Lecture
Logistics
Class: CS 600 -"Theory of Computation"
Instructor: Prof. Evgenios Kornaropoulos
Who is this class for? Mainly Ph.D. students
Required skill: Formal Reasoning. Ability to write/understand proofs.
Class Difficulty: ... hard? Computability + Complexity Theory
Resources: 0 We are (manly) following book:
.) "Introduction to the Theory of Computation" Third Edition, Michael Sipser
Another useful book:-) "Computational Complexity: A Modern Approach" Sanjeer Arr, Bo oz Borak
(2) Notes made in Latex (joint effort \rightarrow Prof. Nov Gordon) Prof. Jon Katz
(3) Hand-written Notes (like this!)
(4) Office Hours

Grading:

$$
\begin{aligned}
& \text { Homework (} 5 \text { sets) : } 25 \% \\
& \text { Midterm: } 30 \% \text { (or } 40 \% \text {) 2 No notes } \\
& \text { Final: } 40 \% \text { (or } 30 \% \text {) }\} \text { During class } \\
& \text { Participation/Quiz: 5\% }
\end{aligned}
$$

Communication: Slack

Intro: Mathematics + Computation*
The beginning ~" "On computable numbers, with an application to the Entscheidunysproblem", by A.M. Turing, 1936
An mathematical model of computation enabling rigorous definition of computational tasks, the algorithms to solve computational tasks, and the basic resources these require
The concept of computation revealed itself as a deep that illuminates other concepts and field in a new light
Theory of Computation progresses like any other mathematical field, researchers prove theorems and generalize, simplify and create variations based on their judgment and research taste.
The interaction between Mathematics and Computation predates Turing's work "a mathematical understanding could solve any practical problem only through a computational process applied to the data $\alpha+$ hand.!
L> Euclid's Grates Common Divisor algorithm was devised in 300 BC
Interactions between Mathematics and Computation can be divided in four overlapping categories:
(1) Need of $T_{0} C$ to use general mathematical techniques.

In the beginning: logic, discrete mathematics
As the field matured: geometric techniques \leadsto Approximation algorithms topological methods \leadsto Distributed systems number theory \leadsto algebraic geometry \leadsto seulo-random objects algebraic geometry
(2) Need of Mathematics to compute (ie, use algorithms)
software development and libraries with computational methods for algebra, topology, group theory, geometry statistics etc.
Also, programs for mathematical proof verification and proof discovery \rightarrow Four Color theorem proof has been partially generated by code
(3) Some mathematical theorems guarantee the existence of a mathematical object.

But, can the object guaranteed to exist be efficiently found?
Non-constructive existence proofs are philosophically interesting but of little practical use. Seeking constructive methods leads to deeper cuderstanding of a field/problen.

* based on text by Avi Wigderson.
(4) The study of computation leads to the production of new mathematical results, theorems, and problems.

Need both to analyze algorithms and to prove hardness results. Devise new probabilistic concentration results, algebraic identities, statistical test's and more.

Computational Complexity Theory
Early on, SoC focused on understanding which computational problems can and which cannot be solved by algorithms.
But, this division turns out to be too coarse
\rightarrow For many problems that can be solved in principle, the best algorithm to solve them won't terminate fast enough.'
Thus, there was need for a much more refined theory that will account not only for whether a problem is solvable, but also for the performance of the solving algorithm
Computational Complexity Theory was born in 1960s with the goal of understanding efficient computation:
"Determine the minimal amounts of natural resources (time, memory, communication) needed to solve natural computational tasks by natural computational models."
Nowadays, computational modeling has expanded towards understanding more concepts such as: secret, proof, learning, knowledge, randomness interaction, evolution, strategy, synchrony etc.
\rightarrow From "What can be efficiently computed?
To "What can be efficiently proved?"
"What can be efficiently learned?"
"Can we effectively use natural sources of randomness?"
Important Principles: © Computational Modeling:D fine basic operations, information exchange/processing, and resources.
(2) Efficiency: Try to minimize resources used (study trade-offs)
(3) Asymptotic Thinking: Study problems on large instances
as structure often is easier to understand in the limit
(4) Classification: Organize problems info classes according to the resources they require
(5) Reductions: Ignore lack of understanding, assume that you can solve a problem and explore which other problems
(6) Completeness: Identify the most
(6) Completeness: Identify the most difficult problems in a complexity class
(7) Impossi bility: Abstract all known techniques used to solve a problem and argue that they will not suffice for its resolution

The Real Lecture 1
Basics (Sipser, Chapter 0.2, Section "Strings and Languages")

- Alphabet Σ : a finite set of characters. Egg., $\Sigma=\{0,1\}$
- Language L over Σ : a set of strings containing characters from Σ
- Empty string ε
* A language doesn't have to be finite. Egg., all binary strings ending in 0

Set Operators for Languages (Sipser, Chapter I.1, Section "The Regular Operations")

- Union Operator: $L_{1} \cup L_{2}=\left\{x \mid x \in L_{1} \vee x \in L_{2}\right\}$
- Concatenation Operator: $L_{1} \| L_{2}=L_{1} \cdot L_{2}=L_{1} L_{2}=\left\{x y \mid x \in L_{1} \wedge y \in L_{2}\right\}$
- Unary Operation \leadsto (Kleene) Star Operation L^{*}

$$
\begin{aligned}
& L^{0}=\{\Lambda\} \\
& L^{k}=L L^{k-1}=\left\{x y \mid x \in L \wedge y \in L^{k-1}\right\} \\
& \text { so, } L^{*}=\bigcup_{i=0}^{\infty} L^{i}=L^{0} \cup L^{\prime} \cup L^{2} u \ldots
\end{aligned}
$$

A. Ll language not to be confused with a^{k} which is

$$
\underbrace{\alpha \alpha \alpha \ldots \alpha}_{k \text { times }} \text { character }
$$

For example, $L=\{01,1\}$. Then $L^{0}=\{\varepsilon\}, L^{\prime}=\{01,1\}, L^{2}=\{0101,011,101,11\}$

$$
L^{3}=\{010101,01011,01101,0111,\}
$$

$$
10101,1011,1101,111\}
$$

so, $L^{*}=\{\varepsilon, 01,1,0101,011,101,11,010101,01011,01101,0111$, $10101,1011,1101,111, \ldots\}$

We start with a simple model of computation and a simple class of languages.
\rightarrow regular languages

Regular Languages (Sipser, Chapter 1.3, Section "Formal Definition of Regular Expressions"

- Recursive Definition: Let R be the set of all regular languages over alphabet Σ

1. $\varnothing \in R$ and $\{\varepsilon\} \in R$
2. $\forall \sigma \in \sum:\{\sigma\} \in R$
3. If $L \in R$, then $L^{*} \in R$ (closed under star)
4. If $L_{1} \in R$ and $L_{2} \in R$, then $L_{1} L_{2} \in R$ (closed under concatenation)
5. If $L_{1} \in R$ and $L_{2} \in R$, then $L_{1} \cup L_{2} \in R$ (closed under union)

- Analogy \rightarrow Operations ' + ', '-', x ' are used to define mathematical expressions where the output is a number
Operations 'II', ' U ', '*' are used to define regular expressions where the output is α language
-Sometimes the union ' u ' is denoted $\alpha s^{\prime}+$ '. Also, sometime we drop ' $\{$ ' and ' $\}$ ' So, the regular expression $(0+1)^{*}$ starts with language $L=L_{1} \cup L_{2}$ where $L_{1}=\{0\}$ and $L_{2}=\{1\}$, and applies the $*$ operation.
- In regular expressions, the star operation is done first, followed by concatenation, and then union, unless parentheses changethis order.

Deterministic Finite Automat (DFA) (sipper, Chapter 1.1, Section "Formal Definition"

- A deterministic finite automaton is a state machine that takes as an input a string and outputs either "accept" or "reject"

$$
\text { string } w \rightarrow \text { DEA } \rightarrow \text { Accept/Reject }
$$

It processes the string via transitions between states
Example:

luput "bee"

Language L, from regular expression $\varepsilon+\left(\Sigma^{*} \alpha\right)$ or more detailed $\{\varepsilon\} u\left(\{\alpha u b\}^{*} \|\{\alpha\}\right)$ $L_{1}=\{\varepsilon\} \cup\{\alpha, \alpha \alpha, b \alpha, \alpha \alpha \alpha, \alpha b \alpha, b \alpha \alpha, b b \alpha, \ldots\}$
is "captured" by DFA:

Quiz I.I: Given the following DFA,

which of the following statements is false
a) String "abb" outputs Accept
b) String "aba" outputs Accept
c) String "baa" outputs Accept
d) Sting "bbax" outputs Accept

More formally,
A deterministic finite automaton $M=(\Sigma, Q, S, F, \delta)$ is defined by

- Alphabet, Σ
- Finite set of states, Q
- Start state, $S \in Q$
- Set ot accept states, $F \subseteq Q$
- Transition function, $\delta: Q \times \Sigma \rightarrow Q$

$$
\begin{aligned}
& \Sigma=\{\alpha, b, c\} \\
& Q=\{A, B, C, D\} \\
& S=\{A\} \\
& F=\{C\} \quad \text { without }
\end{aligned}
$$

The term $L(M)$ means that machine M recognizes language L
That is, every $x \in L$ is accepted in M and $\}$ Let A be the set of all every accepted x in M is a member of $L S$ strings accepted by M, Accept $M \Leftrightarrow$ membership in L then $A=L$.

C Claim: If L_{1} is recognized by DFA M_{1} and L_{2} is recognized by DFA M_{2}, then there exists α DEA M that recognizes $L_{1} u L_{2}$

Proof Sketch:
Let $M_{1}=\left(\Sigma, Q_{1}, S_{1}, F_{1}, \delta_{1}\right)$ and $M_{2}=\left(\Sigma, Q_{2}, S_{2}, F_{2}, \delta_{2}\right)$
Then, construct a new DFA $M=(\Sigma, Q, S, F, \delta)$ such that

$$
\begin{aligned}
& Q=\left\{(A, B) \mid A \in Q_{1} \quad \wedge B \in Q_{2}\right\} \\
& S=\left\{\left(S_{1}, S_{2}\right)\right\} \\
& F=\left\{(A, B) \mid A \in F_{1} \vee B \in F_{2}\right\} \\
& \delta((A, B), x)=\left(\delta_{1}(A, x), \delta_{2}(B, x)\right)
\end{aligned}
$$

We have to prove that $L(M) \Rightarrow L_{1} \cup L_{2}$ and $L(M)<L_{1} \cup L_{2}$
Let string $w=w_{1} w_{2} \ldots w_{k}$ be the input, where w_{i} is the i-th character.
$L(M) \Rightarrow L_{1}$ U L_{2} : We will show that there exists a sequence of states in ,ie., $\left(S_{1}, S_{2}\right),\left(A_{1}, B_{1}\right), \ldots,\left(A_{k}, B_{k}\right)$, such that
(1) $\delta\left(\left(S_{1}, S_{2}\right), w_{1}\right)=\left(A_{1}, B_{1}\right) \rightarrow$ The first pair of sprites are starting states
(2) $\delta\left(\left(A_{i}, B_{i}\right), w_{i}\right)=\left(A_{i+1}, B_{i+1}\right) \rightarrow$ Every intermediate transition is valid
(3) $A_{k} \in F_{1}$ OR $B_{k} \in F_{2} \rightarrow$ The last pair of states contains at least one accept state
Without loss of generality, let's assume that we are in case $A_{k} \in F_{1}$ (as opposed to $B_{k} \in F_{2}$) By the way that M was constructed it follows that $\delta_{1}\left(S_{1}, w_{1}\right)=A_{1}$
as well as $\forall i \in[1, k-1]: \delta_{1}\left(A_{i}, w_{i+1}\right)=A_{i+1}$. Similar argument holds for case $B_{k} \in F_{2}$.
Since (\mathcal{O}, (2) and (3) hold, if w is accepted then it is a member of $L_{1} \cup L_{2}$.
One needs to also show the other direction, $L(M) \Leftarrow L_{1} \cup L_{2}$.
so far we allowed a single transition
from state A with input character x.
\downarrow Extend to allow multiple.
nondeterministic finite automat a!

Nondeterministic Finite Automat (NFA) (Sipser, Chapter 1.2, up to
"Closure under Regular Operations")

- DFA does not allow any ambiguity on how transitions are made $\mapsto a$ state and an input character allowed only a single transition
- Representing multiple potential transitions with a fixed state and input character, allows move flexibility in our design.
- Consider $L=\left\{w \in\{\alpha, b\}^{*} \mid w\right.$ ends in $\left.a b\right\}$, we can use either DFA or NFA.

DEA
start \rightarrow (qT) e_{α}^{α}
NF
A machine accepts an input if there exists some sequence of allowable transitions that ends in an accept state

- Two major changes compared to the definition of DFAs:
(1) Instead of $\delta: Q \times \Sigma \rightarrow Q$ we have $\delta: Q \times \Sigma \rightarrow 2^{Q}$ Power set of
(2) Allow ε transitions. Change state using the cupty string

Thus, the transition function of the above NFA is

$$
\delta=\begin{array}{c|c|c|}
\hline q_{0} & \alpha & b \\
\left.\hline q_{0}, q_{1}\right\} & \left\{q_{0}\right\} \\
\hline q_{1} & \perp & \left\{q_{2}\right\} \\
\hline q_{2} & 1 & 1 \\
\hline
\end{array}
$$

Example: L contains all strings of the form α^{k} where k is a multiple of 2 or 3 .

Question: How much additional power does this nondeterminism gives us?

Equivalence of DFAs and NFAs
DFA \Rightarrow NFA: It is clear that every DFA is also an NFA
$N F A \Rightarrow D F A$: Need to show that for every NFA there exists a DFA such that $L\left(M^{\prime}\right)=L(M)$
Proof Sketch: The intuition is similar to the proof that there exists $\propto D F A$ that recognizes the union of two languages.
$\underbrace{N F A}_{\text {known }}: M=\left(\Sigma, Q, q_{0}, F, \delta\right)$
DEA: $M^{\prime}=\left(\Sigma, Q^{\prime}, S^{\prime}, F^{\prime}, \delta^{\prime}\right)$
we need to build

- To construct Q^{\prime} we create a new state for every possible subset of Q. For example, if the NFA at hand is the one from the previous page, the set of states Q^{\prime} is

$$
Q^{\prime}=\left\{" q_{0}^{\prime \prime}, " q_{1}^{\prime \prime}, " q_{2}^{\prime \prime}, "\left\{q_{0}, q_{1} 3^{\prime \prime}, "\left\{q_{0}, q_{2}\right\}^{\prime \prime}, "\left\{q_{1}, q_{2}\right\}^{\prime \prime}, "\left\{q_{0}, q_{1}, q_{2}\right\}^{\prime \prime}\right\}\right.
$$

(1. Each state of Q^{\prime} is a label of a collection of states not the actual collection of states. Recall that states of Q^{\prime} are part of a DFA, therefore they cannot be an actual collection of states.

$$
"\left\{q_{1}, q_{2}\right\}^{\prime \prime} \neq\left\{q_{1}, q_{2}\right\}
$$

pantotaDFA

For example: From q_{0} state, input α takes us to either q_{0} or q_{1}

- If any of the q_{1}, q_{2} NFA states then the DFA state " $\left\{q_{1}, q_{2}\right\}$ " is an accept state.
- Formally, for M^{\prime} we have:

$$
\begin{array}{ll}
\cdot Q^{\prime}=\text { labels of } 2^{Q} & \cdot F^{\prime}=\left\{T \in Q^{\prime} \mid \exists t \in T \text { such that } t \in F\right\} \\
\cdot S^{\prime}={ }^{\prime 2}\left\{q_{0}\right\}^{\prime \prime} & \cdot S^{\prime}(T, x)=\bigcup_{q \in T} \delta(q, x)
\end{array}
$$

represented as a set but it is
represent ied as a set and α single
the label of the set M .
state in DF

- To prove equivalence between Finite Automats we need to show:
(1) If $w \in L(M)$, then $w \in L\left(M^{\prime}\right)$
(2) If $w \in L\left(M^{\prime}\right)$, then $w \in L(M) \rightarrow$ see notes
- Let $w=w_{0} w_{1} \ldots w_{k-1}$ be the input string and suppose that NFA M accepts w. We will show that the constructed DFA M' accepts was wall.
- Because M is an NFA we know that there exists some sequence of states $q_{0}, q_{1}, \ldots, q_{k}$ such that $q_{i+1} \in \delta\left(q_{i}, w_{i}\right)$ and $q_{k} \in F$ for input string w.
- Let's switch now to DFA.
- Let $T_{0} T_{1}, \ldots, T_{k}$ be a sequence of states of M^{\prime} s.t. $T_{i+1}=\delta^{\prime}\left(T_{i}, w_{i}\right)$
* Recall that because M^{\prime} is a DFA, there is only one sequence of states/transitions for input w
- We need to prove that these transitions lead to an accept state in the DFA.
[Claim: The subset-labeled DFA states T_{0}, \ldots, T_{k}, contain the accept-leading sequence of NFA states q_{0}, \ldots, q_{k}. More formally, $\forall i \in[0, k]: q_{i} \in T_{i}$
$i \rightarrow$ state of DFA
state of
MFA
Proof: Induction \Rightarrow Babe Case: $T_{0}=S^{\prime}=\left\{q_{0}\right\}$
Inductive Hypothesis: Suppose the claim holds for $q_{i} \in T_{i}$ inductive Step: Show that $q_{i+1} \in T_{i+1}$
From definition of T_{i+1} :

$$
\begin{aligned}
& T_{i+1}=\mathcal{S}_{\underset{D}{\prime}\left(T_{i}, w_{i}\right)=}^{\bigcup_{q \in T_{i}}} \delta\left(q, w_{i}\right) \stackrel{\sim}{=} \delta\left(q_{i}, w_{i}\right) \cup\left\{\bigcup_{q \in T_{i}} \delta\left(q, w_{i}\right)\right\} \\
&=q_{i+1} \cup\left\{\bigcup_{q \in T_{i}} \delta\left(q, w_{i}\right)\right\} \\
& \text { frown definition } \\
& \text { of dits, ie, } 0
\end{aligned}
$$

Thus, $q_{i+1} \in T_{i+1}$. From the induction we conclude that $q_{k} \in T_{k}$ and since $q_{k} \in F$ it follows that $T_{k} \in F^{\prime}$.
\therefore D DEA

