individual Trajectories

Dynamical systems theory (Alligood et al., 1996) has proved to be a good source of inspira-

tion for constructing methods of analysis for coevolutionary algorithms. Such methods have

been reviewed in section 2.4.2. Some of the works used the term coevolutionary dynamics

to refer to population-level dynamics, while others used it for individual-level dynamics.

Here, I take the latter approach and talk about dynamics of individuals rather than popu-

lation(s). Specifically, I analyze the time trajectories of best-of-generation individuals across

the search space. There are two reasons for this. First of all, we are trying to analyze the

performance of CoEAs for optimization, where the main concern is with the best individuals

the algorithm produces. Second, we wanted to understand the behavior of a basic CoEA

before moving to more complex ones, and the simplest one out there (that we picked for

our initial experiments) uses a single-best collaboration strategy for evaluation.

The analysis of such trajectories exposed a problem property (named best responses)

that has a strong influence on the behavior of CoEAs, as it will be shown time and time

again in this dissertation. This property will be described in the next section. This section

focuses on best-individual trajectories.

The fact that our basic CoEA alternates populations suggests a line-search-like way

of operation. It therefore makes sense to plot the best individual of one generation (and

therefore one population) by coupling it with its collaborator during fitness assessment (here,

the best individual of the other population at the previous generation). We thus obtain

one point of the search space per generation and we connect these points chronologically.

It is obvious that the lines connecting them will only be vertical (when connecting an X

generation with the following Y generation) and horizontal (when connecting a Y generation

with the following X generation).

An example of the result of this procedure for a single run for both offAxisQuadratic

and rosenbrock can be seen in Figure 3.6. The trajectory is displayed as grey lines con-
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Figure 3.6: Best of generation trajectory for sample runs. Population size 20, no elitism.
Left: offAxisQuadratic. Right: rosenbrock.

necting small dots (each dot representing one generation). The starting point is marked by

a filled geometrical figure (in this case a circle) and the end point is marked by the same

figure but empty. The best of the run (which is not necessarily the end of the run) is marked

by the same figure filled and smaller.

Since for each setup we ran 100 runs, we end up with 100 such pictures. Although, as

we will see later, there is value in looking at individual runs, for now we would like to get

a combined view of all of them. For this purpose, we superimpose all runs of a setup on

a single plot. For better visibility, we no longer draw the lines connecting the generations;

instead, we use different plotting symbols for X generations and Y generations. We use

the resulting images to compare the two functions. Figures 3.7 and 3.8 show cumulative

best-of-generation plots for 6 of the 7 algorithm variations tried, for offAxisQuadratic and

rosenbrock respectively.

These pictures vividly show that there are some areas of the search space that strongly

attract the best-of-generation individuals. Moreover, these areas have very regular shapes.

In particular, for these two domains, they seem to be lines/curves. We also notice that the

X best-of-generation individuals “draw” different patterns from the Y best-of-generation
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Figure 3.7: Cumulative best-of-generation points for offAxisQuadratic. Left column, top
to bottom: population sizes 5 and 10 without elitism and population size 10 with elitism.
Right column, top to bottom: population sizes 20, 50 and 200 without elitism.
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Figure 3.8: Cumulative best-of-generation points for rosenbrock. Left column, top to bot-
tom: population sizes 5 and 10 without elitism and population size 10 with elitism. Right
column, top to bottom: population sizes 20, 50 and 200 without elitism.
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individuals. In the following sections we focus on understanding what these patterns are

and why best-of-generation individuals are generating them.

3.3 Best-response Curves

Let us take another look at the way the algorithm works. It alternates populations and in

each generation the active population is evaluated in combination with a single individual

(the best) from the opposite population and then evolved. This is like a one-dimensional

search in a slice through the domain, where the active population is searching for an indi-

vidual that gives the best (in this case minimal) function value in that slice. The slice is

determined by the best individual from the opposite population. In other words, the active

population is trying to give the best response possible to the best reported by the frozen

population.

Here is a more formal description. Suppose we are working with a function f : DX ×
DY → R;DX ,DY ⊂ R. Let the current active population be the X population and the

current best individual in the Y population be y0. Then the X population is searching

for an individual x∗
y0

such that f(x∗
y0

, y0) = minx∈DX
f(x, y0). For every y ∈ DY an x∗

y

individual exists, regardless of whether the algorithm finds it or not. In general, there

may be more than one, but in this chapter we deal only with functions for which for

every y ∈ DY there is a unique x∗
y. We can therefore define a function bestResponseX :

DY → DX , bestResponseX(y) = x∗
y. Non-unique best responses will be discussed in later

chapters. A bestResponseY : DX → DY function can be similarly defined (under the same

assumption of uniqueness of best responses). These functions are a property of the domain

f and do not depend on any algorithm.

To obtain the formula for bestResponseX(y), we need to solve the equation ∂f(x,y)
∂y

= 0

for variable y. Similarly, in order to compute bestResponseY (x), we need to solve ∂f(x,y)
∂x

= 0

for variable x.

For offAxisQuadratic we get:

∂(x2+(x+y)2)
∂y

= 2(x + y) = 0⇒ y = −x and

∂(x2+(x+y)2)
∂x

= 2x + 2(x + y) = 2(2x + y) = 0⇒ x = −y/2.



70

Thus, for offAxisQuadratic, the formulas for the best responses are:

bestResponseX(y) = −y/2 and

bestResponseY (x) = −x.

So they are the lines of equations x+y = 0 and 2x+y = 0 that intersect at point (0, 0),

which is where the function reaches its minimum.

For rosenbrock the situation is somewhat more complicated. We have:

bestResponseY (x) =







2.048 if |x| ∈ [
√

2.048, 2.048];

x2 if |x| ∈ [0,
√

2.048).

Obtaining bestResponseX(y) requires solving a cubic equation, and we do that graph-

ically by interpolation rather than by mathematical formula. Once again, the two best-

response curves intersect in a single point, (1, 1), which is also where the function reaches

its minimum.

All best-response curves are shown on the top row of Figure 3.9. For rosenbrock, note

that the two best-response curves seem to overlap for some part. In fact, they only do so in

(1, 1), but for x ∈ [1,
√

2.048] the distance between them (i..e. between bestResponseY (x)

and bestResponseX−1(x)) is less than 10−3. The curves become progressively closer for

x ∈ [0, 1].

The two bottom rows show an intuitive geometrical view of how these curves relate to

slices through the two-dimensional surfaces described by the functions. In the left column

we illustrate the construction of the bestResponseY (x) curve for offAxisQuadratic. The

plot in the middle row shows five curves (plotted in different line styles) which were obtained

by slicing through the two-dimensional surface of offAxisQuadratic with different values

for X. For each such slice-curve, we determine the Y -value for which the curve reaches

its minimum (best), plot a symbol at this point and draw a vertical line to better show

the Y -value. What we have done is identify bestResponseY (x) for each of the five X

values considered. On the bottom plot we display the points (xi, bestResponseY (xi)), i ∈
{1, 2, 3, 4, 5} (using the same symbols as above) and how they fit on the bestResponseY (x)

curve. The right column shows the similar process for bestResponseX(y) for rosenbrock.
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The resemblance of the plots in Figures 3.7 and 3.8 to the best-response curves is striking.

The X best-of-generation individuals were drawing pieces of the bestResponseX(y) curve

and the Y best-of-generation individuals were drawing pieces of the bestResponseY (x)

curve4. We begin to unravel the mystery of what this simple CoEA is doing.

3.4 Explanatory Analysis

We return to our initial goal, namely to understand why population size and elitism have

different effects on the two functions. We also return to investigating individual runs. This

time however, we combine on the same plot the best-of-generation trajectories as initially

described in section 3.2 with the best-response curves in order to see the relationship between

the two and how this relationship is affected by the various changes in parameters.

Figures 3.10 through 3.13 show sample runs for 6 of the 7 setups we have experimented

with for both functions. Each plot shows 1, 2 or 3 sample runs from the 100 that were

carried out for that particular setup. Typical samples were picked, while trying to still

show the breadth of behaviors possible and, at the same time, keeping the images readable.

Each run has a different geometrical figure to denote the beginning, end and best of the

run. The left hand side plots in all figures show the whole search space, while the right

hand side plots show a zoom in.

Let us first investigate the effects of increasing the population size in the absence of

elitism. For both functions we see that with population sizes 5 and 10, the trajectories,

while clearly influenced by the best-response curves, are quite jittery in following them.

This is particularly visible in the zoomed-in plots. Increasing the population size causes

the best-of-generation trajectories to follow the best-response curves closer and closer. This

makes sense, as with a small population size, during one generation the evolutionary process

is unlikely to come up with the exact best response. Increasing the population size increases

the precision with which the algorithm approximates the best response.

While this underlying phenomena is the same, its effects are different on the two func-

tions. For offAxisQuadratic, due to the relative positions of the best-response curves, a

4Which pieces of the best-response curves are visited depends partially on which population is active
during the first generation. Section 5.3 further discusses this issue.
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Figure 3.10: Best-of-generation trajectories for offAxisQuadratic. Left column shows full
space, right column shows a zoom in. Top to bottom: population sizes 5 and 10 without
elitism and population size 10 with elitism.
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Figure 3.11: Best-of-generation trajectories for offAxisQuadratic. Left column shows full
space, right column shows a zoom in. Top to bottom: population sizes 50, 100 and 200
without elitism.
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Figure 3.12: Best-of-generation trajectories for rosenbrock. Left column shows full space,
right column shows a zoom in. Top to bottom: population sizes 5 and 10 without elitism
and population size 10 with elitism.
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Figure 3.13: Best-of-generation trajectories for rosenbrock. Left column shows full space,
right column shows a zoom in. Top to bottom: population sizes 50, 100 and 200 without
elitism.



77

deterministic system exactly following them would advance like on a ladder towards the

intersection point. In game theoretic terms, this intersection point is a Nash equilibrium

for the deterministic system. With large population sizes, our algorithm closely approxi-

mates this behavior, while with small population sizes, the algorithm gets “distracted” from

it. The intersection point is also where the function reaches its minimum; for both best-

response lines, the function value decreases from their ends towards the middle. We now

understand the initial gradual improvement in performance shown by the boxplots on the

right side of Figure 3.4. But why does performance start to decrease again as we further

increase the population size? Remember we are using a fixed number of evaluations, so

larger population size means fewer generations. There is therefore a tradeoff between the

accuracy of following the best-response curves and the number of steps taken along them.

If the number of steps becomes too small (e.g., population size 200 x 20 generations), the

algorithm doesn’t have enough time to reach the optimum, the target towards which it is

so precisely moving. This can be seen in the zoomed-in plot on the bottom row of Figure

3.11.

For rosenbrock, the best-response curves are such that the trajectory of a deterministic

system exactly following them would after the first or second step enter the region of almost-

overlap and then be forced to take extremely small steps. Once again, the intersection point

of the two best-response curves is a Nash equilibrium for the deterministic system and it is

also where the function reaches its minimum. With small population size, the algorithm’s

best-of-generation trajectory has low accuracy in following the best-response curves, thus

taking large steps rather than small ones. Additionally, the large number of steps that are

available for a small population size make the trajectory be highly “explorative” and thus

inevitably visit points close to the optimum. With increasing population size, the accuracy

of approximating the best-response increases and this means smaller step size. Moreover,

the number of steps decreases (due to the fixed budget) and these two effects combined

make the trajectory of best-of-generation individuals crawl and/or very quickly get stuck in

a point close to where it (randomly) started. The algorithm will get close to the optimum

only if by chance it started close to it. In this case high accuracy doesn’t balance off a small

number of steps, but instead it works to the disadvantage of performance as well. These
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effects can be seen in figure 3.13.

We now turn to elitism and analyze the bottom row of Figures 3.10 and 3.12. Since

elitism does not decrease the number of generations, we would expect to see the same

number of points as in the corresponding plots of population size 10 without elitism (middle

rows of the same pictures). Instead, the elitism plots show very few points (especially

for rosenbrock, but the same can be seen in the zoomed plots for offAxisQuadratic).

In fact, there is the same number of points, but many are overlapping. This is because

elitism causes the best-of-generation trajectory to stay put until the algorithm discovers an

individual better than the current best. For these functions, increasing fitness is generally

done by moving closer to the best-response curve of the current population (subcomponent).

The algorithm thus stays focused on following the best-response curves. As mentioned

in the discussion about population size effects, following the best-responses is good for

offAxisQuadratic and bad for rosenbrock, thus explaining the boxplots on the right side

of Figures 3.2 and 3.3.

3.5 A Test Suite

At this point we have some intuition about the effects that population size and elitism have

on performance in the presence of certain problem features. We further investigate this by

constructing a family of functions for which we can control the degree of proximity of the

best-response curves by varying one parameter, α ∈ [0, 1].

The family of functions is defined as follows:

BRα
n(x, y) =



















2y + α−3
2α

(x− n) if αy < x + (α− 1)n;

2x + α−3
2α

(y − n) if y > αx + (1− α)n;

n + x+y
2 otherwise.

n ∈ N ;α ∈ [0, 1];x, y ∈ [0, n],

and the two-dimensional surfaces described by the functions for n = 10 and α ∈ {0, 0.25,

0.50, 0.75, 0.90, 1} are shown in Figure 3.14. n = 10 was used for all the experiments with

BRα
n reported in the dissertation.

For these functions the task is maximization and regardless of α there is a unique

maximum BRα
n(n, n) = 2n. At α = 0 the surface is just a plane. For α ∈ (0, 1) two ridges
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Figure 3.14: BRα

n . Left, top to bottom: α = 0, 0.25, 0.50. Right, top to bottom: α =
0.75, 0.90, 1.



80

0 2 4 6 8 10

0
2

4
6

8
10

X

Y

α = 0.25

α
=

0.
25

α = 0.5

α
=

0.
5

α = 0.75

α
= 0.

75α = 0.9

α = 0.
9

α = 1

α = 0

α
=

0

Figure 3.15: Best-response curves for BRα
10 . bestResponseX shown in black continuous

lines, bestResponseY shown in gray dashed lines.

appear and they get closer and closer as α increases. At α = 1 the two ridges merge into

one.

The formulas for the best-response curves, updated for maximization, are:

bestResponseX(y) = αy + (1− α)n

bestResponseY (x) = αx + (1− α)n.

These formulas describe two lines that intersect in (n, n) (where the optimum is!). Figure

3.15 plots them for the same values of α as above. At α = 0 the two best-response lines are

perpendicular; as α increases, the angle between them decreases, till finally they overlap

when α = 1. The value of the function along any such line decreases from 2n in (n, n) down

and towards the left (i.e. towards smaller x and y values).

Our hypotheses are as follows:

• at low α, increasing population size and introducing elitism will have beneficial effects

on performance; very few steps are necessary to get very close to the optimum, so

high accuracy in following the best-response curves is good;

• as α increases, we will begin to see “curving” effects for the population size perfor-

mance, as the benefits of accuracy in following the best-response curves are counter-

balanced by a number of generations too small to have time to reach proximity of
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Figure 3.16: Elitism effects on performance (left: best-so-far, right: best-of-run) for BRα
10 .

Top row: α = 0; middle row: α = 0.25; bottom row: α = 0.5.
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Figure 3.17: Elitism effects on performance (left: best-so-far, right: best-of-run) for BRα
10 .

Top row: α = 0.75; middle row: α = 0.95; bottom row: α = 1.
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Figure 3.18: Population size effects on performance (left: best-so-far, right: best-of-run)
for BRα

10 . Top row: α = 0; middle row: α = 0.25; bottom row: α = 0.5.
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Figure 3.19: Population size effects on performance (left: best-so-far, right: best-of-run)
for BRα

10 . Top row: α = 0.75; middle row: α = 0.95; bottom row: α = 1.
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the optimum; the law of diminishing returns sets in; elitism should continue to be

beneficial for a while, since it does not decrease the number of generations;

• as α reaches 1, increasing population size and introducing elitism will decrease per-

formance; closely following the best-responses is bad when they are extremely close

or overlapping, as the steps taken by the trajectories are forced to be very small.

For the six values of α mentioned above we ran the same population size and elitism

experiments as before. The only change was adjusting the value for the standard deviation of

the Gaussian mutation to the size of these domains, namely setting it to 0.2. As can be seen

in the right-hand side best-of-run boxplots of Figures 3.16 through 3.19, our expectations

were confirmed. We also note on the best-so-far plots from the same figures the same time-

dependent effects as before: for elitism, the better algorithm is decided early on in the run

and appears unlikely to change in the future, while for population size the curving point in

performance depends on the time budget.

3.6 Summary

This chapter introduced a new set of tools for analyzing the dynamics of coevolutionary

algorithms, based on trajectories of best-of-generation individuals. The use of these tools

provided interesting insights into the ways CoEAs function and what drives their perfor-

mance, thus showing evidence supporting the hypothesis that a dynamics-focused approach

is key to understanding these algorithms. In particular, these tools helped expose a problem

property, namely the best responses, whose relevance for CoEC setups has been previously

overlooked.

The analyses presented are instances of connected analysis, as pictured in Figure 1.1.

Namely, dynamics (best-individual trajectories) were used to explain how the interplay

of a problem property (best-response proximity) and an algorithm property (population

size / elitism) affects performance (quality of best solution found given a fixed amount of

time). The insights gained argue that the best responses are an important property of

coevolutionary problems and their relationship can be a key factor in determining which

algorithm settings are better for performance. Therefore, the general hypothesis was refined
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into the following, more concrete hypotheses:

• Best responses would influence the performance effects of other algorithm parameters

as well; and

• Best-individual trajectories would help understand why.

Throughout the following chapters, evidence is brought in support of these hypotheses,

by performing the same type of connected analysis. The approach taken is to start simple

and incrementally add complexity.

Thus, chapter 5 further investigates the influence of best-response proximity (using the

BRα
n test suite) on additional (CoEA-specific) parameters.

However, clearly, the BRα
n family of functions does not exhaust all possible interactions

between best responses for cooperative payoffs. For example, one would expect that per-

formance will not vary with population size and elitism if along a region of overlap the

function value is constant. There may also be cases where there are several disjoint points

(or regions) of intersection for best-response curves. We expect these to be related to the

presence of local optima and performance is likely to also be affected by the shapes and

sizes of their basins of attraction. Also, the best responses may not be unique. Therefore,

additional test suites exemplifying such problem properties are introduced and analyzed in

chapter 5.

For most practical applications, formulas for the best responses will not be available.

However, as it was shown in sections 3.2 and 3.3, analyzing the trajectories of best-of-

generation individuals will help infer their shapes and/or the relationships between them.

This issue will be addressed in chapter 6 which features a domain that is not available in

closed form.



Chapter 4

Analysis of Simple Synthetic Compositional Cooperative Problems

The previous chapter introduced a problem property (best responses), some visualization

tools (best-individual trajectories) and a test suite (BRα
n) useful for analyzing the behavior

of coevolutionary algorithms. It used them to shed light on some surprising performance

effects of traditional EA parameters such as population size and elitism. As a result, two

new, refined hypotheses were formulated: 1) best responses would influence the performance

effects of other algorithm parameters as well; and 2) best-individual trajectories would help

understand why. This chapter brings evidence in support of these hypotheses, by using the

same techniques to analyze three CoEA-specific parameters: the selection of interactions for

fitness assessment and the inter-population communication frequency and flow. In all three

cases, the analysis concerns the application of CoEAs to compositional problems defined

over cooperative domains (with symmetric payoff) and ideal collaboration as a solution

concept (as defined in chapter 2).

Each of the parameters is discussed in its own section, however all three sections follow

the same format, reflecting the methodology used. First, related work (if any) is reviewed.

Second, experiments are performed on problems from the BRα
n family, varying the targeted

CoEC parameter and observing the performance effects. Third, an analysis of algorithm

dynamics is conducted, as a means to explain performance. Finally, the knowledge gained

from this analysis is used to make (and then confirm) predictions for additional functions

from the literature.

As a reminder, the BRα
n functions are given in closed form, thus have analytically

computable best responses and known optima. Moreover, the best responses are continuous.

These restrictions will be relaxed for the test suites introduced and studied in chapters 5

87
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and 6.

4.1 Collaboration Methods: Sample Size & Fitness Bias

The fact that in order to be evaluated individuals must participate in interactions with

other evolving individuals is the main feature of CoEAs. As discussed in section 2.3.2,

choosing out of all possible interactions which ones to assess can be done in a variety of

ways. In the context of cooperative CoEC, this aspect of the algorithm has been termed the

collaboration method. This section examines a number of such methods, specifically some

individual-centric ones. When evaluating an individual in one population, one or more

“collaborator” individuals are selected from the other population. The individual to be

evaluated interacts in turn with each collaborator and from each such interaction it receives

a value. To assess fitness, these values are then aggregated somehow.

In line with previous research, (Wiegand et al., 2001; Panait, 2006), the aggregation

method used here consists in taking the optimum of all values. This choice is fixed for all

experiments in the dissertation. In this section, what is varied is the sample size, i.e. the

number of collaborators used for one fitness evaluation, and the fitness bias, i.e. whether

fitness is used to influence how these collaborators are chosen.

4.1.1 Related Work

Collaboration methods were investigated by Wiegand et al. (2001, 2002) and their perfor-

mance effects were shown to be dependent on the way the problem was decomposed and

the pieces assigned to different populations. However, the nature of the relationship be-

tween problem decomposition and problem difficulty in the context of different collaboration

methods was not a trivial one to investigate.

Wiegand (2004) describes a class of problems (functions) which he calls “linearly sepa-

rable”1 that can be very easy for CoEAs if decomposed in agreement with its separability.

For such cases, using a single, fixed collaborator2 for all individuals in the current popula-

1Informally, this means there exists a clustering of the function’s parameters and a set of corresponding
functions, one per cluster (thus operating on disjoint groups of parameters), such that the original function
can be written as a sum of the functions in this set. For a formalism, please consult Definition 13 in section
4.1.1 of (Wiegand, 2004).

2This individual can vary from one generation to another, but it should be fixed during the generation.
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tion is enough for tackling the problem. What is not clear is when would one need more

complex schemes for evaluation. Wiegand et al. (2001) shows that the simple presence of

“non-linear” interdependencies between the pieces of the problem represented in different

populations (called “cross-population epistasis”) is not enough to necessitate more complex

evaluation schemes.

Wiegand et al. (2002) and Wiegand (2004) take the analysis further to see what type of

such cross-population epistasis can really cause problems for the single-best collaboration

method. In the context of a study on pseudo-boolean functions, the hypothesis offered

is that to blame is the contradictory cross-population epistasis, a situation in which “the

linear effects of lower order components existing in different populations are opposite in

magnitude and direction of the higher order blocks” and thus “the algorithm is tricked

into believing that the lower order components accurately predict the total function value,

when in fact they are misleading”. That analysis followed an epistasis-focused approach.

Problems with and without contradictory cross-population epistasis were constructed and

the results of running a CoEA with varied collaboration mechanisms were recorded. The

observed performance agreed with the hypothesis. It seemed like this was the end of the

story. In this section we shall see that is not the case.

4.1.2 Experiments

We start by showing that contradictory cross-population epistasis is not necessarily a good

indicator of difficulty. We do this by using two functions from the BRα
n family (namely,

BR1
10 and BR0 .75

10 ) that both exhibit this kind of epistasis for the natural decomposition

(one piece per function parameter), however for one of them the single-best collaboration

method is all there is needed to solve the problem, whereas for the other this method does

poorly and can be significantly improved upon.

To see the contradictory interaction of the X and Y components for BR1
10 , consider

any point along the diagonal ridge. Changing the x value while keeping the y constant will

result in a decrease in function value, regardless of whether x is increased or decreased.

Similarly, changing the y value while keeping the x constant will always result in a decrease

in function value. However, if both x and y are changed together, in some cases the function
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value will increase (e.g. moving up along the diagonal) and in other cases it will decrease

(e.g. moving down along the diagonal). Here’s a concrete example:

BR1
10 (5, 4) < BR1

10 (4, 4)

BR1
10 (4, 5) < BR1

10 (4, 4)







BR1
10 (5, 5) > BR1

10 (4, 4) and

BR1
10 (3, 4) < BR1

10 (4, 4)

BR1
10 (4, 3) < BR1

10 (4, 4)







BR1
10 (3, 3) < BR1

10 (4, 4) .

There are also cases when both the change in x and the change in y independently have

the effect of increasing the function value, and such changes combined can either increase it

or decrease it. Take for example the point (4, 3). We have both of the following situations:

BR1
10 (3, 3) > BR1

10 (4, 3)

BR1
10 (4, 4.5) > BR1

10 (4, 3)







BR1
10 (3, 4.5) < BR1

10 (4, 3) and

BR1
10 (3.5, 3) > BR1

10 (4, 3)

BR1
10 (4, 3.5) > BR1

10 (4, 3)







BR1
10 (3.5, 3.5) > BR1

10 (4, 3)

An infinite number of points with such behaviors exist. The same is true for BR0 .75
10 . As

an example,

BR0 .75
10 (5.5, 6) > BR0 .75

10 (7, 6)

BR0 .75
10 (7, 6.5) > BR0 .75

10 (7, 6)







BR0 .75
10 (5.5, 6.5) < BR0 .75

10 (7, 6) and

BR0 .75
10 (6.5, 6) > BR0 .75

10 (7, 6)

BR0 .75
10 (7, 6.5) > BR0 .75

10 (7, 6)







BR0 .75
10 (6.5, 6.5) > BR0 .75

10 (7, 6) . Additionally,

BR0 .75
10 (7, 6) < BR0 .75

10 (5.5, 6)

BR0 .75
10 (5.5, 6.5) < BR0 .75

10 (5.5, 6)







BR0 .75
10 (7, 6.5) > BR0 .75

10 (5.5, 6) and

BR0 .75
10 (7, 4) < BR0 .75

10 (6, 4)

BR0 .75
10 (6, 3) < BR0 .75

10 (6, 4)







BR0 .75
10 (7, 3) < BR0 .75

10 (6, 4) .

An infinite number of points with such behaviors exist for this function as well.

The experiments reported in this section used as a basis one of seven variations of the

simple CoEA described in the previous chapter (population size 10 with elitism) and varied

the collaboration method. Five such methods were used: single-best (1B), one best plus one

random (1B1R), one random (1R), two random (2R) and five random (5R) collaborators.

Thus, both the sample size and fitness bias were varied.

The random collaborators were selected per evaluation (i.e. per individual) rather than

per generation. When more than one collaborator is used per individual, the fitness is the
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Figure 4.1: Best-so-far (left) and best-of-run (right) fitness statistics for the different col-
laboration methods on the BR1

10 function. Maximization problem – bigger is better.

best of the obtained values. Selection of random collaborators is done with replacement

(even when choosing collaborators for the same individual). All variants had a fixed budget

of 4000 function evaluations, therefore using more collaborators per individual meant fewer

generations. Since the population size was set to 10 and the communication flow was

sequential, this translated into 400 generations for methods 1B and 1R, 200 generations for

1B1R and 2R and 80 generations for 5R.

The results are shown in Figures 4.1 and 4.2. As in the previous chapter, these display

both best-so-far fitness curves and best-of-run fitness boxplots, summarized over 100 runs.

As these were maximization problems, bigger values are better.

Clearly, the single-best collaboration method has quite opposite performance on the

two functions. For BR1
10 , it is largely outperformed by all other methods. For BR0 .75

10 ,

all methods are in the same ballpark, yet some strongly statistically significant differences3

can still be observed. Methods using the best as a collaborator (1B and 1B1R) outperform

random-only based methods (1R, 2R and 5R) with p-values in the order of 10−15. The

differences in medians are in the order of 5× 10−3. The single-best collaborator method is

3The Wilcoxon / Mann-Whitney test was used.
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Figure 4.2: Best-so-far (left) and best-of-run (right) fitness statistics for the different col-
laboration methods on the BR0.75

10 function. Maximization problem – bigger is better.

better than the one best + one random at a p-value of 5 × 10−6 with a median difference

of 10−3. The order among methods other than the single best is the same for BR1
10 and

BR0 .75
10 , namely the one best + one random method outperforms the random-only based

ones. The p-values are weaker for BR1
10 (between 0.002497 and 5.868 × 10−7).

For two problems with the same type of contradictory cross-population epistasis, the

single-best collaboration method is in one case the best method and in the other case the

worst method by large. The recurring hypothesis in this chapter and the whole dissertation

is that the differences in performance are due to the different layout of the best-response

curves. The following section shows the dynamics analysis performed, which confirms this

hypothesis, thus explaining the results.

4.1.3 Dynamics Analysis

Figures 4.3 through 4.8 show typical runs4 for the two functions and the five different

collaboration methods. The plots display best-of-generation trajectories, as described in

4As before, plots for all 100 runs were generated and visually investigated. Figure 4.3 displays three runs,
all other plots display a single run.
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section 3.2, overlaid on the best-response curves. One difference is that each point on a

trajectory represents the best individual of a generation (and corresponding population)

coupled with the collaborator from the other population to which it owes its fitness. This

may or may not be the best individual of that other population.

As a consequence, once a random collaborator is used, the trajectory is no longer forced

to move only horizontally and vertically (as is the case with the single-best method), but

it can take any direction. Additionally, when using only random collaborators, elitism

no longer guarantees ever increasing fitness.5 This means that the end of the run is not

necessarily the best of the run as well, as can be seen on the corresponding zoomed-in plots.

Since the total number of evaluations per run was kept constant, more collaborators

per individual meant fewer generations, and this is reflected in the varying number of small

dots in the plots.

As we have already seen in the previous chapter, for single-best collaboration the dy-

namics of best individuals are strongly influenced by the best-response curves. We can now

see from Figures 4.4, 4.5, 4.7 and 4.8 that this is true for the other evaluation schemes as

well.

Overlapping best responses – BR1
10.

As we know from the previous chapter, the BR1
10 function has fully overlapped best re-

sponses (the main diagonal of the space) and this causes problems to the combination of

elitism and single-best collaboration. The best-of-generation trajectory of such a CoEA is

constrained to move only horizontally and vertically and only to better points. The effect

is that fairly quickly after start-up, the trajectory converges to some diagonal point close

to the starting location. The starting point of a run puts a bound on the highest fitness

that run can achieve. Unless the algorithm starts close to the global optimum, it will not

get close to it. The best of a run is thus highly dependent on the start of the run. This

explains the high variance in performance over multiple runs and the generally poor results

of the single-best collaboration strategy, as shown by the corresponding boxplot in Figure

5Even for the one best + one random method, elitism may not guarantee monotonic best-of-generation
fitness, depending on some implementation details. The implementation used for the experiments in this
thesis does have such a guarantee.
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Figure 4.3: BR1

10. Best-of-generation trajectories for the single-best collaboration
method. Three runs. Left: whole search-space. Right: zoom in.

4.1.

Using a random collaborator has the effect of preventing the trajectory from getting

“stuck” on overlap points, by allowing jumps in any direction. The trajectory can (and

does) move diagonally towards areas of high fitness (upper right corner), regardless of

where it started. This can be seen on the left hand side plots of Figures 4.4 and 4.5. This

explains while all methods using at least one random collaborator heavily outperform the

single-best collaboration method.

Investigating the zoomed-in plots helps explain why combining one best and one random

gives the best results on BR1
10 . We can see that the random-only methods have highly

“explorative” trajectories. Jumps are taken both towards higher and towards lower fitness.

By contrast, 1B1R combines the focus on best responses given by the best collaborator

with the exploration given by the random collaborator to avoid both getting stuck on the

diagonal and wandering around inefficiently.

Increasing the number of random collaborators from one to five has the effect of making

the trajectories less explorative and more exploitative. Due to the fixed budget, there are

fewer steps, but each step has higher chances of finding a better point. These two effects
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search-space. Right: zoom in.
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Figure 4.6: BR0.75

10 . Best-of-generation trajectories for the single-best collaboration
method. Three runs. Left: whole search-space. Right: zoom in.

balance out and the best-of-run fitness distributions are not statistically distinguishable.

Non-overlapping best responses – BR0.75
10 .

Performing the same type of analysis for the BR0 .75
10 function explains why in this case the

single-best collaboration method has the best performance rather than the worst. For this

function, the bestResponseX and bestResponseY curves differ and they intersect only in

the point that is the global optimum of the function. They are shown in Figures 4.6 through

4.8 with thick lines, dashed grey and continuous black, respectively.

In the case of the single-best collaboration method the trajectory alternates vertical

steps towards the bestResponseY curve with horizontal steps towards the bestResponseX

curve, as we see in Figure 4.6. This causes it to climb like on a ladder towards the global

optimum.

Introducing randomness in the collaboration mechanism causes the algorithm to move

away from this focus of following the best responses. In the case of the single-best plus

single-random method (bottom row of Figure 4.7), the trajectory may take bigger steps

toward high function values, but it does so at the cost of cutting in half the number of
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steps, thus it does not get quite as close to the optimum as using the single best only.

Using a single random collaborator (top row of Figure 4.7) generates again a lot of

exploration at the cost of almost no exploitation. For this function however, due to the

nature of its best-response curves, exploitation alone is a guaranteed way of reaching the

optimum, while exploration alone will get there only by luck. Increasing the number of

random collaborators (Figure 4.8) reduces exploration, but fails to increase exploitation to

the level of using the single-best.

The analysis of the dynamics thus explained why we observed the results in Figures

4.1 and 4.2 and it provided additional understanding of how the collaboration methods

under investigation work. Specifically, the best-response curves, which are a property of the

problem, have a strong impact on the dynamics of the algorithm. Different collaboration

methods interact with this property in different ways, affecting optimization performance.

In particular, the overlapping of the best-response curves in more than one point is

bound to cause problems for the single-best collaboration method, as it makes the algorithm

get stuck quickly in one of these points. Which of the points will attract the trajectory

largely depends on the initial configuration, rather than the function value at those points.

Thus, for functions that have different values across these overlapping areas, the single-best

collaboration method will exhibit poor performance at finding the optimum and methods

based on random collaborators should be used.

4.1.4 Predictive Power

We now use the heuristics developed through dynamics analysis in the previous section

to predict the effects of collaboration methods on the rosenrock and offAxisQuadratic

functions. Remember that for these functions the task is minimization. The best-response

curves for these functions were shown in Figure 3.9. For both functions, the best responses

intersect in a single point, corresponding to the global optimum. For offAxisQuadratic

the best responses are lines with an angle similar to that of BR0 .75
10 . rosenbrock’s best

responses are extremely close.

For rosenbrock, the CoEA using the single-best collaboration method will soon after
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start-up get stuck somewhere on the area of near-overlap, the position depending on the

start-up position. It will get close to the optimum only by chance (if it starts close to it),

therefore we predict poor performance for this case. Introducing a random collaborator

is likely to increase exploration and visit several points along the nearly-overlapping re-

gion, thus increasing the chances of getting closer to the optimum. We therefore expect

these methods to give better results than the single-best, in a manner similar to the BR1
10

function.

Indeed, by running our CoEA with the same 5 collaboration methods as before, we get

the results plotted in Figure 4.9, which confirm our expectations. Note that since these

were minimization problems, smaller values are better.

For the offAxisQuadratic function, the trajectory of best individuals for the CoEA

using the single-best collaboration method will alternately move horizontally towards the

bestResponseX curve and vertically towards the bestResponseY curve. This will direct

the algorithm reliably towards the point of intersection of the best-response curves, thus

towards the global optimum. Introducing random collaborators can only disrupt this fo-

cus. Exploitation alone will solve the problem, exploration is not needed and in fact can

be harmful. We predict the results will be similar to the ones obtained for the BR0 .75
10

function, and Figure 4.10 confirms this.
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4.2 Communication Frequency

In order for individuals in one population to interact with individuals from other popu-

lations, the populations must have access to one another’s contents. This is a matter of

communication between populations, and the question that arises is how often this com-

munication should take place. The standard choice is to have the EAs in the different

populations be generational and have the populations communicate after each generation.

However, one could also allow the populations to evolve independently for longer or shorter,

in other words, adjust the communication frequency. This section investigates the perfor-

mance effects of this CoEA-specific parameter and finds them once again dependent on the

problems’ best responses.

4.2.1 Related Work

Most work in both compositional and test-based setups has used the standard choice of

communicating after each generation. Various other choices for this parameter were used

mainly in domain-focused applications of CoEAs, e.g. (Bongard and Lipson, 2005) for a

test-based problem and (Parker and Blumenthal, 2003; Blumenthal and Parker, 2004) for

a compositional problem. In particular, Parker and Blumenthal (2003); Blumenthal and

Parker (2004) use a CoEA with a non-uniform evaluation scheme, evaluating individuals

one way during communication with other populations and another way when evolving

independently. In comparing different parameter choices, in order to keep a fixed budget,

changing the communication frequency also changed the number of collaborators used for

evaluation at communication. Two sensitivity studies6 of the communication frequency

were performed for robot domains (box-pushing and pursuit-evasion).

No cross-domain systematic study of the effects of communication frequency was previ-

ously performed.

6Only five runs were performed and averaged for each setting.
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4.2.2 Experiments

The Problems

The BRα
n family was used for this analysis, instantiated with n = 10 and α ∈ {0, 0.2, 0.25,

0.4, 0.5, 0.6, 0.75, 0.8, 0.9, 0.94, 0.95, 0.96, 0.98, 0.99, 1}. For brevity and clarity, the data

presented below is only from 9 of these settings for α, namely 0, 0.2, 0.4, 0.6, 0.75, 0.9, 0.96,

0.98 and 1. However, the results for the omitted values fit well in the trend described by

the values showed.

The Algorithm

We call a communication point a point in evolutionary time at which the populations com-

municate. In this section we only look at cases where the time between any two consecutive

communication points is the same. We call this period of time an epoch. In the experiments

reported here we varied the epoch size as a means to control the frequency of communication

(bigger epoch size equals smaller frequency and vice versa). Because we have used a genera-

tional EA, we measured the epoch size in generations. For example, for the base-CoopCoEA

the epoch size is one.

Using a sequential flow now translates into only one population being active during each

epoch, while the other population is frozen. At the end of the epoch (at the communication

point), the population that was evolving communicates its best individual to the population

that was frozen and then they switch roles (unidirectional communication). The previously

frozen will be active during the following epoch and at the end of it, it will report its best

individual to the other population. Below is the pseudo-code for an X epoch n generations

long:

- evaluate the X population using the current ybest;

- repeat n times:

- select parents according to determined fitness values;

- breed;

- evaluate the new population using the same ybest;

- determine xbest and report it to the other population.
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For fair comparisons between communication schemes, we kept the number of evalua-

tions constant across experiments. Note that with the above code, for an epoch that is n

generations long, the active population will perform (n+1)∗m evaluations, where m is the

population size. For k epochs, sequential flow will require (n + 1) ∗m ∗ k evaluations, as

there is only one population active per epoch.

We have performed experiments with 8 settings for the epoch size, namely 1, 2, 3, 5, 8,

11, 17 and 26 generations. With a fixed budget of 2160 function evaluations, this meant

running for 54, 36, 27, 18, 12, 9, 6 and respectively 4 epochs (e.g. for epoch size 3 we

have (3 + 1) ∗ 20 ∗ 27 = 2160). For each setting we performed 100 independent runs, 50 of

which started with the X population active and 50 with the Y population active. We then

repeated all of this for every value of α mentioned above.

The Performance

Figure 4.11 summarizes performance of the 8 epoch size settings for the 9 mentioned α

values. It shows boxplots of best-of-run fitness collected over the 100 independent runs.

Although BRα
n has the same range for any α, we have zoomed in on a different fitness

interval for each plot in order to be able to see the differences between epoch sizes.

As we increase α from 0 to 1, we observe a gradual change in the performance effects

of the epoch size. We start (for α = 0) with an upward-only slope for performance as we

increase epoch size from 1 to 26. At α = 0.2, the performance “curve” is first going upward,

then level and then downward. As we further increase α, the upward part of the performance

curve is gradually getting shorter and shorter until it vanishes (at about α = 0.6), while the

downward part is getting more and more pronounced. From there to α = 1 we see a more

rapid change, with the downward part flattening out through performance decrease for low

epoch sizes. A close look at the y axis ranges of the plots will show an overall decrease in

performance with increasing α. In other words, BRα
10 becomes a harder problem for our

CoEA as α increases.

While each particular plot in Figure 4.11 nicely portrays the trend of changing per-

formance with increasing epoch size, it is hard to tell from such a plot whether any two
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Figure 4.12: BRα

10. Statistical significance of differences between epoch sizes’ performance.
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particular epoch sizes generate a statistically significant difference in performance. To

achieve that, we use a different plotting technique portrayed in Figure 4.12. Each plot in

this figure represents one α value and color-codes the results of all pairwise comparisons of

epoch sizes. A square corresponding to epoch sizes esi and esj is:

- gray, if we cannot statistically significantly distinguish between the performance of esi

and that of esj ;

- black, if there is a statistically significant difference in performance between esi and

esj and the smaller epoch size (min(esi, esj)) performs better; and

- white, if there is a statistically significant difference in performance between esi and

esj and the bigger epoch size performs better (i.e., the smaller epoch size performs worse).

This definition is symmetrical, since min(esi, esj) = min( esj , esi), therefore we only

display the upper left triangle. To test statistically significant difference of medians we use

the Wilcoxon test (Wilcoxon, 1945) combined with Hochberg’s sharper Bonferroni procedure

for multiple tests of significance (Hochberg, 1988). The total confidence for each image is

at least 95%.

The image for α = 0, for example, tells us that epoch size 1 performs worse than any

other. It also tells us that epoch sizes 2 and 3 perform worse than 17, but nothing else can

be distinguished. Thus, there is a benefit in increasing epoch size from 1 to 2, but to get

yet another boost in performance, we would have to increase the epoch size all the way up

to 17. For α = 0.2 the black squares in the image tell us that epoch size 26 performs worse

than anything else and epoch size 17 performs worse than 3 and 8. And while we cannot

distinguish between 3, 5 and 8 due to gray, nor between 1 and 2, the white squares tell us

that any of 3, 5 and 8 perform better than 1, and 8 also performs better than 2.

Making a parallel with Figure 4.11, white on the left tells us there is an upward part in

the performance slope, gray triangles above the diagonal denote a flat part and black on the

top shows the existence of a downward part. Reading Figure 4.12 along increasing α, we

see that we start with some white on the left and a lot of gray, then the white and the gray

areas start diminishing, as the black moves in from the top; the white finally disappears,

after which the gray area starts growing again and the black area shrinks until it disappears

as well. If we use the above “translation”, we discover the same message as conveyed by
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Figure 4.11, but now it is backed up by statistical significance.

Our hypothesis is that these performance effects of the communication frequency are due

once again to the best-response curves. The dynamics analysis performed in the following

section confirms this hypothesis and sheds light on the observed phenomena.

4.2.3 Dynamics Analysis

We perform an analysis similar to the previous ones in order to investigate the performance

effects of communication schemes. However, in this case we will be concerned with best-

of-epoch individuals and their trajectories through the search space. We construct these

trajectories in a similar manner to the best-of-generation trajectories. At the end of an epoch

during which the X population was active, we plot the best x individual in combination with

the y individual used for its evaluation. In this case, due to the single best collaboration

scheme, that y is the currently known best individual of the opposite population. At the

end of the next epoch, during which the Y population will be active, we plot the new

best y coupled with the previous best x. We do this for every epoch and connect the

points chronologically. As before, due to the single-best collaboration scheme the trajectory

obtained contains only vertical lines (when connecting an X epoch with the following Y

epoch) and horizontal lines (when connecting an Y epoch with the following X epoch).

We then combine best-response curves with best-of-epoch trajectories. Figure 4.13 shows

examples of best-of-epoch trajectories for individual runs, superimposed on best-response

curves. It is immediately apparent that the trajectories are highly influenced by the best-

response curves.

The previous chapter and the previous section in this chapter showed that optimization

performance is tightly correlated with the three factors below, the first one being problem

dependent and the latter two algorithm dependent:

- the relative positions of the best-response curves (mainly whether or not they overlap);

- the accuracy with which the best-of-generation trajectories follow the best-response

curves; and

- the length of the trajectories (i.e. the number of communication points).

In the case of α = 1, high accuracy in following the best-response curves is bad for



110

0 2 4 6 8 10

0
2

4
6

8
10

X

Y
bestResponseX(y)
bestResponseY(x)

Run Start      End Best
1
2

0 2 4 6 8 10

0
2

4
6

8
10

X

Y

bestResponseX(y)
bestResponseY(x)

Run Start      End Best
1

Figure 4.13: Examples of best-of-epoch trajectories and best-response curves. Left: α = 1,
epoch size 1. Right: α = 0.4, epoch size = 3.

performance, since it will cause the trajectory to quickly get stuck in a point on the overlap

line (as can be seen in the top of Figure 4.13), which may or may not be close to the

optimum (depending on the starting position). For α ∈ (0, 1), high accuracy will cause

the trajectory to climb like on a ladder towards the optimum. However, it constrains the

size of the trajectory’s steps to the distance between the best-response curves. The closer

these are, the smaller the highly accurate steps will be. Low accuracy allows for jumps

larger than the distance between the best-response curves, although smaller jumps may

occasionally occur as well. Thus, high accuracy is beneficial when the best-response curves

are at a big angle, but it starts being detrimental as the angle between them gets smaller.

When the trajectory is not stuck, a bigger length (more steps) will give it more time to

get closer to the optimum. However, with a fixed budget, more steps usually imply smaller

per-step accuracy. When the trajectory is stuck, more steps will not help (but won’t hurt

either).

Clearly, since trajectory length is measured in communication points, increasing the

epoch size decreases trajectory length. Intuitively, increasing the epoch size should have

the effect of increasing trajectory accuracy. One way of testing this is to visually inspect
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Figure 4.14: Higher epoch size implies fewer communication points and also appears to
have the effect of increasing accuracy in following the best-response curves. α = 0.75. Left:
epoch size 1. Right: epoch size 11.

trajectories. Figure 4.14, portraying epoch sizes 1 and 11 for α = 0.75 seems to suggest

that is the case. However, we would like a quantitative way of testing this hypothesis.

For that purpose, we define two metrics that compute distance from the best-response

curves:

brDistX(x, y) = |x− bestResponseX(y)| and

brDistY (x, y) = |y − bestResponseY (x)|.
We compute brDistX at communication points marking the end of an X epoch and brDistY

at communication points marking the end of an Y epoch. This gives us a measure of the

accuracy of trajectories. We use it to compare the accuracy induced by different epoch

sizes.

Figure 4.15 shows statistics of brDistY (brDistX behaves similarly). Each plot portrays

for a certain α the accuracies for epoch sizes 1, 5 and 17. At each communication point

marking the end of an Y epoch, we plot the mean over 50 runs7 of brDistY for that

7In this case the ones starting with an X generation. Similar plots are obtained when averaging over the
50 runs that start with a Y generation
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Figure 4.15: BRα

10. Accuracy with which best-of-epoch trajectories follow the
best-response curves. |y − bestResponseY (x)| computed for best-of-Y -epoch points
(x, y). Top row, left to right: α = 0, α = 0.6. Bottom row, left to right: α = 0.98, α = 1.
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communication point, together with the 95% confidence interval for that mean. These plots

confirm our hypothesis that increasing epoch size increases the accuracy of the best-of-epoch

trajectories.

Combining this new knowledge with the previous heuristics about how best-response

curves, trajectory accuracy and trajectory length affect performance, we can now explain

the results displayed by Figures 4.11 and 4.12.

At α = 0, as the best-response curves are perpendicular, a deterministic system exactly

following them would reach the optimum in just two steps. Even with an epoch size of

26 generations, the trajectories are allowed 4 steps. Thus the trajectory length plays a

less important role and it is accuracy that brings in performance benefits. As we increase

α, we decrease the angle between the best-response curves, and more steps are needed in

order to get close to the optimum, therefore trajectory length becomes increasingly more

important. As long as increasing the epoch size increases accuracy while still keeping the

trajectory length above what is needed to get close to the optimum, we see improvements in

performance (the upward part of the slope). Then there is a range in epoch sizes for which

accuracy and trajectory length counter-balance each other and we see a flat performance

trend. After that, the disadvantage of having a short trajectory overcomes the benefits of

high accuracy and we see diminishing performance.

As the best-response curves get closer, we transition into the phase where high accuracy

is detrimental. Thus, increasing the epoch size becomes bad for performance both through

high accuracy and through short trajectory length.

At α = 1, even the accuracy of epoch size 1 is extremely high (as can be seen in the

bottom right plot of Figure 4.15), and so the trajectory already gets stuck. The best-of-run

essentially has the same distribution as the best of the first epoch, namely uniform over the

interval [10, 20]. Increasing epoch size can’t make things worse than they already are.

4.2.4 Predictive Power

We now test to see whether what we have learned on the BRα
n family can be applied to

other functions. We use three functions: the previously introduced offAxisQuadratic and

rosenbrock and a third called rastrigin and defined as:
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Figure 4.16: rastrigin. Three-dimensional view and best responses.

rastrigin(x, y) = 6 + x2 + y2 − 3cos(2πx) − 3cos(2πy),

x, y ∈ [−5.12, 5.12].

Figure 4.16 shows its three-dimensional surface and its best responses. These are similar

to the best responses of BR0
10 , in that they are parallel to the axes (thus perpendicular to

one another) and intersect only at the global minimum, (0, 0). The best-response curves for

offAxisQuadratic and rosenbrock were plotted in Figure 3.9.

Based on the similarities with functions from the BRα
n family, we expect the following

effects of increasing the epoch size within a fixed budget:

- rastrigin: performance increases with the epoch size;

- offAxisQuadratic: undistinguishable performance for the first few epoch sizes and

then decreasing performance;

- rosenbrock: similar performance for all epoch sizes, with just a few cases when higher

epoch size performs worse.

We performed the same experiments as for BRα
10 , with the only exception that we

adjusted the sigma of the Gaussian mutation according to the size of these new domains.

The experiments confirmed our expectations, as can be seen from Figure 4.17.
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Figure 4.17: Left column: best of run statistics. Minimization: smaller is better. Right
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4.3 Communication Flow: Sequential versus Parallel

The parameter under investigation in this section is communication flow (also referred to as

update timing Wiegand (2004)), which determines the order in which the populations of a

CoEA are processed and updated, relative to inter-population communication events. There

are two main types of communication flow: sequential and parallel. In the sequential case

the populations are processed in serial order and at any point in time only one population is

active. For evaluation purposes, collaborators are chosen from the current state of the other

populations. Populations processed and updated earlier will affect populations processed

later. In the parallel case the populations are processed in parallel, at any point in time all

of them are active8. Collaborators are chosen from the saved states of the other populations.

4.3.1 Related Work

A parallel CoEA may be setup to run on multiple processors in order to decrease computa-

tion time. Therefore, we would like to know how the optimization performance is affected

by the decision of switching from sequential to parallel communication flow. A previous

study on this matter was performed by Jansen and Wiegand (2003b) in the context of

pseudo-boolean functions. The approach taken in that work was to use traditional run time

analysis tools on the simple (1+1) cooperative CoEA. It first showed that when the function

is linearly separable and the decomposition used by the algorithm matches this separabil-

ity9 there is no difference between the sequential and the parallel CoEA. It then used two

carefully crafted inseparable functions to distinguish the two variants of the CoEA. On one

function the sequential version performed better than the parallel one, while on the other

function the reverse was true.

While this study provided useful insights into the differences between sequential and

parallel communication flow, for most practical purposes one uses CoEAs more complex than

the (1+1) version and also deals with domains that cannot be modeled as pseudo-boolean

functions. Therefore, in this section we take another look at the effects of communication

8When simulating a parallel CoEA in a single process, this translates into the fact that the order in which
the populations are processed is irrelevant.

9See Jansen and Wiegand (2003b) and Wiegand et al. (2002) for explanations of these terms.
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flow in a different setting, namely using a generational CoEA with larger population size

and functions defined on infinite, continuous real-number domains.

4.3.2 Experiments

The Problems

Once again, the BRα
n family of functions was used as a test suite. The experiments were

performed for n = 10 and α ∈ {0, 0.2, 0.25, 0.4, 0.5, 0.6, 0.75, 0.8, 0.85, 0.9, 0.92, 0.94,

0.95, 0.96, 0.98, 0.99, 1}.

The Algorithm

The sequential communication flow behaves as described for previous experiments. For the

parallel communication flow the populations evolve in parallel. Both of them are active

during each generation. At the end of each generation they communicate to each other

their respective best individual (bidirectional communication, epoch size 1).

As before, the evolution starts with an interaction point; a population that at this time

needs to communicate a best individual, will instead communicate a random one (since the

population hasn’t been evaluated yet, it doesn’t have a best). The number of evaluations

was kept constant across experiments, namely set to 1000. Each population had a size

of 20. One generation of the parallel case performs twice the number of evaluations of

the sequential case, because both populations are active. Therefore we ran the sequential

case for twice the number of generations for the parallel case, namely 50 generations for

sequential and 25 generations for parallel. Single-best collaboration, elitism and one extra

evaluation round per generation were used.

For each setting we performed 100 independent runs. In the sequential case, 50 runs

started with the X population active and 50 with the Y population active. This was

repeated for each value of α.

The Performance

Figure 4.18 summarizes the optimization performance for sequential and parallel commu-

nication flow over all 17 values of α. For each α, the median of best-of-run fitness over
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Figure 4.18: BRα

10. Best-of-run statistics for communication flow. Medians and 95%
confidence intervals over 100 runs. Statistical significance of medians’ difference: N = no
difference; S = sequential is better; P = parallel is better. Maximization: bigger is better.

100 runs is shown, together with its 95% confidence interval. Different colors and plotting

symbols distinguish between sequential and parallel.

The character above each α value on the horizontal axis reflects whether or not the

two medians (sequential and parallel) for that α are statistically significantly different with

95% confidence. Three color-coded situations are distinguished: dark gray N means no

difference, light gray S means sequential performs better and black P means parallel is

better. To test statistically significant difference we used the Wilcoxon test for medians.

What we observe is that as we increase α from 0 to 1 there is a decrease in performance

both for the parallel and for the sequential communication flow (as we increase α the problem

becomes harder). However, this decrease happens at different rates for the two settings.

The effect is that they start out undistinguishable for α ≤ 0.25, after which the parallel

setting performs progressively worse than the sequential (α from 0.4 to 0.96), then they

are undistinguishable again (α ∈ {0.98, 0.99}) and finally the parallel becomes considerably

better than the sequential for α = 1.

As the next section will show, it is once again the best-response curves that are respon-
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Figure 4.19: Examples of best-of-generation trajectories and best-response curves for indi-
vidual runs of the sequential CoEA. Left: α = 0.25. Right: α = 0.95.

sible for the effects on optimization performance of the communication flow.

4.3.3 Dynamics Analysis

For sequential communication flow, we construct the best-of-generation trajectories as be-

fore and then overlay them on best-response curves. Figure 4.19 shows examples of indi-

vidual runs.

For parallel communication flow, the best-of-generation individuals describe two inter-

laced (and interdependent) trajectories. One consists of: the best x individual at generation

one, the best y individual at generation two, the best x individual at generation three, etc.

The other trajectory consists of: the best y individual at generation one, the best x indi-

vidual at generation two, the best y individual at generation three, etc. Figure 4.20 shows

an example for α = 0.75. The trajectories are distinguished by color and the shape of

start/stop points.

As before, the trajectories are highly influenced by the best-response curves. We go on

to show that this fact is the key to the performance effects observed earlier. To that extent,

let us consider a deterministic system that exactly follows the best-response curves. For
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Figure 4.20: BR0.75
10 . The two interlaced and interdependent best-of-generation trajectories

of one run of the parallel CoEA. Triangles denote the start/stop of the trajectory started
with an X generation evaluated with a random y individual. Circles denote the start/stop
of the trajectory started with a Y generation evaluated with a random x individual.

such a system, given the starting point and the number of iterations we can compute the

final point and consequently the function value in that point. Specifically, if the system

starts with a random y, yrand, and is run for n iterations, then the final point (xfinal, yfinal)

can be computed as follows:

m← n div 2

p← n mod 2

xfinal ← n− α2m(n− yrand)

yfinal ← n− α2m+2p−1(n− yrand)

The end point of the trajectory of the system started with a random x can be similarly

computed.

As a model of idealized performance for sequential communication flow, we generate 50

random x values and 50 random y values10 and use them as starting points. We compute

as above the corresponding final points for 50 iterations and then the value of the function

10Random in this case means uniformly distributed over [0, 10].
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Figure 4.21: BRα

10. Best-of-trajectory for model. Medians and 95% confidence intervals
over 100 runs. Statistical significance of medians’ difference: N = no difference; S =
sequential is better; P = parallel is better. Maximization: bigger is better.

in those points. We end up with 100 values whose distribution should approximate that of

the best-of-run fitness for the sequential setting.

To model parallel communication flow, we generate 100 pairs of random x and y values.

For each such pair, we compute the corresponding final points for 25 iterations and the

value of the function in those points and then take the maximum of the two. We end up

with 100 values whose distribution should approximate that of the best-of-run fitness for

the parallel setting.11

Clearly, when starting in the same point a shorter trajectory (i.e. with fewer iterations)

will attain a smaller function value at the end. However, taking the maximum for two

shorter trajectories should somewhat counteract this disadvantage. This is indeed what we

see in Figure 4.21, which shows the results of the computations for the deterministic models

(sequential and parallel) for the same values of α as before.

We see the effects are remarkably similar to those of the actual algorithm. As α increases,

11For the sequential setting the best-of-run is always equal to the best of the last generation (due to elitism
and re-evaluation at each generation). For the parallel setting that may not be the case. For deterministic
trajectories the value of the function increases monotonically from the first to the last point, thus the best
of a trajectory is the last of that trajectory.
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Figure 4.22: BRα

10. Actual results versus model results. Medians and 95% confidence inter-
vals over 100 runs for CoEA results. Medians only for model results. Statistical significance
of medians’ difference (sequential versus parallel), identical for model and algorithm: N
= no difference; S = sequential is better; P = parallel is better. Maximization: bigger is
better.

performance decreases, both for parallel and for sequential. And we still have the trend:

first undistinguishable performance, then sequential performs better, then undistinguishable

performance, then parallel performs considerably better. Moreover, for the 17 values of α

considered, the categories of statistical significance for the differences between sequential

and parallel (N/S/P) are the same for the model and the algorithm.

To get a better view of how the results of the algorithm relate to the results of the

deterministic model, we superimpose the two, as can be seen in Figure 4.22. For visibility,

we display the results of the model as lines connecting the medians and omit the confidence

intervals.

Both flow settings generally perform worse than the corresponding deterministic model

for non-overlapping best responses, this is due to the fact that the best-of-generation trajec-

tories tend to take more steps which are smaller than the actual distance to the correspond-

ing best-response curve than steps larger than this distance. This effect is the result of the

difference in gradient on the two sides of each best-response curve. The best-of-generation



123

0 2 4 6 8 10

0
2

4
6

8
10

X

Y
bestResponseX(y)
bestResponseY(x)

Run Start      End Best
1

0 2 4 6 8 10

0
2

4
6

8
10

X

Y
Figure 4.23: BR0.95

10 . Sequential flow. Left: the best-of-generation trajectory for one CoEA
run. Right: the trajectory for the corresponding deterministic model started with the same
initial conditions as the run on the left.
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Figure 4.24: BR0.95
10 . Parallel flow. Left: the best-of-generation trajectories for one CoEA

run. Right: the trajectories for the corresponding deterministic model started with the
same initial conditions as the run on the left. Triangles denote the start/stop of the tra-
jectory started with an X generation evaluated with a random y individual. Circles denote
the start/stop of the trajectory started with a Y generation evaluated with a random x
individual.
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Figure 4.25: BR1

10. Sequential flow. Left: the best-of-generation trajectory for one CoEA
run. Right: the trajectory for the corresponding deterministic model started with the same
initial conditions as the run on the left.

trajectories thus do not travel as far as deterministic trajectories would, resulting in smaller

function values. This can be observed both for the sequential case in Figure 4.23 and for the

parallel case in Figure 4.24. Also note on these plots that the trajectory of the sequential

CoEA travels farther than any of the two trajectories of the parallel CoEA.

For overlapping best responses (α = 1), the sequential CoEA and the corresponding

model behave extremely similar, as portrayed in Figure 4.25. As we know from all studies

presented so far, the combination of elitism, single-best collaboration and sequential flow

causes the trajectories to quickly converge to a close-by diagonal point. This is in agreement

with the undistinguishable performance of the sequential CoEA and its deterministic model

for α = 1 as can be seen in Figure 4.22.

The trajectories of the parallel CoEA on BR1
10 behave differently both from those of the

corresponding model and from those of the sequential CoEA, as can be seen in Figure 4.26.

Parallelism no longer guarantees ever increasing fitness, therefore the trajectories wander

around the diagonal without getting stuck on it. This explains the better performance of

the parallel CoEA for α = 1, as shown in Figures 4.18 and 4.22.
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Figure 4.26: BR1
10. Parallel flow, two different runs, one per line. Left: the best-of-

generation trajectory for one CoEA run. Right: the trajectory for the corresponding de-
terministic model started with the same initial conditions as the run on the left. Triangles
denote the start/stop of the trajectory started with an X generation evaluated with a ran-
dom y individual. Circles denote the start/stop of the trajectory started with a Y generation
evaluated with a random x individual.
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Figure 4.27: Best-of-run statistics for communication flow. Minimization: smaller is better.
Left: rastrigin. Middle: offAxisQuadratic. Right: rosenbrock.

The heuristics we have developed through this study on the BRα
n family of functions

are as follows:

- when the best-response curves are overlapping or very close to each other, parallel com-

munication flow has a considerable advantage over sequential communication flow;

- otherwise, the two settings are undistinguishable or the parallel performs worse than the

sequential.

4.3.4 Predictive Power

We now test whether what we have learned on the BRα
n family can be applied to other func-

tions. We use once again the three familiar test functions, rastrigin, offAxisQuadratic

and rosenbrock.

Refer back to Figures 3.9 and 4.16 for the best-response curves of the three functions.

Based on these curves and the above heuristics, we expect the following effects of the

communication flow:

- rastrigin: undistinguishable performance;

- offAxisQuadratic: undistinguishable performance or parallel does just slightly worse

than sequential;

- rosenbrock: parallel performs considerably better than sequential.

We performed the same experiments as for BRα
10 , with the only exception that we
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adjusted the sigma of the Gaussian mutation according to the size of these new domains.

The experiments confirmed our expectations, as can be seen from Figure 4.27: performance

of the two flow settings is undistinguishable for rastrigin, sequential outperforms parallel

for offAxisQuadratic, and parallel outperforms sequential for rosenbrock.

Note that both BRα
n and rastrigin are linearly separable (Wiegand, 2004) with respect

to the x–y decomposition. Thus, the fact that for these functions the performance of the

parallel and sequential communication flow are undistinguishable is in agreement with the

results of Jansen and Wiegand (2003b). The fact that the best-response curves are lines

parallel to the x and y axes is a consequence of the separability. The best-response curves

are decomposition-dependent and for any function that is separable across a decomposition,

the corresponding best-response curves will be parallel to the decomposition’s axes.

4.4 Summary

This chapter and the previous one analyzed a wide range of variations of the basic coevo-

lutionary algorithm as introduced by Potter (1997). In all cases, the best-response curves

of the problems considered had a strong influence on the results. In addition, the dynamics

analysis of best-individual trajectories proved useful for understanding how the interplay of

algorithm properties and problem properties affect optimization performance. The follow-

ing chapters use the same connected analysis approach and same set of tools to investigate

problems with more complex best-response relationships.



Chapter 5

Analysis of More Complex Synthetic Compositional Cooperative Problems

The functions investigated in the previous two chapters all have continuous best responses.

Moreover, these best responses intersect either in a single point (which is then the global

optimum), or in an infinity of points (as is the case for BR1
n). In this chapter, the analysis

is extended to functions with more complex relationships between the best responses.

The first section introduces a new set of functions with discontinuous best responses that

have either two or an infinity of intersection points (Nash equilibria1). The analysis concerns

the performance effects of the population size. The second section introduces another test

suite for which the focus is on “locally-best” responses and analyzes the performance effects

of collaboration methods.

For both cases, the closeness of the best responses is shown to still have an influence on

performance. A few additional problem properties that influence performance are investi-

gated, such as the size of the basins of attraction of best-response intersection points and

the relative values of those points. It is shown how some of these problem properties have

conflicting influences on the performance effects of the parameters under investigation.

Finally, the third section uses a function from the literature to illustrate the role of the

starting population for sequential CoEAs given a certain kind of asymmetry of the best

responses.

As before, all functions used in this chapter are given in closed form, have analytically

computable best responses and known optima. All these three restrictions are eliminated

in the next chapter which features a simulation domain.

1As mentioned in chapter 3, the intersection points of the best responses are Nash equilibria for a
deterministic system following the best responses.
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5.1 Collaboration Methods and Independent Nash Equilibria

5.1.1 Experiments

Test Suite

The BRα
n family of functions is used as a basis for constructing new, multi-Nash functions by

means of concatenation. To analyze collaboration methods the following family of functions

is used:

DBRn,α
p,add : [0, n]× [0, n]→ R

DBRn,α
p,add(x, y) =











































BRα
n(n− x, n− y) if p = 0;

BRα
n(n− x, n− y) if p ∈ (0, 1), x ≤ (1− p)n, y ≤ (1− p)n;

BRα
n(x, y) + add if p ∈ (0, 1), x > (1− p)n, y > (1− p)n;

BRα
n(x, y) + add if p = 1;

0 otherwise.

Since n is fixed to 10 for all experiments reported, it will from here-on be dropped from

the function’s name. DBRα
p,add is basically composed of two BRα “hills” placed diagonally

in the space, and two flat areas of value zero. These four regions are disjunct, and their

relative sizes are determined by the p parameter. One hill has the peak (Nash) at (0, 0),

the other hill at (n, n). The latter hill is “lifted” by add.

Figure 5.1 shows three-dimensional views of DBR for α = 0.75, add = 5 and p ∈
{0.25, 0.5, 0.75} and together with their respective best responses.

The performance effects of collaboration methods were investigated while varying α ∈
{0, 0.05, 0.25, 0.5, 0.75, 0.95, 1}, p ∈ {0.25, 0.5, 0.75} and add ∈ {1, 5}, thus resulting in 7 ∗
3 ∗ 2 = 42 test functions. For space reasons, plots of results are shown only for α ∈
{0, 0.25, 0.75, 0.95, 1}, but the two missing values fit well within the trends described by the

ones showed.

Algorithm

For each test function 5 collaboration methods were compared: single-best (1B), single-

random (1R), one best plus one random (1B1R), two random (2R) and five random (5R).
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Figure 5.1: DBRα
p,add with add = 5 and α = 0.75. Top to bottom: p = 0.75, 0.5, 0.25. Left:

three-dimensional view. Right: best responses.
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The remaining parameters of the algorithm were set as follows: sequential update timing,

epoch size 1 generation with no extra evaluation, 10 single-gene real-number individuals in

each population, elitism of 1, binary tournament selection, Gaussian mutation at 90% rate

with sigma fixed to 0.2 (10/50). Each run had a budget of 1000 evaluations, resulting in

100 generations for methods using only one collaborator, 50 generations for methods using

two collaborators and 20 generations for 5R. For each function and collaboration method

100 independent runs were performed.

5.1.2 Results

Visualization Technique

Best-of-run Statistics Performance is compared in terms of best-of-run fitness distri-

butions. Figures 5.2 and 5.4 summarize the results in the form of “significance plots”, as

introduced in section 4.2. Figure 5.2 shows all results for add = 5 and Figure 5.4 shows all

results for add = 1. Each column of plots corresponds to a value of p and each line to a

value of α. Thus each individual plot represents one function and shows the outcome of all

pair-wise method comparisons for that function.

A comparison is represented by a square color-coded as gray, white or black. A square

(i, j), with i, j ∈ {1B, 1R, 1B1R, 2R, 5R} is:

• gray – if a statistically significant difference between method i and method j could

not be detected;

• white – if there is a statistically significant difference between the methods and method

i performs better; and

• black – if there is a statistically significant difference between the methods and method

i performs worse.

Only the squares (i, j) above the main diagonal are shown, as the ones below can be inferred

from them (by complement: gray stays gray while black turns to white and vice-versa).

As in section 4.2, statistically significant difference is tested using the Wilcoxon test

(Wilcoxon, 1945) combined with Hochberg’s sharper Bonferroni procedure for multiple tests

of significance (Hochberg, 1988). The total confidence for each image is at least 95%.
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Note that he methods are ordered such that in any pair the method on a higher line

uses either more collaborators or an equal number of collaborators, but more random ones

than the method on the lower line. Using this “more” metaphor and due to the fact that

the plots only display the region above the main diagonal, one can simply interpret the

colors as white means more is better, black means more is worse. Additional ways of easily

reading information in the images include: black on a line is bad for the method on that

line; white on a line is good for the method on that line; black on a column is good for the

method on that column; white on a column is bad for the method on that column.

Convergence Statistics Since the purpose of this chapter is to investigate CoEAs’ be-

havior on problems with multiple Nash equilibria, convergence to the right Nash is an issue

of interest. Of course, this is tightly related to performance, however, it cannot be easily

inferred from the best-of-run comparison plots. Therefore, a new type of plot is used, as

shown in Figure 5.3. Each line of plots corresponds to one α value and each column to

one add value. Each plot then summarizes the three values of p, with different styles for

lines and points. For each p there is a line connecting 5 points, each corresponding to a

collaboration method. A point for a particular p and collaboration method displays the

percentage2 of runs that “converged” to the hill of the higher peak/Nash.

The term convergence is somewhat abused here, for reasons of shortness of speech. What

it really means is as follows: a run is said to have “conoverged” to a certain peak, if the

best individual of that run is located on the hill corresponding to that peak (regardless of

how far/close it may be from the peak). This is well-defined due to the fact that the two

hills are disjunct3.

Discussion

Let us start by looking at Figure 5.2 corresponding to add = 5. The following color trend is

clearly visible: the number of black squares per plot decreases (in favor of gray and white)

both from left to right on each line and from top to bottom on each column. This implies

2In this case, since 100 runs were performed, the percentage is equal to the actual count.
3The point ((1 − p) ∗ n, (1 − p) ∗ n) belongs to the lower peak, except for p = 0, when there is no lower

peak.
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that the performance effects of collaboration methods are affected both by the proximity of

the best responses and by the relative sizes of the basins of attraction of the two Nash-es.

Consider the case when the hill corresponding to the higher Nash is larger (p = 0.75).

On the right side of Figure 5.3, the black lines and bullets show the percentage of runs

converged to the hill of the higher Nash. What one can see is that, regardless of α, the

single-best collaboration method has a convergence percentage roughly close to 75% (in line

with p = 0.75), while all methods that employ at least one random collaborator increase the

convergence percentage to roughly 100%. If one were to judge only by these numbers, one

would expect the random-based methods to always outperform the single-best method. As

the left-hand column of Figure 5.2 shows, that is not the case, namely because, as previously

mentioned, the closeness of the best-responses also comes into play.

As the analysis in section 4.1 showed, including a random collaborator decreases the

accuracy of following the best-responses. This is good when the best responses are close,

as it prevents the algorithm from getting stuck or barely crawling on a narrow ridge, but

it is bad when the best responses are far apart. Thus, the column corresponding to 1B is

completely black (meaning 1B is better than all others) for α = 0 and α = 0.25, half black

and half gray for α = 0.75 and completely white (meaning 1B is worse than everything else)

for α = 0.95 and α = 1. At α close to 1, both the proximity of the best responses and the

existence of a lower hill work to the disadvantage of single-best. At low α, the negative

effect of the lower hill is counteracted by the high precision in reaching the peak when on

the higher hill. As the higher hill is large, the latter overcomes the former.

One thing to note when comparing the random-based methods amongst themselves is

that, regardless of α, 5R is worse than 1R, 1B1R and 2R. As Figure 5.3 shows, 5R has

no advantage over the other random-based methods in terms of convergence to the higher

hill. Moreover, remember that with a fixed budget, increasing the number of collaborators

decreases the number of generations. Thus, even at α close to 1, while the low accuracy

in following the best responses allows the best-individual trajectory to climb the ridge, the

number of steps the trajectory is allowed is just too small. We see the same phenomena for

p = 0.5 and it is only at p = 0.25, when the hill of the higher Nash becomes very small,

that 5R starts to show some advantage. These two cases are discussed in the following.
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Figure 5.2: Significance of best-of-run fitness differences for DBRα
p,add with add = 5.

From left to right, per column: p ∈ {0.75, 0.50, 0.25}. From top to bottom, per line,
α ∈ {0, 0.25, 0.75, 0.95, 1}.
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Figure 5.3: Percentage of runs that converged to the hill of the higher Nash for DBRα
p,add.

Left: add = 1. Right: add = 5. From top to bottom, per line, α ∈ {0, 0.25, 0.75, 0.95, 1}.
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As previously mentioned, when we move from p = 0.75 to p = 0.5 to p = 0.25, thus de-

creasing the basin of attraction of the higher Nash, the number of black squares diminishes.

In particular, they completely disappear from single-best’s column, which they fully filled

before for low values of α. This is because the single-best collaboration method doesn’t

have the ability to jump from one hill to another, it is confined to the hill that it started

on by chance. As the size of the higher peak’s hill diminishes, single-best will reach that

peak less often, and it’s good performance (for low α) in reaching the lower peak will not be

enough to beat the random-based methods. All these methods have a visibly higher rate of

convergence to the higher hill than single-best has, as shown by the dashed and dot-dashed

lines on the right-hand side plots of Figure 5.3. Note also the fact that for p = 0.5 all

random-based methods are in the same ballpark in terms of convergence, while for p = 0.25

methods with 2 and 5 random collaborators have higher rates of convergence to the right hill

than methods with only one random collaborator. This reflects in performance, as shown

in the right-hand side plots of Figure 5.4: 5R is no longer the worst of all random-based

methods; most of the time it is undistinguishable from the others and occasionally it even

beats 1R. 2R also beats 1R on three occasions and is undistinguishable from it otherwise.

The plot for p = 0.25 and α = 0.75 shows an interesting case where the conflicting

forces driving performance (small hill for the high Nash, requiring many collaborators, and

medium distance between best responses, requiring less randomness) cancel each other out

and no difference between the five collaboration methods can be detected.

Consider now the case add = 1, which means that the difference between the heights

of the peaks is diminished. One would expect this to pose an additional challenge to the

algorithm’s ability to identify the higher peak. Figure 5.3 helps investigate this matter.

The left column shows plots for add = 1 and the right column the plots for add = 5 already

mentioned in the discussion above. What these plots show is that both the difference in

Nash basin size (controlled by p) and the difference in Nash height (controlled by add)

influence the helpfulness of random-based collaboration methods. When the basin size of

the higher Nash is small (p = 0.25), random collaborators help regardless of difference in

peak height (add). As the basin size of the higher Nash increases (p = 0.5, 0.75), random

collaborators are clearly less helpful in increasing convergence for add = 1 than for add = 5.



137

Collaborators

C
ol

la
bo

ra
to

rs

1B 1R 1B1R 2R 5R

1B
1R

1B
1R

2R
5R

Collaborators

C
ol

la
bo

ra
to

rs

1B 1R 1B1R 2R 5R

1B
1R

1B
1R

2R
5R

Collaborators

C
ol

la
bo

ra
to

rs

1B 1R 1B1R 2R 5R

1B
1R

1B
1R

2R
5R

Collaborators

C
ol

la
bo

ra
to

rs

1B 1R 1B1R 2R 5R

1B
1R

1B
1R

2R
5R

Collaborators

C
ol

la
bo

ra
to

rs

1B 1R 1B1R 2R 5R

1B
1R

1B
1R

2R
5R

Collaborators

C
ol

la
bo

ra
to

rs

1B 1R 1B1R 2R 5R

1B
1R

1B
1R

2R
5R

Collaborators

C
ol

la
bo

ra
to

rs

1B 1R 1B1R 2R 5R

1B
1R

1B
1R

2R
5R

Collaborators

C
ol

la
bo

ra
to

rs

1B 1R 1B1R 2R 5R

1B
1R

1B
1R

2R
5R

Collaborators

C
ol

la
bo

ra
to

rs

1B 1R 1B1R 2R 5R

1B
1R

1B
1R

2R
5R

Collaborators

C
ol

la
bo

ra
to

rs

1B 1R 1B1R 2R 5R

1B
1R

1B
1R

2R
5R

Collaborators

C
ol

la
bo

ra
to

rs

1B 1R 1B1R 2R 5R

1B
1R

1B
1R

2R
5R

Collaborators

C
ol

la
bo

ra
to

rs

1B 1R 1B1R 2R 5R

1B
1R

1B
1R

2R
5R

Collaborators

C
ol

la
bo

ra
to

rs

1B 1R 1B1R 2R 5R

1B
1R

1B
1R

2R
5R

Collaborators

C
ol

la
bo

ra
to

rs

1B 1R 1B1R 2R 5R

1B
1R

1B
1R

2R
5R

Collaborators

C
ol

la
bo

ra
to

rs

1B 1R 1B1R 2R 5R

1B
1R

1B
1R

2R
5R

Figure 5.4: Significance of best-of-run fitness differences for DBRα
p,add with add = 1.

From left to right, per column: p ∈ {0.75, 0.50, 0.25}. From top to bottom, per line,
α ∈ {0, 0.25, 0.75, 0.95, 1}.
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The effects of this phenomena on performance can be seen by comparing corresponding

plots from Figures 5.2 and 5.4. 1B’s column shows how it compares with the random-based

methods. For α close or equal to 1, this column is always white, regardless of add. Even

when random collaborators no longer improve convergence to the higher hill (p = 0.75, 0.5),

they still prevent the algorithm from getting stuck on the ridge and are thus better than

single-best.

For medium and low values of α (0, 0.25 and 0.75), improving convergence to the higher

Nash was the one thing random-based methods had to their advantage for add = 5. This

advantage is lost when switching to add = 1 and p = 0.75, 0.5. Thus, in they fare even worse

than before in the comparison against single-best. Out of the 24 squares on 1B columns for

α = {0, 0.25, 0.75} and p = 0.75, 0.5, at add = 5 there were 10 black, 13 gray and 1 white.

At add = 1 there are 18 black, 6 gray and no white.

What remains to be explained is white turning to gray and gray turning to black on 1B’a

column for low α and p = 0.25. The convergence plots show that random collaborators still

improve convergence to the higher peak. Why is it the case that random-based methods

still fare worse against 1B at add = 1 than at add = 5? The reason is that for add = 1

being on the higher hill is no longer enough, the algorithm has to reliably climb that hill

in order to reach values higher than those that can be found on the lower hill.4 Many and

random collaborators are bad when it comes to climbing far apart best responses.

Finally, note that for add = 1 we still have the trend of black disappearing when with

increasing α, thus showing that the proximity of the best responses still plays an important

role in the performance effects of collaboration methods.

To summarize, there are multiple problem properties that influence the performance ef-

fects of collaboration methods in multi-Nash domains. The proximity of the best responses

still plays an important role, but so do the relative sizes of the basins of attraction de-

termined by the best responses and the relative heights of the Nash-es. Moreover, these

properties can vary independently of one another and thus there exist cases where their influ-

ences are conflicting in nature. This can lead to situations like α = 0.75, p = 0.25, add = 0.5,

4As an example, for add = 5 and α = 0, the lowest value on the high hill is 20, which is equal to the
highest value on the lower peak!
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where all collaboration methods fare the same.5

5.2 Population Sizes and Local Best Responses

5.2.1 Experiments

Test Suite

To analyze the effects of population sizes, we used a different set of functions, as defined

below. They also concatenate two BRα
n hills, but this time along the Y axis instead of

diagonally.

V BRn,α
add : [0, n]× [0, 2n]→ R

V BRn,α
add(x, y) =







BRα
n(x, y) if y ≤ n;

BRα
n(x, y) + add otherwise.

As before, n is fixed to 10 for all experiments reported, so it will be dropped from the

function’s name. One of the two hills has the peak (Nash) at (n, n), the other at (n, 2n).

This latter hill is higher by add.

Figure 5.5 shows three-dimensional views and best responses for V BR with α = 0.75

and add ∈ {1, 5}. Note that the best responses do not depend on add, thus the bottom

plots in the figure are identical.

The performance effects of population size were investigated while varying α ∈ {0, 0.05,
0.25, 0.5, 0.75, 0.95, 1} and add ∈ {1, 5}, thus resulting in 7∗2 = 14 test functions. For space

reasons, plots of results are shown only for α ∈ {0, 0.25, 0.75, 0.95, 1}, but the two missing

values fit well within the trends described by the ones showed.

Algorithm

For each test function 6 population sizes were compared: 5, 10, 20, 50, 100 and 200. The

remaining parameters of the algorithm were set as follows: sequential update timing, epoch

size 1 generation with no extra evaluation, single-best collaboration, 10 single-gene real-

number individuals in each population, no elitism, binary tournament selection, Gaussian

5To be more accurate, we cannot reject the hypothesis that the performance of all methods is the same.
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add with α = 0.75. Left: add = 1. Right: add = 5. Top: three-

dimensional view. Bottom: best responses; bestResponseX shown in continuous black line,
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mutation at 90% rate with sigma fixed to 0.2 (10/50) for X and 0.4 (20/50) for Y . Each

run had a budget of 1000 evaluations, resulting in respective numbers of generations of 200

(for population size 5), 100, 50, 20, 10 and 5 (for population size 200). For each function

and collaboration method 100 independent runs were performed.

5.2.2 Results

The results are analyzed using the same types of plots as in the previous section. Figure 5.6

shows how the different population sizes compare in terms of the distribution of best-of-run

fitnesses they produce. White means the larger population size is (statistically significantly)

better, black means the larger population size is worse and gray means a distinction could

not be made. Figure 5.7 shows the percentage of runs that converged to the hill of the

higher Nash, with convergence defined as in the previous section.

In terms of best-of-run performance, there is a clear trend when varying α and a more

subtle one when varying add. I start the discussion with the latter. When moving from

add = 1 to add = 5, the plots get slightly “darker”. With one exception (α = 0.95) some

white turns into gray or even black and some gray turns into black (while black always

remains black). To understand why this is, it help to look at the convergence plots. Clearly,

convergence is higher for add = 5 than for add = 1. What is more interesting though is

the relation between the slopes of the lines connecting populations. Especially for low α,

increasing the population size brings less of an advantage for add = 5 than for add = 1.

This is of course intuitive: as the difference between hills is larger, even small populations

will detect it. Since detecting the higher hill was one of the advantages of larger population

sizes, when this advantage is diminished their performance relative to smaller population

sizes will decrease as well, thus resulting in more gray and black squares, as seen in Figure

5.6.

As far as α is concerned, we note the same effects as for the single Nash study in

chapter 3. This shows that the proximity of the best responses still plays an important

role in the performance effects of population sizes. As a reminder, what happens is that

there is a tradeoff between the accuracy with which best-individual trajectories follow the

best responses and the length of these trajectories. For low α, the best responses are at a
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Figure 5.6: Significance of best-of-run fitness differences for V BRα
add. Left: add = 1. Right:

add = 5. From top to bottom, per line, α ∈ {0, 0.25, 0.75, 0.95, 1}.
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Figure 5.7: Percentage of runs that converged to the hill of the higher Nash for V BRα
add.
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large angle, thus accuracy is beneficial and few steps are needed to reach the Nash; thus

initially performance increases with population size (white squares on the bottom-left), until

it reaches a plateau (gray color) after which it decreases (black squares on the top-right).

As α increases, the balance shifts in favor of low population sizes, thus the white squares

get fewer and fewer and eventually disappear at α close to 1.

In general, the performance effects of population size will depend on the interaction

between the influences of best-response proximity and best-response locality. In particular,

when there are multiple local best-responses and the best responses for the different popu-

lations are close/overlapping, there is tradeoff to be made between increasing the chances

of identifying the correct best response (requiring larger population sizes) and climbing the

best responses (requiring lower population sizes). In the case presented here, low population

sizes came out with the victory, but as the number of local best responses increases, the

balance may shift either in favor of larger population sizes or such that no distinctions can

be made. Already on the bottom left plot of Figure 5.6 there is a lot of gray denoting that

population sizes 20, 50, 100 and 200 cannot be distinguished!

5.3 Starting Population and Asymmetric Best Responses

This section investigates some effects of best-response asymmetry. The function used is

AsymmetricTwoQuadratics (Wiegand and Sarma, 2004; Wiegand, 2004), reproduced be-

low:

asymmTQ(x, y) = max







h1 − [sx1(x− x1)
2 − sy1(y − y1)

2]

h2 − [sx2(x− x2)
2 − sy2(y − y2)

2]
.

The function is the maximum of two quadratic hills, centered at (x1, y1) and (x2, y2)

with respective heights h1 and h2. sx1 and sy1 control the relative widths of the first hill

along the two axes. sx2 and sy2 do the same for the second hill. Their interplay of all four

values affects which hill covers more area.

For parameter settings x1 = 1/4, y1 = 1/4, sx1 = 500, sy1 = 25600, h1 = 50, x2 = 3/4,

y2 = 3/4, sx2 = 25600, sx2 = 500, h2 = 150 there are two peaks, one at (1/4, 1/4), of height

50, and one at (3/4, 3/4), of height 150. The best-response curves look like in Figure 5.8.

The two peaks correspond to the two intersection points.
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Figure 5.8: Best-response curves for asymmTQ with settings x1 = 1/4, y1 = 1/4, sx1 = 500,
sy1 = 25600, h1 = 50, x2 = 3/4, y2 = 3/4, sx2 = 25600, sx2 = 500, h2 = 150.

It is obvious from this image that a sequential CoEA with a single-best collaboration

strategy will in just a couple of steps be drawn to one of the two intersection points (one

of which is a local optima and the other the global optima). Which point is picked highly

depends on the random y individual used for evaluation in the first X generation, or a

random x individual, if we were to start with a Y generation.

If we start with an X generation evaluated in combination with a random y individual,

there should be a higher probability of reaching the top-right peak. If we start with a Y

generation evaluated in combination with a random x individual, there should be a higher

probability of reaching the bottom-left point.

To verify these hypotheses, we ran two experiments. For both we used population size

10, elitism, and standard deviation for the Gaussian mutation set to 0.02. In one case we

started with an X generation (evaluated with a random y individual) and in the other case

with a Y generation (evaluated with a random x individual). All other settings were as

before. We performed 100 runs and for each we tracked to which of the two peaks the best-

of-run individual was closer. For the first case, 75 runs converged to the top-right peak,

which has more Y -coverage. The remaining 25 runs converged to the bottom-left peak. For

the second case, the situation was reversed: 81 runs converged to the bottom-left peak,

which has more X-coverage, and the remaining 19 runs converged to the top-right peak.
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5.4 Summary

This chapter used the knowledge gained from the studies in previous chapters to investigate

more complex problems. It has shown that the best responses are still a driving force of

CoEA performance, albeit not the only one. The interplay of best-response proximity, Nash

value and Nash basin size can be such that no simple change to the basic CoEA can improve

performance (e.g. DBR0.75
0.25,5). One may need to adjust multiple parameters simultaneously

to tackle such problems.



Chapter 6

Analysis of a Complex Simulation Compositional Cooperative Problem

The previous three chapters were all concerned with synthetic test suites, specifically de-

signed to be tunable and to isolate certain properties. Studies on such functions are impor-

tant, because having knowledge of and control over the problem gives us a better chance to

properly identify the causes for observed performance or dynamics.

However, the question that arises is how much of the knowledge gained from such studies

actually transfers to real problems. The current chapter investigates this question (and gives

an encouraging answer) by focusing on a problem that is not available as a function in closed

form. Instead, the values of the function to be optimized are the result of a simulation.

Thus, the best responses and the global optima are unknown.

The first section describes the problem. The second section is concerned with uncovering

the nature of the best responses for this problem. It reveals that the best responses combine

properties of the test suites from the previous chapter. The third section analyzes the

effect that combining all these best-response properties in one function has on the role of

population size and collaboration methods.

6.1 Domain Description

Consider a bounded rectangular field in which there are a number of food items and a ball

that bumps from the walls (the edges of the rectangle). When the ball comes into contact

with a food item, it “eats” the food and enlarges its size by the size of the food. The ball

has a starting location (x, y), and a starting angle θ ∈ (0, 360◦). The goal is to have the ball

eat as much food as possible while traveling as little as possible. This will be referred to

as efficiency and defined as final-ball-radius ∗ maximum-allowed-distance / total-traveled-

147



148

distance, where maximum-allowed-distance is a bound set on how much the ball can travel,

so that it does not bounce around indefinitely without eating any food.

Physics and Settings

In all the experiments, the field is a square of side 600. The ball and the food items have

circular shape. In bouncing off the walls, the ball behaves more like a spinning top or

thumbtack bouncing off walls of lower height than its surface, in the sense that it bounces

at the center rather than on the girth. The ball has no acceleration.

The ball does not bounce off the food. Instead, the food is also considered to be at

lower height than the thumbtack’s surface. This surface is considered to “hover” over a

food item when the distance between the center of the food and the center of the ball is

less than or equal to the sum of the two radiuses minus some ǫ (which was set to 1 for

all experiments). Eating the food consists of removing it from the field and enlarging the

radius of the ball such that its new surface area equals the sum of its old area and the area

of the food. This is equivalent to setting rnew
ball =

√

(rold
ball)2 + (rfood)2. The ball stops either

when it has eaten the last piece of food on the field or when it has traveled the specified

maximum distance, whichever happens sooner. The maximum-allowed-distance used in all

experiments was 10000.

The A34 Problem

Different problems can be defined in this domain. The one considered here is finding the

pair (x, y) that maximizes efficiency, given a fixed starting angle for the ball. Also, different

problem instances can be constructed by changing the number, size and location of the food

items, the initial size of the ball and the starting angle. The resulting problems are likely

to have different characteristics and different degrees of difficulty.

The starting angle was arbitrarily set to 34◦. Thus the ball would start moving up and

towards the right. Its initial radius was 4. The field was initialized to contain 9 identical

food items symmetrically placed as can be seen in figure 6.1. Each food item had a radius

of 8.
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Figure 6.1: Food distribution for the A34 problem.

6.2 Probing for Best Responses

Given a pair (x, y), the efficiency value cannot be derived mathematically, in closed form,

but must be computed by actually simulating the ball’s movement. Therefore, the best

responses can no longer be determined by solving derivative equations. To see whether the

problem resembles at all the synthetic test suites from previous chapters, the best responses

must be empirically estimated.

Probing for best responses occurs in two steps. The first consists of random search (RS).

It is meant to give a rough (but broad) view of the landscape. It may hint at the nature

of the best responses. The second step consists of runs of coevolution and is meant to give

better information about the best responses.

6.2.1 Random Sampling

Figure 6.2 shows 12000 sample points with color-coded fitness: the darker the shade of gray,

the higher the fitness value. Black encodes for the highest fitness out of these 12000 (the

actual maximum is not known) and white encodes the theoretical minimum, which is equal
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to inital-ball-radius. The minimum would be achieved if the ball traveled the maximum

distance without eating any food. Judging by figure 6.2, this seems never to happen on this

particular problem. This type of plot will be referred to as a landscape-exploration plot.

On examining the figure, we clearly see some diagonal stripes of similar fitness, running

at an angle of about 34◦. This could have been expected, given the definition of the

problem.1

What one might not have realized from the problem description alone is how narrow the

stripes of high fitness are. It is within these stripes that the best responses must lie. Figure

6.3 shows intuitively why this is the case. To get an idea of bestResponseX, we slice with a

fixed y value and look for areas of high fitness that the slice intersects. These are pictured

in red and generally appear to be two. Similarly, to get an idea of bestResponseY , we slice

with a fixed x value and look for areas of high fitness along that slice. These are pictured

in blue and generally appear to be three.

The figure suggests a number of possibilities. It may be that we are dealing with non-

unique best responses, or, alternatively, “local” best responses, as described in section 5.2.

It may also be the case that the same stripe region contains parts of both best responses,

in which case they are very close or maybe even overlapped.

In order to extract more information out of the random samples, we enhance the differ-

ences between their fitnesses by raising them to the power 20 before transforming into color

gradient. This has the effect of enlarging the differences between high values. Figure 6.4

shows the results. What we see is that fitness on some stripe portions on the left (i.e. with

x smaller than 150) seems to be largest, followed by stripe portions on the right (x > 500).

Within each such portion, fitness appears to be non-constant.

Figure 6.5 displays examples of slices in this “power 20” view of the landscape. The

y slices now intersect only one region of high values, either on the left or on the right,

depending on the value of y. This seems to suggest that the bestResponseX is unique

1Consider two points in the search space, P1 and P2, close to each other and such that the line determined
by them is at an angle of 34◦. Let Q1 and Q2 be the corresponding stop points. Then, except for the segments
P1P2 and Q1Q2, the ball would have the same trajectory when leaving from P1 and when leaving from P2.
The lengths of P1P2 and Q1Q2, and whether or not any food is eaten while traveling along these segments
are the only things that would cause a (small) difference in fitness between P1 and P2. Note that Q1 and
Q2 may be one and the same point if both for P1 and for P2 the ball stops because it ate the last piece of
food.
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Figure 6.2: 12000 random samples for the A34 problem. Color-coded fitness: the darker
the shade of gray for a point, the higher its fitness is.
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Figure 6.3: Intuition for best responses. Lines represent slices; circles represent areas of
high fitness along slice. Same 12000 random samples as in figure 6.2.
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Figure 6.4: Enhanced differences in fitness by raising to power 20. Same 12000 random
samples as in figure 6.2.
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(unless there are points of equal fitness within the small dark region intersected by the

slice). When slicing with x we still cannot differentiate between different regions of high

fitness.

To summarize, it appears that there are multiple narrow stripes (ridges) of high fitness,

some of which are better than others. The optimum(a) will be on the higher one(s).

6.2.2 Exploiting the Best Responses with a CoEA

In order to obtain more information about the nature of the best responses, a second domain-

probing step is performed, consisting of 10 sample runs of coevolution. The knowledge from

previous chapters is used to set up the algorithm’s parameters such that it approximates

the best responses with high accuracy. Namely, a budget of 1200 evaluations per run is

split as follows: population size 40, single-best evaluation, sequential flow, 6 epochs with

4 generations and an extra round of evaluation at the end of each,2 giving 1200 = 40 ∗
1 ∗ 5 ∗ 6. In each population, the EA used elitism of 1, tournament selection of size

4 and Gaussian mutation with σ = 12 (600/50) operating at a rate of 90%. Figure 6.6

shows the landscape-exploration plot for this algorithm (CoEA-1). Data from all 10 runs is

superimposed.

The main purpose for displaying this image is to show that (as intended) this particular

coevolutionary algorithm focuses a lot on the high fitness ridges. However, it does so in

an unbalanced fashion, by thoroughly exploring some portions of the ridges while leaving

other portions completely unvisited. For now, the goal is to find out more about the best

responses, and a different type of plot is used, namely an aggregate best-of-epoch plot,

which is the equivalent of the aggregate best-of-generation plots introduced in section 3.2

and featured in Figures 3.7 and 3.8. The reason for this is that best-of-epoch individuals

tend to approximate the best responses. Figure 6.7 displays best-of-epoch points (6 per

run) from all 10 runs superimposed, together with a zoom-in on a part of the space for

better visibility.

What these figures show is that the best-of-epoch points corresponding to X and Y ,

while very close, do not actually overlap, which means that by approximating the best

2I.e. 5 rounds of evaluation per epoch.
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Figure 6.5: Intuition for best responses. Lines represent slices; circles represent areas of
high fitness along slice. Enhanced differences in fitness by raising to power 20. Same 12000
random samples as in figure 6.2.
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Figure 6.6: All evaluated points from all 10 runs (12000 points total) of CoEA-1. Gray-
coded fitness.



157

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0

X

Y

400 450 500 550 600

30
0

35
0

40
0

45
0

50
0

X

Y

Figure 6.7: Best-of-epoch points (best-of-epoch individuals with corresponding collabora-
tors). X epochs are shown in red and Y epochs in blue. Bottom image displays zoom-in.
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Figure 6.8: Best-of-epoch trajectory for one individual run (in particular, one started with
the Y population active). X epochs are shown in red and Y epochs in blue. Start of
trajectory (best of first epoch) is shown with an empty circle. End of trajectory (best of
last epoch) is shown with an empty square. Left: full space. Right: zoom-in.

responses coevolution may actually “climb” towards higher values. This climbing can be

seen in action in figure 6.8, which displays the best-of-epoch trajectory for an individual

run, by connecting that run’s best-of-epoch points in chronological order. The right side

plot shows a zoom-in for convenient visualization. This type of plot was first introduced in

section 4.2.3.

To summarize again, it appears that:

• bestResponseX is discontinuous in some points, which could lead to independent

Nash-es;

• bestResponseY is either non-unique or a case of local best responses;

• segments of bestResponseX and bestResponseY are very close to one another, forming

very narrow angles;

• the fitness along the best responses is not constant, but increases at a small rate.
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Figure 6.9: Comparison of best-of-run performance for different collaboration methods on
the A34 problem. Left: boxplots of best-of-run fitness distributions. Right: statistical
significance of differences between distributions.

All these observations point towards a problem that could have both multiple indepen-

dent Nash-es and multiple local Nash-es, thus a combination of the properties studied in

sections 5.1 and 5.2. The next section studies the effects of collaboration methods and pop-

ulation sizes on performance. The launched hypothesis is that these effects will be similar

to the ones observed on the synthetic functions in the previous chapter.

6.3 Analysis

To analyze the performance effects of collaboration methods and population sizes, the same

type of experiments as in sections 5.1 and 5.2 are performed. The only adjustments are

the ranges for X and Y , set now to (0, 600), and the standard deviation for the Gaussian

mutation, set to 12 (600 / 50). All other algorithm parameters were the same.

6.3.1 Collaboration Methods

Figure 6.9 summarizes the effects of collaboration methods on performance. The significance

plot looks remarkably similar to the plot in figure 5.4 for DBRα
p,add with p = 0.25, α = 1

and add = 1. Indeed the probing of the domain in the previous section showed that the
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Figure 6.10: Comparison of best-of-run performance for different population sizes on the A34

problem. Left: boxplots of best-of-run fitness distributions. Right: statistical significance
of differences between distributions.

difference between the stripes on the left and the ones on the right was fairly subtle. The

significance plot is also generally consistent with all DBR plots for α = 1, in terms of

the single-best being the worst-performing collaboration method. This is in line with the

proximity of this problem’s best responses, as detected during the probing phase in section

6.2.

6.3.2 Population Size

Figure 6.10 summarizes the effects of population size on performance. This is similar with

the plot for V BRα
add with α = 1 and add = 1 (bottom left of figure 5.6) in terms of having

a large number of gray for squares for big population sizes. The difference is that for the

current problem small population sizes are worse than big population sizes (5 is worse than

all above and including 20 and 10 is worse than 50), rather than better, as it was the

case for V BR1
1. This shift of balance is not surprising, as the A34 problem has local best

responses in both dimensions, and more than two of them for Y ! Population size 5 just

isn’t enough to determine the right answer. Also note that, unlike for V BR, fitness along

the best responses increases at a fairly low rate. Because of this, it is more advantageous

to be stuck (or crawl) on a higher ridge (which happens with large population sizes) than
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to move (imprecisely!) along a lower ridge (which happens with a small population).

6.4 Summary

The results in this chapter argue that knowledge gained from studies on synthetic problems

can transfer to real problems. Additionally, section 6.2.2 suggests heuristics for tuning

CoEAs to problems. Specifically, one can first approach a problem with a CoEA setup

to exploit the best responses, in order to extract some information about them. This

information is determined by tracking the trajectories of best individuals while running

the algorithm. Based on the nature of these trajectories and on the knowledge generated

by the studies in this dissertation, informed decisions can be made on how to adjust the

algorithm’s settings to improve performance.



Chapter 7

Analysis of Simple Synthetic Test-based Competitive Problems

The previous four chapters all studied compositional problems defined over cooperative

domains with ideal partnership as the solution concept. This chapter focuses on test-based

problems defined over competitive domains and with optimum-average-payoff as the solution

concept.

The analysis targets the relationships between the internal subjective metric used as

fitness by a coevolutionary algorithm and the external objective metric measuring the al-

gorithm’s progress towards the envisioned goal. The CoEC setups analyzed consist of a

basic CoEA and simple domains with a computationally testable goal. I believe one needs

to understand such simple setups first before moving on to more complex (e.g. untestable)

goals or more complex algorithms. In fact, as the reader will see, even in basic setups

there is a wide range of possible relationships. The dynamics analysis provides insight into

the causes for these relationships and confirms once again that the best responses problem

property is a strong driving force for CoEA behavior.

7.1 Related Work

The only previous analysis of relationships between internal and external metrics was (Wat-

son and Pollack, 2001), in the context of some number-game domains. However, that re-

search cannot be directly extended to other domains, as the external objective metrics are

problem dependent. Also, it did not provide explanations for the observed behavior. By

contrast, both these issues are addressed in this chapter.

Of the variety of goals for which coevolution was applied, the investigation here con-

cerns one which is characteristic of test-based problems with two asymmetric roles and

162



163

competitive payoff, such as evolving sorting networks vs. input sequences (Hillis, 1990) or

cellular automata vs. initial conditions (Juillé and Pollack, 1998). The goal is to find the

individual in the first role with the best average payoff over interactions with all individuals

in the second role (e.g. networks that sort all binary input sequences; CAs that correctly

classify the maximum number of initial conditions). In other words, the solution concept is

optimum-average-payoff.

7.2 Experiments

7.2.1 The Problems and the External Objective Metric

All domains have two asymmetric roles whose behavior sets are subsets of R. A domain

is therefore expressed by a two-parameter function f : DX × DY → R; DX ,DY ⊂ R.

The function f defines the metrics of behavior (payoffs) for both roles in the following

way: for any event (x, y) ∈ DX ×DY , the payoff for x is f(x, y), while the payoff for y is

max(x′,y′)∈DX×DY
f(x′, y′)− f(x, y). The domains are thus competitive, constant-sum.

For all problems, the space S of potential solutions is DX and, as previously mentioned,

the solution concept is optimum-average-payoff. Formally, this means the goal is to find

x0 which maximizes e(x) =
∫

DY
f(x, y) dy. e(x) represents the cumulative payoff for x,

as it was defined in section 2.2.4. The average (or expected) payoff is given by avg(x) =

e(x)/size(DY ). avg(x) will be the external objective metric of performance with respect to

reaching the goal.

Four different domains were used, corresponding to four functions defined on [0, n] ×
[0, n]. In all the experiments presented here n = 8 was used (i.e. DX = DY = [0, 8]). Three

dimensional views of all four functions are shown in Figures 7.1 and 7.2. These figures thus

show what the landscapes look like from the point of view of individual interactions (and

therefore internal fitness). They are very much alike with regard to ruggedness/modality.

By contrast, Figures 7.3 and 7.4 show us what the landscapes look like from the point of

view of our external objective metric, the one we really hope to optimize. They plot for each

of the four functions avg(x) vs x. These plots confirm that the domains are similar. They

all have a single global maximum, no local maxima and a smooth gradient. We shall see
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Figure 7.1: Internal landscape perspective (individual interaction payoff surfaces); left:
collapsingRidges, right: expanding-Ridges
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however that relationships between the external objective metric and the internal subjective

one (for best of generation individuals) can vary widely across these domains.

For the interested reader, the mathematical expressions of these functions are as follows:

chaoticRidgesn(x, y) =































n + 2|2n
3 − y| − |x− y| if (x− 2n

3 )(y − 2n
3 ) ≥ 0;

n+x
3 + |2n+x

3 − y| if x ≤ n
2 ;

−n + 3x + |2(n− x)− y| if x ≤ 2n
3 ;

3(n− x) + |2(n− x)− y| otherwise.

ridgesn(x, y) =











































ridgesn(n− x, n− y) if x + y > n;

n + x− y if x ≥ n
2 ;

−n + x + 3y if y ≥ n
2 ;

2x− y + fn(x) if y ≤ fn(x);

x + f−1
n (y) otherwise.

cyclingRidgesn, collapsingRidgesn and expandingRidgesn are defined as instances

of ridgesn for different functions fn. For cyclingRidgesn, fn(x) = f−1
n (x) = x. For

collapsingRidges, fn(x) = x(n− x), f−1
n (x) =

n−
√

n2−4y2

2 . For expandingRidges, fn(x) =

n−
√

n2−4y2

2 , f−1
n (x) = x(n− x).

7.2.2 The Algorithm and the Internal Subjective Metric

The CoEA used in this chapter is a variation of the basic one used throughout the disser-

tation.

It has two populations, one evolving values for x and one for y. Both populations

try to maximize payoff. Each population uses a non-overlapping generational model with

elitism of 1 and the communication flow is sequential (i.e. populations take turns evolving).

Evaluation uses the single-best interaction method, which means an individual is evaluated

by having him interact with the best individual in the other population at the previous

generation. The payoff from this interaction is assigned as fitness. This defines the internal

subjective metric. Binary tournament selection is followed by Gaussian mutation with sigma

fixed to 0.25, altering each individual with probability 0.75. Each population had a size of

100 and the CoEA ran for 100 generations.



167

7.3 Results and Dynamics Analysis

Since we are set in a context of applying coevolution for optimization, we will instrument

our algorithm from the perspective of change in best individuals throughout the run.

For each experiment we conducted 100 runs and generated plots for all of them. These

plots were then visually inspected. If all had the same trend, we picked to show in the

paper the one that displays the trend most clearly. If there were several different trends,

we similarly picked one from each category, regardless or which category was more heavily

represented. Trends of fitness averaged over all runs (not shown) were either presenting

nearly no variance (for collapsingRidges and expandingRidges) or they were obscuring

the true phenomena, because they were averaging very different values (for cyclingRidges

and chaoticRidges).

We grouped the results into three categories, based on the relationship between the in-

ternal and the external metric. In comparing the metrics, we looked both at the relationship

between their respective values and at the nature of their change over time. For each case,

we show how the dynamics analysis explains the (otherwise mysterious) trends.

7.3.1 Opposite Monotonic Trends

The Fitness The top row of Figure 7.5 shows a typical run for the collapsingRidges

function. On the left hand side, the fitness curves plot (only) the points corresponding to

the best individual in generations in which X was the active population. For each such

point, the internal subjective metric used by the algorithm is the payoff that the best x-

individual in that generation obtained from interacting with the best y-individual from the

previous (non-plotted) generation. The external objective metric is avg(x). Note that as

the external metric is an average over the domain, its range of values is more restricted

than that of the internal metric.

In this case the internal subjective metric decreases from its initial value quite fast in

the first few generations and then stabilizes for the rest of the run at a value in the middle

of its range. This might suggest very poor performance, but in fact the external metric has

the exactly opposite trend, i.e. it increases quickly at the beginning and then stabilizes at
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what is actually its maximum value.

A completely reversed situation happens for the expandingRidges function. As can

be seen in the bottom row of Figure 7.5, initial generations display rapid increase in the

internal metric and rapid decrease in the external metric, after which they both stabilize

(the internal one at its maximum and the external one at its minimum). What internally

looks like progress, from an external perspective is actually regress.

At this point the situation appears confusing. The two functions are very similar from

several perspectives. First, the 2D surfaces generated by the payoff of individual interactions

have the same degree of ruggedness (same global optima, no local optima, same number

of ridges, smooth gradient). Second, the curves generated by the average payoff over all

interactions have the same degree of ruggedness (single global optima, no local optima,

smooth gradient). Why does the same algorithm have opposite behaviors?

The Dynamics To elucidate this, we look at the dynamics of best individuals from the

perspective of their movement across the search space, using the technique introduced in

chapter 3. The right hand side of Figure 7.5 shows the trajectories of best individuals across

the space (for the same runs) superimposed on the best responses.

To understand the fitness plot for a function, one needs to collectively analyze the

trajectory plot, the individual interactions surface plot and the external metric plot for

that particular function.

For the system x→ bestResponseX(bestResponseY (x)), that deterministically follows

the best-response curves, a point of intersection of the two best-response curves is a fixed

point for best individual trajectories. In the case of the collapsingRidges function, due to

the fact that in this point the absolute value of the slope of the bestResponseY curve is

smaller than that of the bestResponseX curve (|0| < | − 1|), this fixed point has attracting

behavior. Regardless of where a trajectory starts (one starting quite far away from this

point is shown), it will end up in the proximity of the fixed point. The fitness plot basically

reports internal and external metric values for the points of the trajectory on or near the

bestResponseX curve. These points move closer and closer to the center of the space. The

internal fitness values correspond to the values associated with these points on the 2D
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surface of individual interactions payoff (left in Figure 7.1). We can see on this surface that

moving closer to the center means decreasing values. Once at the center there is only small

variation due to stochastic effects. The external fitness values correspond to the values

associated with the X coordinate of these points on the external fitness chart (left in Figure

7.3). We can see on this curve that moving from the sides to the center generates increase

in values up to the maximum in the fixed point (again, with small perturbations due to

stochastic effects). And this is exactly what we see on the fitness plot.

In the case of the expandingRidges function, the relationship between the absolute values

of the slopes of the best-response curves at the fixed point is reversed (|∞| > | − 1|). This

makes the fixed point unstable, so trajectories are repelled from it (even when they start

very close to it, as in the example run presented). Following the same type of analysis

as for collapsingRidges, we now understand the shapes of the internal and external fitness

curves and why they are different from the previous function (both the 2D surfaces and the

external metric curves have the same monotonicities, but the trajectories move in one case

from the center to the extremes and vice versa in the other case).

7.3.2 Flat Trends

On the cyclingRidges function the two metrics seem to agree in their trends, in the sense

that both of them stagnate from beginning to end. However, they disagree in the type of

values they report. Figure 7.6 shows two runs superimposed on the same plot(s) (runs are

distinguished by line type/width). In one of them the internal metric reports high values

for its range while the external metric reports low values for its own range. In the other run,

the internal metric shows average values, while the external one is almost at its optimum.

Armed with the technique described above, we can explain these results. The dynamics

plot shows that the two best-response curves have the same slope in absolute value. This

causes the fixed point to be neither attracting nor repelling. Additionally, it causes the

appearance of an infinite number of size two periodic orbits. Trajectories wander about

such orbits close to the point where they started (they do not follow a single orbit due

to stochastic effects). The periodic orbits intersect the bestResponseX curve in points

symmetric with respect to the center, and the corresponding fitness values are equal both
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for the 2D surface of individual payoffs (internal metric) and for the average payoff external

metric. This explains the flat trend of the fitness curves.

Whether the internal metric claims better performance than the external or vice versa

depends on the point where a particular run’s trajectory starts and is cycling close to.

Trajectories wandering close to the center will have an internal metric close to 8 (the value

at the center) which is in the middle of the 0-16 range and an external metric close to 10,

which is the maximum in a range of 6-10. Trajectories wandering closer to the extremes of

the space will have the internal metric closer to its maximum of 16 and the external metric

closer to its minimum of 6.

7.3.3 Complex Trends

In the three examples examined so far, the trend of each metric throughout the run was

monotonic, apart from minor oscillations. The fourth function paints quite a different

picture, as can be seen in Figure 7.7 which displays three different runs, each with its

own set of plots. Both the internal and the external fitness curves are very rugged, with

numerous spikes. For the first run, the spikes are irregular in shape, size and frequency

throughout the run. The second run displays two phases, first one of irregular spikes and

then one of very regular spikes. During this second phase, the two metrics go up and down

synchronously, whereas in the first phase (and more clearly visible in the plot of the third

run) when external fitness increases, internal fitness decreases and vice-versa. Finally, the

third run displays fairly regular spikes and the two metrics are negatively correlated.

Next, we investigate the dynamics and tie them to the fitness. The right hand side plots

in Figure 7.7 show clearly more complex behavior than previously seen. Considering the

system x → bestResponseX(bestResponseY (x)), that deterministically follows the best-

response curves, the following can be mathematically proven: 1) it has a repelling fixed

point at (16
3 , 16

3 ); 2) it has periodic orbits of any size; 3) all periodic orbits are sources (i.e.

repelling) 4) it has chaotic orbits; and 5) the whole interval [0, 8] is a chaotic attractor. The

proof is not included, but for the interested reader it is similar to those for the logistic and

tent maps presented in chapters 1 and 3 of Alligood et al. (1996).

Of course, when we introduce stochasticity, as in our CEA, we no longer have clear
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definitions of the above mentioned dynamical systems concepts. However, visually at least,

the CEA using a population size of 100 approximates quite closely the deterministic system.

The first run is the analog of a chaotic orbit for the corresponding deterministic system

(which would come infinitesimally close to any point in the [0, 8] interval an infinite number

of times, without periodicity). This explains the irregular nature of the fitness curves for

this run. The first part of the second run is fairly similar to it, then the trajectory spends

some time around a period two orbit, generating the saw-like shape of the fitness. In the

third run the trajectory wanders around a higher period orbit, which explains the wider

regularly shaped teeth in the fitness plot.

Note first that values in the fitness plot come from points on on near the bestResponseX

curve (the main diagonal of the space). Along this diagonal, the minimum payoff is 8 (see

Figure 7.2), therefore the internal fitness never goes below this value. At the same time,

the maximum average payoff is 10 (see Figure 7.4). Points close to the left/bottom end of

the diagonal (x close to 0) have close to maximum internal fitness and high but not quite

optimum external fitness. Points near the fixed point have very low internal fitness and

close to optimum external fitness. Points close to the right/top end of the diagonal have

medium internal fitness and very low external fitness. The rest is somewhere in between.

As can be seen on any of the trajectory plots, bestResponseX(bestResponseY (x)) has

the following general effects: 1) it moves points near the top/right end to points near the

bottom/left end; 2) moves points close to the bottom/left end to points near the fixed point,

but above it; 3) moves points near the fixed point, but above it to points near the fixed

point, but below it; and 4) moves points near the fixed point, but below it to points further

away from the fixed point and closer to the top/right end.

Consulting Figures 7.2 and 7.4, we can see that: case 1) corresponds to some increase in

the internal metric and considerable increase in the external one (with respect to their own

ranges); 2) entails deep drop in the internal metric and small increase in the external one;

3) gives small increase in the internal metric (gradient to the left of the fixed point is bigger

than gradient to the right) and almost no change in the external one; and 4) corresponds

to some increase in the internal metric and some decrease in the external one.

This causes a wide range of metric relationships. First of all, the metrics are no longer
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monotonic throughout the whole run, although they can be for smaller periods of time

(e.g. the upward slopes in internal fitness on the spikes for the third run). Second, the

two metrics may no longer agree or disagree throughout the whole run, instead there can

be periods when they are positively correlated (e.g. second half of second run) and periods

when they are negatively correlated (e.g. the teeth in the third run). Moreover, correlation

can change sign very often and irregularly (e.g. first run).

7.4 Summary

This chapter showed evidence that the best responses can be an influential problem property

in test-based competitive CoEC setups as well, thus showing their cross-area utility and

providing a bridge between previously separate CoEC research areas.

Specifically, a new test suite was introduced, featuring problems with competitive-

specific relationships between the best responses. These problems, along with the best-

individual trajectories tool, were used to gain insight into one of the main causes of failure

when using CoEAs for optimization in competitive domains, namely the disconnection be-

tween the envisioned external solution concept (optimum average payoff) and the internal

behavior of the algorithm.



Chapter 8

Conclusions

8.1 Summary and Contributions

The main hypothesis of this dissertation was that dynamics held the key to understand-

ing coevolutionary algorithms and therefore their analysis should provide insights into the

dependency problem properties + algorithm properties→ performance. Five chap-

ters of “connected” CoEC analysis provided evidence supporting this hypothesis in an

incremental manner.

Chapter 3 introduced new tools for analyzing the dynamics of two-population CoEAs,

based on best-individual trajectories. Their use exposed a problem property, which I

named best-response curves (or simply best responses). This property proved to have a

strong influence on the optimization performance of two “classic” EA parameters, namely

population size and elitism. To better study this property, a test suite featuring simple best

responses with tunable proximity was constructed. At this point, the new, refined hypothesis

launched was that the nature of the best responses would influence the performance effects

of some CoEA-specific parameters as well.

Indeed, chapter 4 showed this hypothesis to be true for three parameters: collaboration

method, communication frequency and communication flow. Analysis was performed on the

test suite and applicability of the knowledge gained was successfully tested on additional

problems from the literature. All problems consisted of functions available in closed form.

Thus, the optima were known, the best responses could be analytically computed and were

uniquely defined and continuous.

Chapter 5 extended the analysis to problems with more complex best responses (e.g.

discontinuous or local). Two new test suites (still functions in closed form) were introduced
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and the effects of collaboration methods and population size reinvestigated. The knowledge

gained from previous chapters helped understand the interaction between the proximity of

the best responses and other problem properties (e.g. sizes of basins of attraction).

Thus, the best-response problem property and the dynamics analysis of best-individual

trajectories proved useful for understanding the behavior and optimization capabilities of a

wide range of variations of a basic coevolutionary algorithm on synthetic problems.

Chapter 6 took one important step further and showed that the insights obtained from

the analysis of synthetic problems were transferable to a more realistic problem, featuring

a simulation domain (not available in closed form) where the optima were not known and

the best responses could only be estimated.

Last but not least, while all aforementioned studies were performed in the context of

cooperative compositional setups, chapter 7 proved the strength of the best-response driven

analysis extends to competitive test-based setups as well.

8.2 Future Work

This dissertation is a stepping stone. The work presented can be extended to add stepping

stones in some directions more than in others.

One major point is that the dissertation has focused on analyzing and understanding

CoEAs and not on designing them. Therefore, only little immediate advice for practitioners

has been given throughout the thesis. The reason I withheld from that is that the best

design choices for a particular problem may not be within the set of algorithm properties

that I analyzed. Also, additional relationships between best responses are likely to exist.

While this work is the first to connect all four key pieces together, within the span of a

PhD dissertation I could only analyze a subset of the properties of those pieces. Additional

study is needed to have the wider coverage needed to be successful in practice.

I have limited my analysis to studying one algorithm property at a time and its inter-

action with up to three problem properties simultaneously. In general, different algorithm

properties and different problem properties may interact in non-linear ways, yet it is im-

possible to vary all of them at the same time, because of combinatorial explosion. This is a

general issue without a general solution. All we can rely on is sensitivity analysis and our



177

intuition on which properties would have a higher impact.

I have also limited my analysis to the class of two-population CoEAs. I believe the ideas

and tools presented for this class are more easily portable to three or more populations

than they are to single-population CoEAs. The main reason why the best responses are so

influential on performance is because they are key to the interaction between populations.

Extension to three or more populations will certainly put a strain on the analysis, yet the

concepts and some heuristics are transferable.

For all the problems I analyzed, the search spaces were subsets of R2. While the def-

inition of best responses does not depend on the nature of the space, tracking movement

through other types of spaces can certainly be more difficult. My suggestion for extension

in this respect is to leverage existing research on metrics for these spaces.

Finally, I have only looked at “traditional” CoEAs. In recent years a number of highly-

complex CoEAs have been introduced, featuring mechanisms like memory and speciation.

While the current research is not directly applicable to understanding those algorithms, it

is applicable to deciding whether a complex algorithm is necessary to begin with. This is

especially important since this work has shown that what makes a problem difficult for a

CoEA is different from what makes a problem difficult for an EA (e.g. modality) and also

different from what our intuition may tell us (e.g. nonlinearity).
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