Lecture 1: Introduction
What is an Algorithm? A set of well-defined rules for solving a computational problem. It is typically accompanied by a proof that it is correct as well as a bound on the amount of time it takes to terminate with an answer

Why study Algorithms? Essential for doing rigorous work in any branch of Computer Science. Algorithms are everywhere! For example:
Computer Networks: Routing protocols in communication networks are based on classical shortest path algorithms.
Cryptography: Public key cryptography relies on number-theoretic algorithms Computer Graphics: Computational primitives supplied by geometric algorithms Databases: Database indices rely on balanced search data structures Computational Biology: Use dynammic programming algorithms for genome similarity Machine Learning: Clustering Algorithms is at the cove of unsupervised learning

New Algorithm Makes CPUs 15 Times Faster Than GRUs in Some AI Work by Anton Shilov last updated April 10,2021 -00000-

\qquad Al deep neural networks (CNs) training simply because they have more
execution units (or cores). But new algorithm proposed by computer scientists from Rice University is claimed to actually flip the tables and make CPU a
whopping 15 times faster than some leading-edge GRUs. The most complex compute challenges are usually solved using brute force methods, like either throwing more hardware at them or inventing specialamong the most compute-intensive workloads nowadays, so if programmers want maximum training performance, they use GRUs for their workloads. This compute GRUs as most algorithms are based on matrix multiplications.

CPU with Randomized Hashing Algorithms,
Data Structures, and Asynchronous Parallelism vS.
NVIDIA Tesla Viol Volta 32GB GPU with Tensorflow $=$
CPU with "smart" algorithms is $10 \times$ foster

Paper: "SLIDE: In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems" in MLSys 2020

Warmup: Integer Multiplication
! Important: Distinguish between the description of the problem being solved and the method of solution.
In this class, we will introduce the computational problem(inputs and desired output), and then come up with one or more algorithms that solve the problem.
Problem
Input: Two n-digit nonnegative integers x and y
Output: The product $x \cdot y$
Assess the performance by counting the number of primitive operations it performs
(1) Adding +wo single digit numbers
(2) Adringing azo sing to digit it numbers of a number
Grade-School Algorithm

Analysis of the Number of Primitive Operations:

- For the first partial product, we multiplied 4 with each of the digits $5,6,7$, and 8 of the first number. These are four primitive operations, or more generally n. Each carry digit might force us to, add a single digit Cthe carry) to a double digit number (the product of two digits). Therefore, we need two additions per carry.
- Each partial product involves
n multiplications (one per digit)
and at most $2 n$ additions (at most two per carry)
- We have n partial products, one per digit of the second number.
- To compute all partial products, we need $n \cdot 3 n=3 n^{2}$ primitive operations Overall, the amout of work grows quadratically with the number of digits
Can we do better?
Let's first apply a sequence ot steps and later we will explain what the algorithm is and why it is correct

Before explaining the above algorithm called Karatsuba Algorithm let's first discuss a simpler version.
A Recursive Approach
A number x with an even number n of digits can be expressed with two $n / 2$-digit numbers, i.e., the first half and the second half

$$
x=10^{n / 2} \cdot \alpha+b \text {, similarly } y=10^{n / 2} c+d
$$

Therefore

$$
\begin{aligned}
x \cdot y & =\left(10^{n / 2} \cdot \alpha+b\right) \cdot\left(10^{n / 2} \cdot c+d\right) \\
& =10^{n} \cdot(\alpha \cdot c)+10^{n / 2} \cdot\left(\alpha^{\alpha \cdot d}+b \cdot c\right)+b \cdot
\end{aligned}
$$

multiplication of $n / 2$-digit numbers
'?' We can recurs to compute the $n / 2$-digit multiplications

$$
5678 \cdot 1234=10^{4} \cdot(\underbrace{56 \cdot 12})+10^{2}(\underbrace{56 \cdot 34}+78 \cdot 12)+78 \cdot 34
$$

$56 \cdot 12=10^{2} \cdot(5 \cdot 1)+10 \cdot(5 \cdot 2+6 \cdot 1)+6 \cdot 2=500+160+12=672$
ReclntMult
Input: Two n-digit positive integers x and y
Output: The product x.y
Assumption: n is a power of two

1. If $n=1$ then
2. else
compute $x \cdot y$ in one step and return the result
3. α

$$
\alpha, b \leftarrow \text { first and second halves of } x
$$

$c, d \leftarrow$ first and second halves of y
Recursively compute temp $1 \leftarrow \alpha \cdot c$, $\operatorname{temp} 2 \leftarrow \alpha \cdot d$, temp $3 \leftarrow b \cdot c$
$\operatorname{temp} 4 \leftarrow-b \cdot d^{\prime}$
7. Compute $10^{n} \cdot \operatorname{temp} 1+10^{n / 2} \cdot(\operatorname{temp} 2+\operatorname{temp} 3)+\operatorname{temp} 4$ and return the result

Karatsuba Multiplication Algorithm
Optimized recursive algorithm that makes 3 recursive calls instead of 4 .

$$
x \cdot y=10^{n} \cdot(\alpha \cdot c)+10^{n / 2} \cdot(\underbrace{\alpha \cdot d+b \cdot c}_{\text {Term (4) }})+b \cdot d
$$

We don't cave about term add or b.c we just need their sum!

Can we express $(\alpha \cdot d+b \cdot c)$ using the terms $\alpha \cdot c, b \cdot d$, and one more multiplication?

- First observe that a term of the form $\left(z_{1}+z_{2}\right) \cdot\left(z_{3}+z_{4}\right)$ can give us two products (i.e., $\alpha \cdot c$ and $b . d$) from four terms (ie., z_{1}, z_{2}, z_{3}, and z_{4}). Next, we assign values to $z_{1}, z_{2}, z_{3}, z_{4}$
- Both $(\alpha+d) \cdot(c+b)$ and $(\alpha+b) \cdot(c+d)$ can give us the desired terms $\alpha \cdot c$ and $b \cdot d$.
(1) $(\alpha+d) \cdot(c+b)=\alpha \cdot c+\alpha \cdot b+d \cdot c+d \cdot b \Rightarrow \underbrace{(\alpha \cdot b+d \cdot c)}_{\text {XNOT Term } A}=(\alpha+d) \cdot(c+b)-\alpha \cdot c-d \cdot b$
(2) $(\alpha+b) \cdot(c+d)=\alpha \cdot c+\alpha \cdot d+b \cdot c+b \cdot d \Rightarrow \underbrace{(\alpha \cdot d+b \cdot c)}_{v \text { Term } A}=(\alpha+b) \cdot(c+d)-\alpha \cdot c-b \cdot d$

Karatsuba
Input: Two n-digit positive integers x and y
Output: The product x-y
Assumption: n is a power of two

1. If $n=1$ then
2. else compute $x \cdot y$ in one step and return the result
3. else
$\alpha, b \leftarrow$ first and second halves of x
$c, d \leftarrow$ first and second halves of y
$p \leftarrow(a+b)$ and $q \leftarrow c+d$
$p \leftarrow(a+b)$ and $q \leftarrow c+d$
Recursively compute temp $1 \leftarrow \alpha \cdot c$, temp $2 \leftarrow p \cdot q$, temp $3 \leftarrow b \cdot d$
4. Compute $10^{n} \cdot \operatorname{temp} 1+10^{n / 2} \cdot(\operatorname{temp} 2-\operatorname{templ} 1-\operatorname{temp} 3)+\operatorname{temp} 3$ and return the result

Karatsuba Algorithm makes only three recursive calls. So it must be faster than the simple Recursive Algorithm. In a later class we will see the tools to calculate the gains, lie., Divide-and-Conquer section.

Mergesort Algorithm
Problem: Sorting
Input: An array of a numbers in arbitrary order
Output: An array of the same numbers, sorted from smallest to largest

Input
$5\|4\| 1$ 8 7 2 6

$$
\begin{aligned}
& \text { Output } \\
& \begin{array}{|l|l|l|l|l|}
\hline 1 / 2 & 3 & 4 & 5 & 6 \\
\hline
\end{array}
\end{aligned}
$$

A simple Sorting first.
Selectionsort: Scan through input to identify minimum and copy it to output. scan through input to identify $\begin{aligned} & \text { second minimum... } \\ & \text { output }\end{aligned}$

$1 \mid$	Out put			\mid
$1 / 2 \mid$			\mid	
	\vdots			

Mergesort Example

MergeSort
Input: Array A of distinct integers
Output: Array with the same integers, sorted
from smallest to largest

1. II I goring base case, no recursion needed
2. Cะ recursively sort first halt of A
3. $D \leftarrow$ recursively sort second half of A
4. return Merge (C, D)

Merge
Input: Sorted arrays Band D (length $n / 2$ each $)$ Output: Sorted array B (length n)
Simplifying Assumption: n is even

$$
\begin{aligned}
& \text { 1. } i \leftarrow 1, j \leftarrow 1 \\
& \text { 2. for } k=1 \text { to } n \text { do } \\
& \text { 3. if } C[i]<D[j] \text { then } \\
& \text { 4. } \quad B[k] \leftarrow C[i] \\
& \text { 5. } i \leftarrow i+1 \\
& \text { 6. else }
\end{aligned}
$$

Running Time of Merge

- Suppose the two sorted arrays have length $l / 2$ each.
- Line $1 \frac{\text { performs two initialization steps (two operations). }}{\text { The }}$.
- The for loop in Line 2 executes l times.
- Each iteration performs a comparison in Line 3 , an assignment to B in Lines 4 or 7 ,
an increase of counters i / j in Lines 5 or 8 , and an increase of k (total four operaf.).
- A sloppy (but convenient) inequality is $4 l+2$ operations are less than $4 l+2 l=6 l$.
- Thus, $6 l$ is an upper bound on the number of operations performed by Merge.

Running Time of MergeSort

* Tension between competing forces:

Explosion of the number ot subproblems through recursion
shrinking inputs that each subproblem is responsible for
Theorem 1.2. For every input array of length $n \geqslant 1$, the MergeSort algorithm perform's $\alpha+$ most: $6 n \log _{2} n+6 n$
operations, where $\log _{2}$ is the base-2 logarithm.
Proof: We use a recursion tree where nodes correspond to recursive calls and children of a node correspond to recursive calls made by that node.

(single element arrays)
Quiz 1 : How many levels does the recursion tree have, as a function of the length n of the input array?
a) A constant number
b) $\log _{2} h$
c) \sqrt{n}
d) n

Quiz 2 : Fill in the blanks: at each level $j=0,1,2, \ldots$ of the recursion tree, there are [blank] subproblems, each operating on a subarray of length [blank].
a) 2^{j} and 2^{j}
b) $n / 2^{j}$ and $n / 2^{j}$
c) 2^{j} and $n / 2^{j}$
d) $n / 2^{j}$ and 2^{j}

Proceed level-by-level, suppose we analyze level j of the recursion tree. Merge Sort makes two recursive calls (ign nope their cost tor now) and invokes the Merge subroutine. From previous analysis, Merge performs at most $6 l$ operations on l-clement array Let lm be the number of elements in subproblem m .

The total work in level j (ignoring the cost of recursion) is

$$
6 l_{1}+6 l_{2}+\ldots+6 l_{2 i}=6\left(l_{1}+l_{2}+\ldots+l_{2 j}\right)=6 n
$$

Recall from Quiz 2 that we have 2^{j} subproblems at level j of the recursion tree. Thus, the work per level-j subproblem is $6 n / 2^{j}$.

* The upper-bound on the work done at level j is independent of j. Thus, this is the perfect balance between the tension from doubling the number ot subprolems at every level and halving the amount of work per subproblem.
For the final piece ot the analysis, we want to compute the number of operations across all level's of the recursion tree. The recursion tree has $\log _{2} n+1$ levels (from $0=\log _{2} n$, inclusive). Thus, the total number of operations are:

$$
\underbrace{\text { number of levels }}_{=\log _{2} n+1} \times \underbrace{\text { work per level }}_{<6 n}<6 n \log _{2} n+6 n \text {. }
$$

