
 

Lectures

IringMachines Sipser Chapter 3.1

So far we have seen two computational modesIs FiniteAutomata andPushdown
AutomataFinite automatahave no accessto memory andPushdown automata have
unlimitedmemory in a form of a stack but usable only in the lastin first out
mannerThey both have limited capabilities which is why we switch to a
more powerful model

Turing machinesTM wereproposed by AlanTuring in 1936 and they can do
everything a real computer can do Unfortunately there are certainproblem

that even TMs cannot solve problems beyondthetheoretical limitsofcomputation

The TM model uses a tape that has a leftmostend but not a rightmostend

Tape I
paint its.ve 1tftiwtiifiaanylaaeionottnetaeewe have to introducenotation that
specifies if the head of thetape ismoving to the left or right

Initially the tape contains only the inputstring startingfromtheleftmost
location andthe blank character a everywhere else

Theoutputs accept and reject are obtainedby entering the designated
accepting and rejecting states These states are trap states recall
that in Finite and Pushdown automatathey are not trap states and they
terminate the execution immediately

FormalDefinitionofaturingMachine
The transition function 8 of a Turingmachine takes theform

J Q x T Q x T X LI
thestatethatthe thesymbol at the Thenext state thenewsymbol thedirectio

machine iscurrentlyat currentpositionofthe thatthemachine thatiswrittenat thatthehe
machinehead is moving to thecurrentpositionmovesaf

of themachinehead writino
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T.to II 1jfyIygg
machine is a 7 tuple cast 9 19acceptdried

where Q E T are all finite sets and

2 E is the inputalphabetnot containing theblanksymbol w
3 Tis thetapealphabetwhere wet and EET
4 J Ox T Q Tx L R is thetransitionfunction
5 goc Q isthe start state
6 OacceptEQ is the accept state
7 ofrejectEQ is the reject state where Ofreject toaccept

Notice that E does not contain u therefore thefirst u appearing on the
tape marks the end of theinput

If themachine ever tries to move to the left of the leftmostcellofthe
tape then the head stays in the same place for that move

As theTM computes changeshappen in
the current state
the current tape contents
the current head location

An instantiation setting of the above three parameters is calleda configuration
of the Turing machine

Acompact representation of configurations The configuration now is madeup
of two strings u and u over the tapealphabet as well as a state of

State 47 Representation

Tape I 0 I I Ell I 1 I w w M
IggyOff

The tape
containsdullv i.e concatenation of u and V

State q cuts the tape in two pieces its position indicates thatthenext symbol
that the head reads is the first symbolof V

Configuration C yields configurationC2 if the Turingmachinecan legally
gofrom C to Cz in a single transition

peg
abecbabb

Moreformally suppose symbolsab c e T and strings u vet and gig EQ

We say that nagi br yields up Lev
if thetransition SColi b ofj C L is partof 8 definition



We say that nagi br yields u a car
if thetransition SColi b ofj C R ispartof 8 definition

ATuringmachineaccepts inputw if a sequenceof configurations G Ca Ck
exists where

C is the start state configuration ofMon inputW i.e Cigow
Each Ci yields Citi and
Ck is an accepting configuration

The collection of strings thatM accepts isthelanguagerecognizedbyM denotedbyLCM

IDefinition35 Calla languageTuring recognizable if someTuringmachinerecognizes it

II ATMoperating on an input w canhavethreeoutcomes acceptreject or loop
Loop means that themachine does not haltDistinguishing a machinethat is
looping from one that is taking too long isdifficult

The TMs thathalt on all inputs i.e theyalwaysmakeadecisionto accept or reject
are called deciders

DecidingRecognizing
Turing machineM decides L ifandonly if Moutputsacceptforevery wet

Moutputs reject for everyWHL

Turing machineM recognizes L ifandonly if Moutputs accept forallandonly
the inputstrings wet thisdefinitionallows M to loop it well
If M decides L then M recognizes L theotherdirection is not true

Emp13.7 A TM thatdecides the languageconsisting ofallstrings of Oswhose length is a powerof two i.e 1 02 470

thinkaboutit Thereare someeasy corner cases that we can handle fast
Forexample if theinput is theemptystring ortheinput is a symbol

from TIAsymbotiitthetipealphabet t butnot inputalphabet E
If we have an offnumber of Os then theinput cannotbe in L Reject
Weneed to check if the thenumberofOs is a powerof 2 e.g W 0000 022
Supposeyouwant to generate 2 zeros thenmost probably youwould



o doubles of doublesoooo doubt 00000000 doubts doubts 00 00String

gnofOs 20 2 22 23

What if instead ofdoubling to generate a new string we instead halve
the number of Os

Input 00000000

00000000 hate Xoxoxoooo hate xxxxxdoo half xxxxxxoxo
23 22 2 20

If If we count howmanytimes we halved we can calculatethe n in 02
t

Moreimportantly ifby halvingwe reach apointwherewehavemore Osbut
we cannot halve anymore then theinput is not a member of L

Noticethatwhen wehalved we crossed out a sequence starting fromthe leftmost
remaining O To do that we need to know the total number of remaining Os
To perform this in a TM we need to do onepass to count the of Os and
anotherpass to cross out the rightnumber of them

There is a smarter waythat uses only pass Cross outevery otherO

half xoxoxodohate xoxoxoxoxoxo half xoxoxoxoxoxo

One lastthing Since weneed to do a lot of backandforth on thetape we need
to mark the beginning of the tape Cross out thefirst ousing w

Wedefine thefollowing TM with 2 03 F w O X

Transition Function
L

xxx
o x w

91 92W R OrejWR GrejXR

92 93X R 92X R MaceURon R

g

ox R

j 93 94,0R 93X R 9s it

94 93X R 94 XR qrej.HRDx x R

95 95,0L 95X L 92WR

Oaccept I 1 I

9reject I 1 I



Breakdown

p
withoutcrossing out untilyoufindthe
L beginning

a

isI beginning

rightandcross out
Fast everyotherO
Rejection x 444ktp one

g

ox R
apewww

xx RI
iinn

numberofOs

ExampleRon w 0000

xxx

w

war on r foxR our o

sarffox.RF1EIIypx x.R
Ete qyeaxx.r

Tape 000 Configuration W012000 Tap WHO

for
war on r foxR war on r foxR

w

jjf
iiqF1ELIypx x.R

Ete qyeaxx.r

for
war on r foxR war on r foxRI

tyg Iguaxxir
n

jj L i9re Haaf 9re qaae



it F Lsax
war on r foxR war on r foxR

gym

fj9re ganef Fxx R 9re 9aae Fxx R

it fit
war on r foxR war o

sarffox.RE1ELIy2x x.r t.IQ ox x.r

i

ii i

n

si iwar on r foxR onR foxR

I Fxx R Fxx R

Configurationwxx9zX

it fitson
i f d ÉÉg

i
i

is

ConfigurationuxxolsX TapeWXXI

it F Lsax
on R foxR war on r foxRi

E
gym

jY fFxx R Fxx R



it fiti sax

g

war on r foxR war on r foxR

IIIFxx R Fxx R

peyy configurationuqaxxx Tape

xxx T

a

g

war on r foxR war on r foxRI I9re Olaf Fxx R Fxx R

TapeUNIX ConfigurationuxxolzX TapeWXXI

L

war on r foxR war on r foxR
jj

j

L Mj
É
ÉÉ taIII Fxx R Fxx R

t

Quiz3.1 Suppose we compute on theabove TM Whichofthefollowing
configurations cannotbeseen in this TM

A 9,00000000
B 0 0940
C WXXXXXwolaccept
D WXXXXXXXwolaccept



CChurchTuringThesis Sipser Ch3.3
Nocomputationalprocedurewillbe
considered as an algorithm unless it
can be represented as aTuringmachine

Intuitivenotion
ofalgorithms

Turingmachine
algorithms

o

Whatistherightlevelofdetailwhendescribin
TM algorithms
FormalDescriptionProvidea detailed
descriptionof TM's States transitionfunctionet
ImplementationDescriptionUse text to
describe thewaythat it moves its headand
theway it stores data on its tape
High levelDescription Use text toPh.DThesisof AlanTuringtitled

SystemsofLogicBasedon Ordinals 1938
describethealgorithm ignoring
implementationdetailsheadmovementetc

TMs are powerful They can handlesolveproblems beyond regularlanguages
They can handle languages that concern all kinds of mathematical objects

Enggdying

za.si iiEiiiieiiaa
8D Properlyformedinputstrings

The listof nodes shouldcontain no repetitious
Listof nodes decimalnumbers Listofedgespairsof decimalnumb
Every node on edge list shouldappear on node list

Thus we can have a TM that decides language

CG G is a connected undirectedgraph



Decidability sipser Chapters 4.1and 4.2

Let's investigate the power of TM algorithms to solve problems
We will see that some problems can be solved algorithmically but certain
problems cannot

Explorethe limits ofalgorithmicsolvability

Decidablelangeages
We give an algorithm fortestingwhether a finite automaton accepts a string

Iheorem4.1 Language L B W B is aDFA thataccepts inputstringw
is a decidable language

Roof up
Highleveldescription

1
On input BW where B is a 5 tupledescribing a DFA
and W is a string
1 Simulate B on input W
2 If thesimulationends in B's accept state then M accepts
If itends in a non accepting state then M rejects

First M checks if the inputstring is a properly formed CB w encoding
i.e a S tupledescribing a DFA followed by w if not reject

M carries the simulation directly Keepstrackof B's current state
and itsposition in theinputW
bywriting on M's tape

Noticethat B is a DFA therefore it performs a singlepass on input
w which means that it will terminate in Iwl steps Ta

Undecidability

Oneofthe most philosophically important findings

There are problems that are algorithmically unsolvable

Goal Learn techniques to provethat a problem is computationally
unsolvable



Theorem 4.11 The language Lin M W MisaTMand M acceptsw
is undecidable

Someobservations first
Thistheorem shows that recognizers are morepowerfulthandeciders
Requiring a TM to halt on all inputs restricts the languages that it canprocess

not decides

Forexample the following simple TM recognizes Ltm
U On input MW where M is a TM and w is a string

1 Simulate M on input w

if M ever enters its reject state then U rejects

but doesIT
state then u accept

It is possible that M loops on inputw which iswhy U recognizes Ltm

The above is an example of a universal Turing machine that is
capable of simulating any other TM M given its description

µ
Predecessorofmodern computer onemachinethat

runsarbitrarymachin
basedon theprogram

Theproof of Thu 4.11 is based on theDiagonalizationmethod discovered
by Cantor in 1873 Themotivatingquestion was

If we have two infinitesets how can we tell if one is largerthan the
other or whether they are of the same size

If we start counting to compare theirrelative sizes wewill neverfinish

Tfs keyObservationForthe case of finitesets two sets havethe same
compete

size if the elements of one set can bepairedwiththe
comingelements ofthe other set Extendthis to infinitesee

Tomedefinitionsbefore introducing thediagouilization method
Let AB be two sets and f be a function from A to B

Function f is injective one to one if it never maps twodifferent
elements to the same place i.e ta beA at b fix f b



Function f is surjective onto if it hitseveryelement of B
i e t beB FLEA suchthat Fla b

If function f that is both one to one and onto is called a correspondence
Wesaythat Aand B havethesamesize ifthere is a correspondence betweenthem

Example Let IN 12,3 be the set ofnatural numbers and
E 2,4 6 be the set of even naturalnumbers

We canprove that these infinite sets have the same size by
providing a correspondence from IN to E

g g

Counterintuitive
f n 2n really y

Fa
2 examplesince E is a

2 4 propersubsetofIN ECN
3 6

A set S is countable if either it is finite or ithasthesamesizeas IN

AnotherExampleThe set of positiverationalnumbers D A m n en
has the same size as IN Evenmorecounterintuitive

Toprovethatthey havethe same size we give a correspondence
Create an infinite matrix to list allmembers of IQ

Increase
Denominator Theproposedfunctionmustnothavethe same

Increase t t t t s output for two different inputs Noticethat
Numerator 22 3 43 some numbers are repeated in this infinite

332 3 I 3 matrix 1 4 22 3 3 and 2 4 42I 4 E
E Es E E E Also we mustoutputeverymemberof set Q

Thus this f N O s
is not a

correspondence because it LIE
will never reach thesecondrow

E Es E E E
Listthemembers on thediagonals

t t t t t
But if we simply listthem likethat 2,3
we create repetitious 332 3 I
T F K 221131 442 E E E

E Es E E EYnotacorrespondence



Skip repeated entries to ensure one to onepropertyÉI

Correspondence betweenINand IQ

For some infinite sets thereexists no correspondencewith IN Such a set
is called uncountable someinfinitesets are largerthanotherinfinitesets

Example The set of real numbersR is uncountable

ProofWeproceedwith a proofby contradiction Suppose for thesake of
contradiction that exists a correspondence f between INand R

Wewillprovide a number rek that does notappearas an output of f

304159

514
2 55.550

g go

define r suchthat the ithdecimalof r
3 0 12304 is differentfrom the i thdecimal off i

Y r 0.2415

If we construct an r such thatthe i thdecimal is differentfrom the ith decimal
of fli then we know that r is notequal to flu for anyvalue of n

Before we see the proof for Theorem 4.11 let's firstprovethatthere
are languages that are not Turing recognizable

EÉ 4.18 Some languages are not Turing recognizable

Lemma A Forany alphabet E the set ofstrings Ett is countable

ProofforlemmaA Make a listthat covers all themembers ofthe infinite
see It

Let E dib c
List
lseiyshb.is naiiE4hb f

from E with length1 from E with length 2



It is easy to see thatthe indexof its entry of LS can be
used as a IN value towardsbuilding a correspondencewith LSE

Thus the set of strings Ett is countable is

Corollary A WeknowthateveryTuringmachineMcanbeencoded as a
finite string M If we omitfrom Ett the stringsthatdo not encode a TM thenwhat is left is a subset of

whichweknow is countable Thus the set of all TM is countable

An infinite binary sequence is an unending sequence of Osand Is

Lemma B The set of infinite binary sequences B is uncountable

i that B is countable Then there exists a correspondence

appear as an output of f f is not onto f is not a correspondence
Iterate through the list impliedby f for the i th entry of the list
check the i th bit of flit and assign theopposite to the i th bitof r

r byflippingthe i thbitÉ É
n

Th

Lemmas The set of all languages L is uncountable

P fforlemmaC.pepurgethis
we haveto build a correspondence between
i.e the two sets havethesame size

Recallthat a language is a collection of stringsfrom set Wecan represent
thestringsthat are members of language AEL as an infinitebinary sequence
XA alsocalled characteristicsequence of A where its i th bit takes value 1
if the i th string of Lse is in language A andvalue 0 if i th string of Lse
is not in language A

LS Y b C ah ab ac ba bb be ca cb cc
i t t t t t

A I b aib bibbi I 1

Xa O l o o i o o i i o d o



Given a fixed LSet each language in L has a uniquecharacteristic
sequence of A
The function f L B where f A is the characteristic sequenceof A
is one to one and onto and hence is a correspondence
Thus since IB is uncountable L is uncountable as well

Each Turing machine can recognize a singlelanguageProoffort
from Lemma c the set of all languages is uncountable

while from Corollary A the set of all Turingmachines is countable
Since thereare uncountably many languages and countably many TMs
we conclude that some languages are not recognized byany TM Ba

The key idea is thatthe description of a TM must be a finitestring
whereas the content of a language canberepresentedby an infinite sequence
This asymmetry is the reason that there are languages not recognizedby a TM


