Lecture 3

Turing Machines (Sipser, Chapter 3.1)

- So tar we have seen two computational modes s, "Finite Automata" and "Pushdown Automata" Finite automata have no access to memory and Pushdown automata have un limited memory (in a form of a stack) but usable only in the last in first out manner. They both have limited capabilities which is why we switch to a more powerful model.

- Turing machines(TM) were proposed by Alan Turing in 1936 and they can do everything a real computer can do. Unfortunately, there are certain problems that even TMs cannot solve =>problems beyond the theoretical limits of computation.

- The TM model uses a tape that has a leftmost end but not a rightmost end. Tape: abbaauuu.

More importantly, we can now read and write on any location of the tape To capture this functionality, we have to introduce notation that specifies if the head of the tape is moving to the left or right.

-Initially, the tape coutains only the input string starting from the leftmost location and the blank character """ everywhere else.

-The outputs "accept" and "reject" are obtained by entering the designated accepting and rejecting states. These states are trap states (recall that in Finite and Rushdown automata they are not trap states), and they terminate the execution immediately.

Formal Definition of a Tuning Machine

The transition function S of a Turing machine takes the form:

 $\delta Q \times T \longrightarrow Q \times T \times \{L, R\}$

the symbol at the the state that the the next state The new symbol the direction that is written at that the head current position of the that the machine machine is currently at machine head the curvent position moves after is moving to of the machine head writing

1. Q is the set of all states 2. Z is the input alphabet not containing the blank symbol "L" 3. Tis the tape aliphabet, where het and EET 4. 5: Q×T-> Q×T×EL, R3 is the transition function 5. qoeQ is the start state 6. gaccept EQ is the accept state 7. greject EQ is the reject state, where greject = gaccept - Notice that & does not contain "", therefore the first "" appearing on the tape marks the end of the input. - If the machine ever tries to move to the left of the leftmost cell of the tape, then the head stays in the same place for that move. (2) the current tape contents 3 the current head location An instantiation/setting of the above three pavameters is called a configuration of the Turing machine. • A compact representation of configurations: The configuration "uqv" is made up of two strings u and v over the tape alphabet as well as a state q. - The tape contains UllV, i.e., concatenation of u and V. - State q "cuts" the tape in two pieces, its position indicates that the next symbol that the head reads is the first symbol of V. - Configuration C. Yields configuration Cy if the Turing machine can legally go from C. to Cy in a single transition. 6 re.g., abccbabb.... More formally: Suppose symbols ab, ce T and strings u, ve T* and qi, q; eQ. We say that: undiby yields uqider if the transition S(qi, b) = (qj, c, L) is part of S definition.

We say that: undiby yields uncq;v if the transition S(qi, b) = (qj, c, R) is part of S definition. - A Turing machine accepts input w if a sequence of configurations C1, C2, ..., Ck exists, where: O Ci is the start state configuration of M on imput W, i.e., Ci=qow.
(a) Each Ci yields Citi, and
(b) Ck is an accepting configuration -The collection of strings that M accepts is the language recognized by M, denoted by L(M). Definition 3.5.: Call a language Turing-recognizable it some Turing machine recognizes it. A TM operating on an input w can have three outcomes, accept reject, or loop. Loop means that the machine does not halt. Distinguishing a machine that is looping from one that is taking too long is difficult. - The TMs that halt on all inputs, i.e., they always make a decision to accept or reject, are called deciders. Deciding vs. Recognizing: -Turing machine M decides L if and only if OM outputs "accept' for every well (D) M outputs "reject" for every well - Turing machine M recognizes L if and only if Moutputs "accept" for all and only the imput strings well > this definition allows M to loop if well. - If M decides L, then M recognizes L (the other direction is not true). • Example 3.7: A TM that decides the language consisting of all strings of Os whose length is a power of two, i.e., L= { 0²1n=03 Let's think about it: There are some easy corner cases that we can handle fast. - For example, if the imput is the empty string or the input is a symbol from TIE -> Reject. >1 CA symbol in the tape alphabet T but not input alphabet E - If we have an odd number of Os, then the input cannot be in L-> Reject -We need to check it the the number of Os is a power of 2, e.g. w=0000=02" Suppose you want to generate 2" zeros, they most probably you would:

String: 0 doubl	e 0000 double 0000 d	- 00000000 d	ouble double 0	000
	2' 2¹			
	ad of doubling to of Os.			
	Input:	0000000		
00000000 ha	lve> XXXXX00000 hd	ve> xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	ve> xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	
if If we con	unt how many times	we halved, we can	calculate the "n" in	02
	autly, if by halving halve anymore, the			
remdining 0. lo To perform this	we halved, we cro do that, we need t in a TM we need o cross out the right	to know the total is to do one pass to have of them	count the # of Os	ng Us. and
	per way that uses			Υ U .
halve> \$0\$0\$000	to halve , app od a a	10 halve > xxxxxxxx	0	
-One last thing: Si	ince we need to do a o mark the begin	lot of back and for	rth on the tape, we -> Cross out the first	e need Qusina H
- We detine the	e following TM w	D, L	ξ <u>μ</u> , υ, Χ ζ	
		, 	Transition Func	tion:
0→u,R	2×, R 45 K U-		0 ×	
	$\frac{1}{2} \xrightarrow{0 \to \chi, R}$	→ GJ ×→×,R	91 92, U, R 9rej, 1	J,R 9rej,x,R
u⇒u,R ×→×,R	u→u,R Ø→0	- R -	92 93, X, R 92, 7	K, R Gace, U,R
		2	9 3 94,0,R 93,X	(, R 9514,L
(greject) (g	accept	$(94) \rightarrow \times, \mathbb{R}$	94 93,×,R 94,5	
	u→u,R		95 95,0,∟ 95,>	
			Gaccept L L Greject L L	
			greject L L	

The Church-Turing Thesis (Sipser, Ch. 3.3) 2. Effective calculability. Abbreviation of treatment. A function is said to be 'effectively calculable' if its values · No computational procedure will be can be found by some purely mechanical process. Although it is fairly considered as an algorithm unless it Can be represented as a Turing machine easy to get an intuitive grasp of this idea it is nevertheless desirable to have some more definite, mathematically expressible definition. Such a definition was first given by Gödel at Princeton in 1934 (Gödel [2], 26) following in part an unpublished suggestion of Herbrand, and has since been developed by Kleene (Kleene [2]). We shall not be concerned much here with this particular definition. Another definition of effective calculability has been given by Intuitive notion \iff Turing machine of algorithms algorithms Church (Church [3], 356-558) who identifies it with λ -definability. The author has recently suggested a definition corresponding more closely to the intuitive idea (Turing [1], see also Post [1]). It was said above "a function is effectively calculable if its values can be found by some purely mechanical process." We may take this What is the night level of detail when describing statement literally, understanding a purely mechanical process one which could be carried out by a machine. It is possible to TM algorithms? give a mathematical description, in a certain normal form, of the O Forma I Description: Provide & detailed structures of these machines. The development of these ideas leads to the author's definition of a computable function, and an description of TM's states, transition tunction, etc. 2) Implementation Description: Use text to describe the way that it moves its head and the way it stores data on its tape. It is not difficult through somewhat laborious, to prove these 3) High-level Description: Use text to Ph.D. Thesis of Alan Turing titled describe the algorithm ignoring "Systems of Logic Based on Ordinals", 1938 implementation details (head movement ctc.) ·TMs are powerful. They can handle/solve problems beyond regular languages. They can handle languages that concern all kinds of mathematical objects. For example: Encoding List of nodes List of edges Graph G Q 4 string > $\langle G \rangle = (1,2,3,4) ((1,2), (2,3), (3,1), (1,4))$ 0 I—I Properly formed input strings. The list of nodes should contain no repetitions - List of nodes: decimal numbers, List of edges: pairs of decimal numbers - Every node on edge list should appear on node list Thus, we can have a TM that decides language L= {<6> G is a connected undirected graph }

Decida bility (Sipser, Chapters 4.1 and 4.2)

- Let's investigate the power of TM/algorithms to solve problems. We will see that some problems can be solved algorithmically but certain problems cannot. Explore the limits of algorithmic calcululu.

Explore the limits of algorithmic solvability

·Decidable Languages

We give an algorithm for testing whether a finite automator accepts a string

[Theorem 4.1: Language L= {< B, w> | B is a DFA that accepts input string w} is a decidable language

Proof: M="On input < B, W>, where B is a 5-tuple describing a DFA and W is a string: I. Simulate Bon input W 2. If the simulation ends in B's accept state, then M accepts. If it ends in a non-accepting state, then M rejects."

First, M checks if the input string is a properly formed < B, w> encoding (i.e., a S-tuple describing a DFA followed by w), if not reject.

M carries the simulation directly => Keeps track of B's current state and its position in the input W. by Writing on M's tape. Notice that B is a DFA therefore, it performs a single pass on input w, which means that it will terminate in IWI steps.

Ø

Undecidability

One of the most philosophically important findings:

"There are problems that are algorithmically unsolvable"

Goal: Learn techniques to prove that a problem is computationally unsolvable.

Theorem 4.11: The language LTM= {< M, w> Misa TM and Maccepts w? is undecidable.

Some observations first: - This theorem shows that recognizers are more powerful than deciders. - Requiring a TM to halt on all inputs restricts the languages that it can process. > not "decides"

For example, the following simple TM recognizes LTM

U="On input <M,w>, where M is a TM and w is a string: 1. Simulate M on input w. 2. If M ever enters its accept state, then U accepts if M ever enters its reject state, then U rejects."

* It is possible that M loops on input w, which is why U recognizes LTM but does not decide LTM.

The above is an example of a universal Turing machine that is capable of simulating any other TM M given its description.

Predecessor of modern computer "one machine that " runs arbitrary" machines" based on the program

The proof of Thm 4.11 is based on the Diagonalization method discovered by Cantor in 1873. The motivating question was:

"If we have two infinite sets how can we tell if one is larger than the other or whether they are of the same size?"

-> If we start counting to compare their relative sizes we will never tinish.

Key Observation: For the case of finite sets, two sets have the same size if the elements of one set can be paired with the elements of the other set => Extend this to infinite sets!

Some definitions before introducing the diagonilization method. Let A,B be two sets and f be a function from A to B.

Function f is injective (one-to-one) if it never maps two different elements to the same place, i.e., Va, beA, a => f(x) = f(b)

			ective (c , Jaca is both						MCE
* We	say that	ion f that f A and E	3 have the	e same s	ize if there	e is a corn	espondenc	e between th	em.
Exav	<u>nple</u> : Le	t N= { 1,2 E= { 2,2 can prove	3,3	be the	set of nat	ural num	bers au	q	
	Ma	2= 224	t,6, <u>s</u>	be the	set of eve	en naturo	(number	rs.	
	Drovi	ling a co	that the	Jonce -	from M	to E	Same	5120 07	
	provid	aing a co	n'espon	Nence	f(n)		k Counter	intuitive	
	f('	n)=2n	Visuall	žy T	2		example	since E is	a
				2	4	-	proper su	ubset of N	23
				3	6				
				4	18				
٨							.)1		
- A se	et d is	countable	eitu	either i	it is timite	e, or (2) i	t has the	same sized	s (N
لبه ۸		Jo: The	at of a		ational way	where D-	5mlm	INCNIZ	
HUOT	er Exam	has	the same		ATTOMAT NON	ivers us-	Cnjm	,1101115	
		MUS	THE Jume	: JLE 0				A	10
									lei
	prove the eate dy increase Demomin	hat they ha infinite ma ator ->	ve the s strix to *1	ame siz list all The prop	e, we giv members osed func	e a corre. of Q fion must	spoudena not have	ce. e the same	
To Cro	prove t eate dy i lucrease Denomin + + +	hat they ha infinite ma ator ->	ve the sutrix to	ame siz list all The prop output	e, we giv members osed func for two di	e a corre. of Q tion must ffevent in	spoudena not have iputs. No	ce. e the same otice that	
To Cro	prove t eate dy i lucrease Denomin + + +	hat they ha infinite ma ator ->	ve the suthing to	ame siz list all The prop output some nur	e, we giv members osed func for two di mbers are	e a corre of Q tion must fferent in repeated	not have not have puts. No l in this	ce. e the same otice that infinite	
To Cro	prove t eate dy i lucrease Denomin + + +	hat they ha infinite ma ator ->	ve the suthing to	ame siz list all The prop output some nur	e, we giv members osed func for two di	e a corre of Q tion must fferent in repeated	not have not have puts. No l in this	ce. e the same otice that infinite	
To Cro	Prove eate dy Increase Devomin 1 - 1 - 1 - 3 2 - 1 - 4 2 - 1 - 1 - 1 2 - 1 - 1 - 3 2 - 1 - 1 - 1 2 - 1 - 1 - 1 2 - 1 - 1 - 1 2 -	hat they has infinite ma ator $\frac{1}{4}$ $\frac{1}{5}$ $\frac{2}{4}$ $\frac{3}{5}$	ve the s strix to 	ame siz list all The prop output some nui matrix	e, we give members osed func- for two di mbers are $1 = \frac{1}{1} = \frac{2}{2}$	e a corre of Q fion must fferent in repeated $=\frac{3}{3}=\frac{4}{4}=\frac{1}{3}$	not have puts. No l in this s and a	ce. e the same otice that infinite = $\frac{2}{1} = \frac{4}{2}$	
To Cro	prove t eate dy i lucrease Denomin + + +	hat they has infinite ma ator $\frac{1}{4}$ $\frac{1}{5}$ $\frac{2}{4}$ $\frac{3}{5}$	ve the s strix to 	ame siz list all The prop output some nui matrix	e, we giv members osed func for two di mbers are	e a corre of Q fion must fferent in repeated $=\frac{3}{3}=\frac{4}{4}=\frac{1}{3}$ t every w	not have puts. No l in this s and a nember of	ce. e the same otice that infinite $= \frac{2}{1} = \frac{4}{2}$ f set Q.	
To Cro	Prove eate dy Increase Devomin 1 - 1 - 1 - 3 2 - 1 - 4 2 - 1 - 1 - 1 2 - 1 - 1 - 3 2 - 1 - 1 - 1 2 - 1 - 1 - 1 2 - 1 - 1 - 1 2 -	hat they have $\frac{1}{4}$ in the matrix $\frac{1}{4}$ is $\frac{1}{5}$ 1	ve the s strix to *1	ame siz list all The prop output some num matrix so we	e, we give members osed func- for two di mbers are $1 = \frac{1}{1} = \frac{9}{2}$ must output	e a corre of Q fion must fferent in repeated $=\frac{3}{3}=\frac{4}{4}=\frac{1}{3}$ t every w	not have puts. No l in this s and a nember of	ce. e the same otice that infinite $= \frac{2}{1} = \frac{4}{2}$ f set Q.	
To Cro	Prove eate dy Increase Devomin 1 - 1 - 1 - 3 2 - 1 - 4 2 - 1 - 1 - 1 2 - 1 - 1 - 3 2 - 1 - 1 - 1 2 - 1 - 1 - 1 2 - 1 - 1 - 1 2 -	hat they has ufivite ma ufivite ma	ve the s trix to # 1	ame siz list all The prop output some nui matrix so we N=(1,2,3	e, we give members osed func- for two di mbers are $1 = \frac{1}{1} = \frac{9}{2}$ must output 0, (4,)	e a corre of Q fion must fferent in repeated $=\frac{3}{3}=\frac{4}{4}=\frac{1}{3}$ t every w	not have puts. No l in this s and a nember of	ce. e the same otice that infinite $= \frac{2}{1} = \frac{4}{2}$ f set Q.	
To Cro	Prove eate dy Increase Devomin 1 - 1 - 1 - 3 2 - 1 - 4 2 - 1 - 1 - 1 2 - 1 - 1 - 3 2 - 1 - 1 - 1 2 - 1 - 1 - 1 2 - 1 - 1 - 1 2 -	hat they ha infinite ma ator $\frac{1}{4}$ $\frac{1}{5}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{4}{4}$ $\frac{4}{5}$ $\frac{5}{4}$ $\frac{5}{5}$ Thus, the is un Corres	ve the s trix to this f: 1 ot a spondence	ame siz list all The prop output some nui matrix so we N=(1,2,3 because	e, we give members osed func- for two di mbers are $I = \frac{1}{1} = \frac{9}{2}$ must outpu- b, (4,) it	e a corre of Q fion must fferent in repeated $=\frac{3}{3}=\frac{4}{4}=\frac{1}{3}$ t every w	not have puts. No l in this s and a nember of	ce. e the same otice that infinite $= \frac{2}{1} = \frac{4}{2}$ f set Q.	
To Cro	Prove eate dy Increase Devomin 1 - 1 - 1 - 3 2 - 1 - 4 2 - 1 - 3 2 - 1 - 3 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	hat they ha infinite ma ator $\frac{1}{4}$ $\frac{1}{5}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{4}{4}$ $\frac{4}{5}$ $\frac{5}{4}$ $\frac{5}{5}$ Thus, the is un Corres	ve the s trix to this f: 1 ot a spondence	ame siz list all The prop output some nui matrix so we N=(1,2,3 because	e, we give members osed func- for two di mbers are $1 = \frac{1}{1} = \frac{9}{2}$ must output 0, (4,)	e a corre of Q fion must fferent in repeated $=\frac{3}{3}=\frac{4}{4}=\frac{1}{3}$ t every w	not have puts. No l in this s and a nember of	ce. e the same otice that infinite $= \frac{2}{1} = \frac{4}{2}$ f set Q.	
To Cri Increase Numerotor	Prove + eate dy Increase Denomin 	hat they ha infinite ma ator $\frac{1}{4}$ $\frac{1}{5}$ $\frac{2}{4}$ $\frac{3}{5}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{4}{4}$ $\frac{4}{5}$ $\frac{5}{4}$ $\frac{5}{5}$ Thus, the is un Corres Will un	this f: 11 by the second secon	ame siz list all The prop output some num matrix so we N=(1,2,3 because ch the si	e, we give members osed func- for two di mbers are $I = \frac{1}{1} = \frac{9}{2}$ must outpu- b, (4,) it	e a corre of Q fion must fferent in repeated $=\frac{3}{3}=\frac{4}{4}=\frac{1}{3}$ t every w	not have puts. No l in this s and a nember of	ce. e the same otice that infinite $= \frac{2}{1} = \frac{4}{2}$ f set Q.	
To Cri Increase Numerator	Prove + eate dy Increase Denomin 	hat they ha infinite ma ator $\frac{1}{4}$ $\frac{1}{5}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{4}{4}$ $\frac{4}{5}$ $\frac{5}{4}$ $\frac{5}{5}$ Thus, the is un Corres	the the site in the site is th	ame siz list all The prop output some nui matrix so we N=(1,2,3 because walls	e, we give members osed func- for two di mbers are $1=\frac{1}{1}=\frac{9}{2}$ must outpu- b, (4,) it econd row	e a corre of Q fion must fferent in repeated $=\frac{3}{3}=\frac{4}{4}=\frac{1}{3}$ t every w	not have puts. No l in this s and a	ce. e the same otice that infinite $= \frac{2}{1} = \frac{4}{2}$ f set Q.	
To Cri Increase Numerator	Prove + eate dy Increase Denomin I - 2 - 3 - 2 - 3 - 2 - 3 - 3 - 4 - 5 - 5 - - -	hat they ha infinite ma ator $\frac{1}{4}$ $\frac{1}{5}$ $\frac{2}{4}$ $\frac{3}{5}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{4}{4}$ $\frac{4}{5}$ $\frac{5}{4}$ $\frac{5}{5}$ Thus, the is un corres will un pubers on the	the the site in the site is th	ame siz list all The prop output some nui matrix so we N=(1,2,3 because walls	e, we give members osed func- for two di mbers are $1=\frac{1}{1}=\frac{9}{2}$ must outpu- b, (4,) it econd row	e a corre of Q fion must fferent in repeated $=\frac{3}{3}=\frac{4}{4}=\frac{1}{3}$ t every w	not have puts. No l in this s and a nember of	ce. e the same otice that infinite $= \frac{2}{1} = \frac{4}{2}$ f set Q.	
To Cri Increase Numerator	Prove + eate dy Increase Denomin I - 2 - 3 - 2 - 3 - 2 - 3 - 3 - 4 - 5 - 5 - - -	hat they ha infinite ma ator $\frac{1}{4}$ $\frac{1}{5}$ $\frac{2}{4}$ $\frac{3}{5}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{4}{4}$ $\frac{4}{5}$ $\frac{5}{4}$ $\frac{5}{5}$ Thus, the is un corres will un pubers on the	the the site in the site is th	ame siz list all The prop output some nui matrix so we N=(1,2,3 because walls	e, we give members osed func- for two di mbers are $1=\frac{1}{1}=\frac{9}{2}$ must outpu- b, (4,) it econd row	e a corre of Q fion must fferent in repeated $=\frac{3}{3}=\frac{4}{4}=\frac{1}{3}$ t every w	not have puts. No l in this s and a nember of	ce. e the same otice that infinite $= \frac{2}{1} = \frac{4}{2}$ f set Q.	
To Cri Increase Numerator U Lis But it We cri	prove + eate dy Increase Denomin I - 1	hat they has infinite ma ator $\frac{1}{4}$ $\frac{1}{5}$ $\frac{2}{4}$ $\frac{3}{5}$ $\frac{2}{4}$ $\frac{3}{5}$ $\frac{4}{4}$ $\frac{4}{5}$ $\frac{5}{4}$ $\frac{5}{5}$ Thus, this is a corres will a pubers on the y list them lift titious:	the the site in the site is th	ame siz list all The prop output some nui matrix so we N=(1,2,3 because walls	e, we give members osed func- for two di mbers are $1=\frac{1}{1}=\frac{9}{2}$ must outpu- b, (4,) it econd row	e a corre of Q fion must fferent in repeated $=\frac{3}{3}=\frac{4}{4}=\frac{1}{3}$ t every w	not have puts. No l in this s and a nember of	ce. e the same otice that infinite $= \frac{2}{1} = \frac{4}{2}$ f set Q.	
To Cri Increase Numerator U Lis But it We cri	prove + eate dy Increase Denomin I - 1	hat they ha infinite ma ator $\frac{1}{4}$ $\frac{1}{5}$ $\frac{2}{4}$ $\frac{3}{5}$ $\frac{3}{4}$ $\frac{3}{5}$ $\frac{4}{4}$ $\frac{4}{5}$ $\frac{5}{4}$ $\frac{5}{5}$ Thus, the is un corres will un pubers on the	the the site in the site is th	ame siz list all The prop output some num matrix so we N=(1,2,3 because ch the si	e, we give members osed func- for two di mbers are $1=\frac{1}{1}=\frac{9}{2}$ must outpu- b, (4,) it econd row	e a corre of Q fion must fferent in repeated $=\frac{3}{3}=\frac{4}{4}=\frac{1}{3}$ t every w	not have puts. No l in this s and a nember of	ce. e the same otice that infinite $= \frac{2}{1} = \frac{4}{2}$ f set Q.	

Skip repeated cutries to ensure one-to-one property . . . Correspondence between IN and Q. - For some infinite sets there exists no correspondence with IN. Such a set is called uncountable. (-> Some infinite sets are larger than other infinite sets) Example: The set of real numbers IR is uncountable. <u>Proof</u>: We proceed with a proof by contradiction. Suppose for the sake of contradiction that exists a correspondence f between IN and IR. We will provide a number retR that does not appear as an output of f. f(n) = Hypothetical correspondence An illustration: n 3.14159... I define r such that, the i-th decimal of r 55.55... 2 is different from the i-th decimal of f(i). 3 0.1234 ... r=0.2415...f(4) = 04 0.5000 If we construct an r such that the i-th decimal is different from the i-th decimal of f(i), then we know that r is not equal to f(u) for any value of n. Before we see the proof for Theorem 4.11, let's first prove that there are lauguages that are not Turing-recognizable. - Theorem Corolling 4.18: Some languages are not Tuning-recognizable. Lemma-A: For any alphabet E, the set of strings Z* is countable Proof for Lemma-A: Make a list that covers all the members of the infinite set E* Let $\Sigma = \{x, b, c\}$ List LS, : a, b, c, ad, ab, ac, ba, bb, bc, ca, cb, cc, ... all strings with characters all strings with characters from & with length 2 from Z with length 1.

lt is easy to used as a l Thus,	see that - N value to the set of	the index owards built f strings	of its en ling α co z^{*} is c	try of L prresponden ountable.	Sz* com be ce with LSz*
Corollary - A: We fini do which we k	know that e te string not eucod now is count	very Tuning <m>. If w e a TM, «ble. Thus,</m>	machine l e omit fra they what the set	Man be enotion Σ^* the is left is of all TM	coded as a strivgs that a subset of 2* is countable.
An infinite bina					
Lemma-B: The s	et ot intiv	nite binar	y sequer	ices IS 19	ouncountable.
Proof for Lemma-1	B: By diag that B	onilization is countab	. Suppose le. Then, t	for the sal here exists	ce of contradiction a correspondence
with N. We co	m create a	f = f	bindry se	quence r -	nat does not x correspondence.
Iterate through	the list im	plied by f	, for the	i-th entry	of the list,
check the i-	th bit of t	FCi) and	assign H	ne opposite	of the list, to the i-th bit of r.
)= 10110	+	r=0		hoose the 1-th bit ot
	L)=10011	<i>‡</i>	r=01_		by flipping the i-th bit f(i).
	3)= 01101	and the second residence of the second se	r=010	0.	
Lemma-C: The					
Proot for Lemma	-C: To pre B xu	ove this, we id L, i.e.	have to bui , the two	ld a correst sets have the	zondence between z same size.
Recall that a long	lade is a c	collection ot	strings fi	rom set Z*.	We can represent
the strings that o	tre members	of language	e AEL	as an infini	te binary sequence
XA (also colled c	haracteristic	sequence o	FA) wher	e its i-th b	te binary sequence it takes value 1 -th string of LSE*
it the i-th strin	g ot LSE*	is in langua	ge A and .	value 0 it i	-th string of LSz*
is not in language	~ .				
LS _z ; a, b,	c , a	x, ab,	xc, ba	, bb, bc, ca	k, cb, cc,
A=S h	1			hh he	1 2
$\begin{array}{c} A = \begin{cases} b \\ XA = 0 \\ 1 \\ \end{array}$	1		1		
$X_{A} = 0$ I	0 0) I	0 0	I I 0	0 0

Given a fixed LSz*, each language in 2 has a unique characteristic sequence of A. The function f: 2->B, where f(A) is the characteristic sequence of A is one-to-one and onto, and hence is a correspondence. Thus, since B is uncountable, 2 is uncountable as well.

<u>Proof for 4.18</u>: Each Turing machine can recognize a single language. From Lemma-C the set of all languages is uncountable, while from Corollary-A, the set of all Turing machines is countable. Since there are uncountably many languages and countably many TMs, we conclude that some languages are not recognized by any TM.

* The key idea is that the description of a TM must be a finite string whereas the content of a language can be represented by an infinite sequence. This asymmetry is the reason that there are languages not recognized by a TM.