Lecture 3
Turing Machines (Speer, Chapter 3.1)

- So far we have seen two computational modesls, "Finite Automata" and "Pushdown Autonata. Finite automat have no access to memory and Pushdown automat have un limited memory (in a form of a stack) but usable only in the last in first out manner. They both have limited capabilities which is why we switch to α more powerful model.
- Turing machines (TM) were proposed by Alan Turing in 1936 and they can do everything a real computer can do. Unfortunately, there are certain problems that even TM cannot solve \Rightarrow problems beyond the theoretical limits of conputation.
- The TM model uses a tape that has a leftmost end but not a rightmost end.

Tape:
More importantly, we can now read and write on any location of the tape To capture this functionality, we have to introduce notation that specifies if the head of the tape is moving to the left or right.

- Initially, the tape contains only the input string starting from the leftmost location and the blank character " \lrcorner " every where else.
-The outputs "accept" and "reject" are obtained by entering the designated accepting and rejecting states. These states are trap states (recall that in Finite and Pushdown automat they are not trap states), and they terminate the execution immediately.
Formal Definition of a Turing Machine
The transition function δ of a Turing machine takes the form:

$$
\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}
$$

the symbol at the the next state the new symbol the direction machine is currently at current position of the that the machine that is written at that the head machine head is moving to the current position moves after
of the machine head writing

Definition 3.3: A Turing machine is a 7 -tuple $\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept },} q_{\text {rect }}\right)$ where Q, Σ, Γ are all finite sets and

1. Q is the set ot all states
2. \sum is the input alphabet not containing the blank symbol "L"
3. Γ is the tape alphabet, where $u \in T$ and $\Sigma \leq T$
4. $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ is the transition function
5. $q_{0} \in Q$ is the start state
6. d accept $^{\in} \in Q$ is the accept state
7. $q_{\text {reject }} \in Q$ is the reject state, where $q_{\text {reject }} \not q_{\text {accept }}$

- Notice that \sum does not contain " ω ", therefore the first " ω " appearing on the tape marks the end of the input.
- If the machine ever tries to move to the left of the leftmost cell of the tape, then the head stays in the same place for that move.
- As the TM computes, changes happen in:
(1) the current state
(2) the current tape contents
(3) the current head location

An instantiation/sefting of the above three parameters is called a configuration of the Turing machine.

- A compact representation of configurations: The configuration "uqv" is made up of two strings u and v over the tape alphabet as well as a state q.

- The tape contains $u \| v$, i.e., concatenation of u and v.
- Stare 9 "cuts" the tape in two pieces, its position indicates that the next symbol that the head reads is the first symbol of v.
- Configuration C_{1} yields configuration C_{2} if the Turing machine can legally go from C_{1} to C_{2} in a single transition.
More formally: Suppose symbols $\alpha, b, c \in \Gamma$ and strings $u, v \in \Gamma^{*}$ and $q_{i, q_{j}} \in Q$.
We say that: $u \alpha q_{i} b v$ yields $u q_{j} \alpha c v$
if the transition $S\left(q_{i}, b\right)=\left(q_{j}, c, L\right)$ is part of δ definition.

We say that: $u \alpha q_{i} b v$ yields $u \alpha c q_{i} v$
if the transition $S\left(q_{i}, b\right)=\left(q_{j}, c, R\right)$ is part of δ definition.

- A Turing machine accepts input w if a sequence of configurations $C_{1}, C_{2}, \ldots, C_{k}$ exists, where:
(1) C_{1} is the start state configuration of M on input w, ie., $C_{1}=q_{0} w$.
(2) Each C_{i} yields C_{i+1}, and
(3) C_{k} is an decepting configuration
-The collection of strings that M accepts is the language recognized by M, denoted by $L(M)$.
Definition 3.5: Call a language Toring-recognizable if some Turing machine recognizes it.
A. A TM operating on an input w can have three outcomes, accept, reject, or loop. Loop means that the machine does not halt. Distinguishing a machine that is looping from one that is taking too long is difficult.
- The TMs that halt on all inputs, i.e., they always make a decision to accept or reject, are called deciders.

Deciding vs. Recognizing:
-Turing machine M decides L if and only if (1) M outputs"accept" for every we
(2) M outputs "reject "for every $w \notin L$

- Turing machine M recognizes L if and only if Moutputs "accept" for all and only the in put strings $w \in L \longrightarrow$ this definition allows M to loop if $w \notin L$.
- If M decides $L_{\text {, then }} M$ recognizes L (the other direction is not true).
- Example 3.7: A TM that decides the language consisting of all strings of O_{s} whose length is a power of + wo, i.e., $L=\left\{O^{2^{n}} \mid n \geqslant 0\right\}$
Let's think about it: There are some easy corner cases that we can handle fast.
- For example, if the input is the empty string or the input is a symbol from riv \rightarrow Reject.
>1 A A symbol in the tape alphabet T but not input alphabet \sum
- If we have an odd number of O_{s}, then the input cannot be in $L \rightarrow$ Reject
- We need to check if the the number of O_{s} is a power of 2 , e.g. $w=0000=02^{2^{2}}$ Suppose you want to generate 2^{n} zeros, then most probably you would:

String: $0 \xrightarrow{\text { double }} 00 \xrightarrow{\text { double }} 0000 \xrightarrow{\text { double }} 00000000 \xrightarrow{\text { double }} \ldots \xrightarrow{\text { double }} 00 \ldots .00$
\# of Os: $\begin{array}{lllll}0 & 2^{1} & 2^{2} & 2^{3} & 2^{n}\end{array}$

- What if instead of doubling to generate a new string, we instead halve the number of OS .

Input: 00000000

"IO', If we count how many times we halved, we can calculate the " 4 " in $0^{2 n}$
More importantly, if by halving we reach a point where we have more Os but we cannot halve anymore, then the input is not a member of L.
-Notice that when we halved, we crossed out a sequence starting from the leftmost remaining O. To do that, we need to know the total number of remaining $O s$ s. To perform this in a TM we need to do one pass to count the \# of Os and another Pass to cross out the right number of them.

- There is a smarter way that uses only one pass \rightarrow Cross out every other 0 .

- One last thing: Since we need to do a lot of back and forth on the tape, we need to mark the beginning of the $+\alpha$ pe \rightarrow Cross out the first O using 4
- We define the following $T M$ with $\Sigma=\{0\}, \Gamma=\{u, 0, x\}$

Example Run $w=0000$

Configuration: 9,0000 Tape: 0000

Configuration: $\omega \times q_{3} 00 \quad T_{a p e} \omega \times 00$

Configuration: $u \times 0 \times y_{3} \quad$ Tape: $u \times 0 \times$ 回

Configuration: $\omega q_{2} 000$ Tape: $\omega 0000$

Configuration: $\mathrm{U} \times \mathrm{O}_{4} \mathrm{O}$ Tape: $\mathrm{\omega} \times 00$

Configuration: $u \times \nabla_{q_{5}} x$ Tape: $\omega \times 0 \bar{X}$

Configuration: $q_{5}^{u=u, R \times 0 x \quad \text { Tape: Un } 0 x}$

Configuration: $\omega \times q_{2} 0 \times$ Tape: $u \times O \times$

Configuration: $u \times x \times q_{3}$ Tape: $\omega \times \times x$ 回

Configuration: $\omega \times q_{s} \times x$ Tape: $\omega \times \bar{x} x$

Configuration: $\omega \times \times q_{s} x$ Tape: $\omega \times x \times x$

Configuration: $q_{5} \omega \times x \times \quad$ Tape: $\amalg \times x x$

Configuration: $\omega \times q_{2} \times x \quad$ Tape: $u \times \bar{x} x$

Configuration: $\omega \times \times \times q_{2}$ Tape: $\omega \times \times \times \square$

Configuration: $\omega \times \times q_{2} \times$ Tape: $\omega \times x \times x$

Configuration: $\omega \times \times \times \omega q_{\text {ace pt }}$ Tape: $\omega \times x \times \sim$

Quiz 3.1: Suppose we compute on the above TM. Which of the following configurations cannot be seen in this TM?
A) 9,00000000
B) 1×0940
C) $\sqcup x x \times x \times \sim \sqcup q \alpha c c e p t$
D) $\sqcup x \times x \times x \times x \times \sqcup q / \alpha c c e p t$

The Church-Turing Thesis (Sipser, Ch.3.3)

- No computational procedure will be considered as an algorithm unless it can be represented as a Turing machine
Thermal shall not be concerned much here with this particular definition. Another definition of effective calculability has been given by
\qquad closely to the intuitive idea (Turing [1], see also Post [1]). It was said above "a function is effectively calculable if its values can be found by some purely mechanical process." We may take this
\qquad
\qquad
\qquad
leads to the author's definition of a computable function, and an
identification of computability ${ }^{3}$ with effective calculability.
Fe shall use the expression 'computable function' to mean a
function calculable by a machine, and let 'effectively calculable'
refer to the intuitive idea without particular identification with
any one of these definitions. Fe do not restrict the values taken
by a computable function to be natural numbers; we may for instance
It is not difficult though somewhat laborious, to prove these
PhD. Thesis of Alan Turing titled
"Systems of Logic Based on Ordinals", 1938
- Intuitive notion \Longleftrightarrow Turing machine of algorithms \qquad
What is the right level of detail when describing TM algorithms?
(1) Formal Description: Provide a detailed description of TM's states, transition function, etc.
(2) Implementation Description: Use text to describe the way that it moves its head and the way it stores data on its tape.
(3) High-level Description: Use text to describe the algorithm ignoring implementation details (head movement etc.)
-RMs are powerful. They can handle/solve problems beyond regular languages. They can handle languages that concern all kinds of mathematical objects.
For example:

Properly formed input strings:

- The list of nodes should contain no repetitions
- List of nodes: decimal numbers, List of edges: pairs of decimal numbers
- Every node on edge list should appear on node list

Thus, we can have a TM that decides language

$$
L=\{\langle G\rangle \mid G \text { is a connected undirected graph }\}
$$

Decidability_ (Sipser, Chapters 4.1 and 4.2)

- Let's investigate the power of TM/ 1 gorithms to solve problems. We will see that some problems can be solved algorithmically but certain problems cannot.

Explore the limits of algorithmic solvability

- Decidable Languages

We give an algorithm for testing whether a finite automaton accepts a string
Theorem 4.1: Language $L=\{\langle B, w\rangle \mid B$ is a DFA that accepts input string w $\}$ is a decidable language
Proof:
$M=$ "On input $\langle B, w\rangle$, where B is a 5 -tuple describing a DFA and W is a string:

1. Simulate Bon input w
2. If the simulation ends in B's accept state, then M accepts. If it ends in a non-accepting state, then M rejects."
First, M checks it the input string is a properly formed $\langle B, w\rangle$ encoding (ie., a 5 -tuple describing a DFA followed by w), if not reject.
M carries the simulation directly \Rightarrow Keeps track of B's current state and its position in the input w.
by writing on M's tape.
Notice that B is a DFA, therefore, it performs a single pass on input w, which means that if will' terminate in $|w|$ steps.

Undecidability
One of the most philosophically important findings:
"There are problems that are algonthmically unsolvable"
Goal: Learn techniques to prove that a problem is computationally unsolvable.

Theorem 4.11: The language $L_{T M}=\{\langle M, w\rangle \mid M$ is a $T M$ and M accepts w $\}$ is undecidable.

Some observations first:

- This theorem shows that recognizers are more powerful than deciders.
- Requiring a TM to halt on all inputs restricts the languages that it can process.

For example, the following simple TM recognizes $L_{T M}$
$U=$ " O_{n} input $\langle M, w\rangle$, where M is $\alpha T M$ and w is a string:

1. Simulate M on input w.
2. If M ever enters its accept state, then U accepts if M ever enters its reject stare, then U rejects.

* It is possible that M loops on input w, which is why U recognizes $L_{T N}$ but does not decide LTM.
The above is an example of a universal Turing machine that is capable of simulating any other TM M given its description.

Predecessor of modern computer "one machine that
runs arbitrary" "machines" based on the program

The proof of Thu 4.11 is based on the Diagoualization method discovered by Cantor in 1873. The motivating question was:
"If we have two infinite sets how can we tell if one is larger than the other or whether they are of the same size?"
\longrightarrow If we start counting to compare their relative sizes we will never finish.
"O.' Key Observation: For the case of finite sets, two sets have the same size if the elements of one' set can be paired with the elements of the other set \Rightarrow Extend this to infinite sets!
Some definitions before introducing the diagonilization method.
Let A, B be two sets and f be a function from A to B.

- Function f is injective (one-to-one) if it never maps two different elements to the same place, i.e., $\forall \alpha, b \in A, \alpha \neq b \Rightarrow f(\alpha) \neq f(b)$
- Function f is surjective (onto) if it hits every element of B i.e., $\forall b \in B, \exists \alpha \in A$ such that $f(\alpha)=b$
- If function f that is both one-to-one and onto is called a correspondence. * We say that A and B have the same size if there is a correspondence between them.

Example: Let $\mathbb{N}=\{1,2,3, \ldots\}$ be the set of natural numbers and
$\varepsilon=\{2,4,6, \ldots\}$ be the set of even natural numbers.
We can prove that these infinite sets have the same size by providing a correspondence from \mathbb{N} to ε.

$$
f(n)=2 n \xrightarrow{\text { visually }} \xrightarrow{n} \begin{array}{lll}
n \\
1 & 2 \\
2 & 4 \\
3 & 6 \\
4 & 8
\end{array} \quad \quad \begin{aligned}
& \text { (n) } \\
& \vdots
\end{aligned} \quad \begin{aligned}
& \text { example since } \varepsilon \text { is } \alpha \\
& \text { proper subset of } \mathbb{N}, \varepsilon \subset \mathbb{N}
\end{aligned}
$$

- A set S is countable if (1) either it is finite, or (2) it has the same size as \mathbb{N}.

Another Example:
The set of positive rational numbers $Q=\left\{\left.\frac{m}{n} \right\rvert\, m, n \in \mathbb{N}\right\}$ has the same size as \mathbb{N}.
*Even more counterintuitive!
To prove that they have the same size, we give a correspondence.
Create an infinite matrix to list all members of \mathbb{Q}
 Increase
Denominator \longrightarrow

* The proposed function must not have the same
* Also we must output every member of set \mathbb{Q}.
(*) List the members on the diagonals

$N=(1,9,2,3), 4, \ldots)$	$\left(\frac{1}{1}\right)$	$\left(\frac{1}{2}\right)$
	$\left(\frac{1}{3}\right)$	$\left.\frac{1}{4}\right)$

But if we simply list them like that, we create repetitious:
$\left(\frac{1}{1}, \frac{2}{1}, \frac{1}{2}, \frac{3}{1}, \frac{2}{2}, \frac{1}{3}, \cdots\right)$
(1) $\frac{1}{2} \frac{1}{3}\left(\frac{1}{4}\right) \frac{1}{5}{ }^{\pi}$
(2) $\frac{2}{2} \frac{2}{3} \frac{2}{4} \frac{2}{5}$ Skip repeated entries to ensure one-to-one property
(3 ($\frac{3}{2} \frac{3}{5} \frac{3}{4} \frac{3}{5} \cdots$ \downarrow
(4) $4 \frac{4}{3} \frac{4}{4} \frac{4}{5}$ Correspondence between \mathbb{N} and \mathbb{Q}.
(5) $\frac{5}{2} \frac{5}{3} \frac{5}{4} \frac{5}{5}$

- For some infinite sets there exists no correspondence with \mathbb{N}. Such a set is called uncountable. (\Rightarrow Some infinite sets are larger than other infinite sets)
Example: The set of real numbers \mathbb{R} is uncountable.
Proof: We proceed with a proof by contradiction. Suppose for the sake of contradiction that exists a correspondence f between \mathbb{N} and \mathbb{R}.
We will provide a number $r \in \mathbb{R}$ that does not appear as an output of f.
An illustration:

n	$f(n)$-Hypothetical	
1	$3.14159 \ldots$	
2	$55.55 \ldots$.	define r such that, the i th decimal of r
3	$0.1234 \ldots$	is different from the isth decimal of $f(i)$.
4	0.5000	$r=0.2415 \ldots+\ldots$
\vdots		

If we construct an r such that the i th decimal is different from the $i-t$ th decimal of $f(i)$, then we know that r is not equal to $f(n)$ for any value of n.

Before we see the proof for Theorem 4.11, let's first prove that there are languages that are not Turing-recognizable.
Corning 4.18: Some languages are not Turing-recognizable.
Lemma -A: For any alphabet Σ, the set of strings Σ^{*} is countable
Proof for Lemma $\alpha-A$: Make α list that covers $\alpha \|$ the members of the infinite set Σ^{*}.

$$
\text { Let } \Sigma=\{\alpha, b, c\}
$$

$\operatorname{Lis}^{\prime}+S_{\Sigma^{*}}: \alpha, b, c, \underbrace{\alpha \alpha, \alpha b, \alpha c, b \alpha, b b, b c, c \alpha, c b, c c, \ldots}$ all strings with characters all strings with characters from \sum with length 1 . from Σ with length 2

It is easy to see that the index of its entry of $\operatorname{LS}_{\Sigma^{*}}$ can be used as a \mathbb{N} value towards building a correspondence with LS $\sum_{\Sigma^{*}}$ Thus, the set of strings \sum^{*} is countable.

Corollary-A: We know that every Turing machine Man be encoded as a finite string $\langle M\rangle$. If we omit from Σ^{*} the strings that do not encode a TM, then what is left is a subset of Σ^{*} which we know is countable. Thus, the set of all TM is countable.

An infinite binary sequence is an unending sequence of $O s$ and $1 s$.
Lemma-B: The set of infinite binary sequences \mathbb{B} is uncountable.
Proof for Lemma-B: By diagonilization. Suppose for the sake of contradiction that \mathbb{B} is countable. Then, there exists a correspondence with \mathbb{N}. We can create an infinite binary sequence r that does not appear as an output of $f \Rightarrow f$ is not onto $\Rightarrow f$ is not a correspondence. Iterate through the list implied by f, for the $i+h$ entry of the list, check the i-th bit of $f(i)$ and assign the opposite to the i-th bit of r.

$$
\begin{array}{lll}
f(1)=10110 \ldots & r=0 \ldots & \text { *Choose }+ \\
f(2)=10011 \ldots & r=01 \ldots & r \text { by flip } \\
f(3)=01101 \ldots & r=010 \ldots & \text { of } f(i) .
\end{array}
$$

* Choose the i-th bit of r by flipping the i-th bit

Lemma-C: The set of all languages \mathcal{L} is uncoun $+\alpha$ bile.
Proof for Lemmd-C: To prove this, we have to build a correspondence between \mathbb{B} and \mathcal{L}, ie., the two sets have the same size.

Recall that a language is a collection of strings from set Σ^{*}. We can represent the strings that are members of language $A \in \mathscr{L}$ as an infinite binary sequence X_{A} (also called characteristic sequence of A) where its i-th bit takes value 1 if the i-th string of $L S_{\Sigma^{*}}$ is in language A and value 0 if i-th string of $L S_{\Sigma^{*}}$ is not in language A.

$$
\begin{array}{ccccccccc}
L S_{\Sigma^{*}}: \alpha, & b, & c & \alpha \alpha, \alpha b, \alpha c, b \alpha, b b, b c, c \alpha, c b, c c, \ldots \\
A=\left\{\begin{array}{cl:c}
\{ & b, & \alpha b, \\
X_{A}= & 1 & 0
\end{array} 0\right. & 1 & 0 & 0 & b b, b c, & 1 & 0 & 0
\end{array}
$$

Given a fixed $L S_{\mathcal{E}^{*}}$, each language in \mathcal{L} has a unique characteristic sequence of A.
The function $f: \mathscr{L} \rightarrow \mathbb{B}$, where $f(A)$ is the characteristic sequence of A is one-to-one and onto, and hence is a correspondence. Thus, since B is uncountable, \mathscr{A} is uncountable as well.

Proof for 4.18: Each Turing machine can recognize a single language. From Lemma-C the set of all languages is uncountable, while from Corollary-A, the set of all Turing machines is countable. Since there are uncountably many languages and countably many TMS, we conclude that some languages are not recognized by any TM.

* The key idea is that the description of a TM must be a finite string whereas the content of a language con be represented by an infinite sequence. This asymmetry is the reason that there are languages not recognized by a $T M$.

