Lecture 4

In the previous lecture we saw a non-constructive proof that there are non-recognizable languages. In the following, we give a constructive proof that there are undecidable languages.

Theorem 4.11: The language $L_{T M}=\{\langle M, w\rangle \mid M$ is a $T M$ and M accepts $w\}$ is undecidable.

Proof: Suppose for the sake of contradiction that $L_{T M}$ is decidable. Then, there must be a Turing machine H that is the decider of LTM, i.e., if $x \in L_{T M}$, then $H(x)$ outputs "accept" and if w \notin LTM then $H(x)$ outputs" "reject".

What does it mean when $H(x)$ outputs "accept"?
\rightarrow It means that the string x which is the binary encoding of pair M, w , i.e., $x=\langle M, w\rangle$, is in the language $L_{T M}$. Therefore, if we run M with input w, M outputs "accept".
Analogously, when $H(x)$ outputs reject, then $x \notin L_{T M}$. Therefore, for $x=\langle M, w\rangle$ if we run M with input w, then M does not accept * M can either reject or loop. No guarantee which case we are at.
In summary, $H(\langle M, w\rangle)= \begin{cases}\text { "accept", if } M \text { accepts } w \\ \text { "reject", if } M \text { does not accept } w \text {. }\end{cases}$
We now use this (hypothetical) H, to construct a new TM D with input <M>.

More formally, $D=$ " O_{n} input $\langle M\rangle$, where M is $\alpha T M$:

1. Run it on input $\langle M,\langle M\rangle\rangle$.
2. Output the opposite of what H outputs."

* Notice that compilers are "machines"/programs that take as an input the description of another "machine"/program. Much like the input of H, that is $\langle M,\langle M\rangle\rangle$.
(?) What happens when we run D with input its own description $\langle D\rangle$?
We already know that

$$
D(\langle M\rangle)= \begin{cases}\text { "accept", } & \text { if } M \text { does not accept input }\langle M\rangle . \\ \text { "reject", } & \text { if } M \text { outputs "accept" on input }\langle M\rangle .\end{cases}
$$

Now swap $\langle M\rangle$ for $\langle D\rangle$ in the above expression.

$$
D(\langle D\rangle)= \begin{cases}\text { "accept", } & \text { if } D \text { does not accept input }\langle D\rangle . \\ \text { "reject", } & \text { if } D \text { outputs "accept" on input }\langle D\rangle .\end{cases}
$$

We constructed a paradox, therefore, neither TM D nor TM H com exist. Contradiction.
Remark: The above proof can be seen under the lens of the diagonilization method.

- Suppose that we build a table that lists all the possible Turing machines as rows and all the possible input strings as columns

- Since the rows depict all possible $T M s$, one of them must be D.

Next, let's analyze how D behaves on each column. On input $\left\langle M_{1}\right\rangle$, outputs the opposite of $M_{1}\left(\left\langle M_{1}\right\rangle\right)$
On input $\left\langle M_{i}\right\rangle$, outputs the opposite of $M_{i}\left(\left\langle M_{i}\right\rangle\right)$ But these are the outputs of the diagonal!

Recall that last lecture's argument about non-recognizable languages was non-constructive. In the following, we will see a constructive proof for non-recognizability.
A natural first guess is to work with $L_{T M}$ (from Theorem 4.11), which we kn ow is undecidable. It is easy to see that $L_{T M}$ is Turing-recognizable. Simply create a new machine M^{\prime} that internally runs/simulates the input machine M^{P} on the input string w. If M accepts, then M^{\prime} also accepts. If M rejects, M^{\prime} also rejects, we are indifferent to the case where M^{\prime} loops because M^{\prime} is supposed to only recognize the language (as opposed to decide).
Definition: A complement of a language is the language consisting of all strings that are not in the language.

Definition: A language is co-Turing-recognizable if it is the complement of a Turing recognizable language.
Theorem 4.22: A language is decidable if and only if it is Turing-recognizable and co-turing-recognizable
Proof: Since it is an if and only if, we have to prove both directions. (1) L is decidable $\Rightarrow L$ is Turing-recognizable and co-Turing-recognizable
(2) L is Turing-recognizable and co-Turing recognizable $\Rightarrow L$ is decidable

For (1): If L is decidable, then there exists a decider M. This machine M accepts all strings that are in the language, therefore, it $\operatorname{can} \alpha c t$ as a recognizer which proves that L is Turing-recognizable. If we create a new machine M^{\prime} that simulates M internally and flips its output, then M^{\prime} accepts all the strings that the decider M rejects which that L is co-Turing-recognizable.
For (a): Since L is Turing-recognizable, there exists an M_{1} that recognizes L. Since L is co-Turing-recognizable, there exists an M_{2} that recognizes L. We propose a new $T M M^{*}$ that uses M_{1} and M_{2} and decides L.
$M^{*}=$ "On input w:

1. Alternate between α transition in $M_{1}(w)$ and a transition in $M_{2}(w)$.
2. If M_{1} accepts first, then M^{*} accepts. It M_{2} accepts first, then M^{*} rejects."

Finally, we have to show that M^{*} decides L. Every string is either in L(so M_{1} accepts it) or in I (so M_{2} accepts it). Notice that since M_{1} and M_{2} are recognizers, one of them halts and accepts no matter what the input is. Since M^{*} halts whenever M_{1} or M_{2} accepts, M^{*} always halts. Finally, it accepts $\alpha \|$ w eL and rejects $\alpha \| w \notin L$. Thus, M^{*} is a decider so L is decidable.
Corollary 4.23: $\bar{L}_{T M}$ is not Turing-recognizable.
Proof: We showed that LTM is Turing-recognizable. If its complement LiAM $^{\text {TM }}$ were Turing-recognizable too, then LTM would be decidable (from Theorem 4.22). But since we already proved in Theorem 4.11 that LTM is not decidable, it must be that $\bar{L}_{T M}$ is not Turing-recognizable.

Reducability__Sipser, Chapter 5.1, Section 5.1 up to "Reductions via
We showed the existence of a computationally unsolvable probem (ie., deciding LTM) on our most powerful computational model, the Turing machine. In the following, we see a methodology, called reducability, that capitalizes on previously proven unsolvable problems, to prove that new problems are also unsolvable.
(*) A reduction is a way of converting a problem A to another problem B so that a solution to B can be used to solve A.
Attention: Reducability can be used for solving a problem but it can also be used to prove that a problem is not solvable.

- Suppose that we know how to solve B (so, colored green), but we don'f know how to solve A (so, colored gray). If we find a reduction
from A to B
then, we can solve A as well.
- Suppose we know that A is not solvable (so, colored red), but we don't know how to solve B (so, colored gray).
If we find a reduction
from A to B
then, we can use a proof by contradiction to show that B is not solvable.
The above intuition will manifest differently depending on whether we are studying problems in computability theory (solvable \rightarrow decidable) or complexity theory (solvable $\boldsymbol{\omega} \alpha$ least as hard).

Theorem 5.1: The following language is undecidable

$$
\operatorname{HALT}_{T M}=\{\langle M, w\rangle \mid M \text { is a } T M \text { and } M \text { halts on input } w\}
$$

Proof: We build a proof by contradiction. Suppose for the sake of contradiction that HALTTM is decidable and we will use this assumption to show that LTM is also decidable (which we know is false).

Suppose that R is the decider of $H A L T_{\text {TM }}$. Then, we use R to build the decider of LTM, namely S.
What is the desired inputloutput for TM S?

- S is given as an input $\langle M, w\rangle$ (because this is the format of $L_{\text {TM }}$), and if must output "accept" if M accepts w and "reject" if M loops or rejects with input w.
- S cannot simply run M on input w because it is possible that M loops therefore decider S won't halt.
- Instead, S will run the decider 6 HALT TM $) R$ with input $\langle M, w\rangle$. Now, since R is a decider, we know that R will halt which means that S wont loop.
More formally,
$S=$ "On input $\langle M, w\rangle$, an encoding of TM M and string w :

1. Run TM R on input $\langle M, w\rangle$.
2. If R rejects, then S rejects.
3. If R accepts, then $\langle M, w\rangle \in H A L T_{T M}$ so it is safe to simulate M on input w.
4. If M accepts, then S accepts. If M rejects, then S rejects."

- In the remaining of the proof, one needs to show that the proposed S is indeed α decider for LTM.

Mapping Reducability_ (Sipser, Chapter 5.3)
Notice that we have used reductions without formally defining what they do. We will now define mapping reducability, a definition of reducability that uses computable functions.
Definition: A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is a computable function if some Turing machine M, on every input w, halts with just $f(w)$ on its tape
That is, TM M computes f, if $M(w)=f(w)$ for all $w \in \Sigma^{*}$.

- It is not hard to imagine a machine that takes as an input encoding of numbers and outputs on its tape the result of a mathematical function.
e.g., Input: $2,3 \xrightarrow{f}$ Output: $2+3=5$
then, M's input:' $010,011 \xrightarrow[\text { M's tape }]{\longrightarrow}$ Output: 101
* In the above case, the domain and the range of function f is the set of natural numbers \mathbb{N}. What happens if the domain/range represents Turing machine encodings? (recall that α lot of the languages we have seen take as an input $\langle M\rangle$)
e.g., Input: $\left\langle M_{1}\right\rangle \xrightarrow{f}$ Output: $\left\langle M_{2}\right\rangle$ Thus, the TM M that computes then, M's input: $\left\langle M_{1}\right\rangle \underset{\text { Mist ape }}{\longrightarrow}$ Output: $\left\langle M_{2}\right\rangle$ f, takes as an input a machine encoding $\left\langle M_{1}\right\rangle$ and outputs another machine encoding $\left\langle M_{2}\right\rangle$.
Definition: Language A is mapping reducible to language B, denoted as $A \leqslant m$, if there is a computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, where for every w. $w \in A \Longleftrightarrow f(w) \in B$.
The function f is called the reduction from A to B.

Theorem 5.22: If $A \leqslant m B$ and B is decidable, then A is decidable.
Proof: We let M be the decider of B. Let f be the reduction from A to B.
Then, there exists a machine M_{f} that computes function f.
We will construct a decider M^{\prime} for A using both M and M_{f}.
$M^{\prime}={ }^{\prime \prime} O_{n}$ input w :

1. Run $M_{f}(w)$ and call the output x.
2. Run M on input x and output whatever M outputs."

If $w \in A$, then from the definition of mapping reducability $f(w) \in B$ holds. Also due to the if-and-only-if condition, if $f(w) \in B$, then $w \in A$. The decider of language B, i.e., machine M, outputs "accept" only when its in put is in B. Thus, whenever $M\left(M_{f}(w)\right)$ outputs "accept", we have w A. Therefore, M ' is a decider for language A.
Corollary 5.23: If $A \leqslant m B$ and A is undecidable, then B is undecidable

In Theorem 5.1 we proved that language HALT TM is undecidable. In the following, we prove it again but this time using mapping reducibility and Corollary 5.23.
Proof Thu 5.1 (Take-2): We have proved that $L_{T M}$ is undecidable.
If we manage to show that $L_{T M} \leqslant_{m} H A L T_{T M}$, then from Corollary 5.23 we can argue that $\mathrm{HALT}_{T M}$ is undecidable as well.

* Notice that this time we do not use a proof by contradiction

To complete the proof, we need to construct a computable function f that +akes input of the form $\langle M, w\rangle$ and returns output of the form $\left\langle M^{\prime}, w\right\rangle$ such that:
$\langle M, w\rangle \in L_{T M}$ if and only if $\langle M!, w\rangle \in \operatorname{HALT}_{T M}$.
The following machine M_{f} computes a reduction f.
$M_{f}={ }^{\prime} O_{n}$ input $\left\langle M_{1} w\right\rangle$:

1. Construct the following machine M^{\prime} $M^{\prime}={ }^{\prime \prime} O_{n}$ input x :

Notice that in the past we saw high -level descriptions of machines
that num/simulate other machines. that run/simulate other machines. Here, we have a high-level description of a machine Mg that contains the high level

1. Run M on x.
2. If M accepts, then M^{\prime} accepts. description of another TM M^{\prime}.
3. If M rejects, then M^{\prime} enters a loop."
4. Output $\left\langle M^{\prime}, w\right\rangle$."

Now we have to argue that the proposed M_{f} guarantees that:
$\langle M, w\rangle \in L_{T M}$ if and only if $\langle M!, w\rangle \in H A L T_{T M}$.
Whenever $\langle M, w\rangle \in L_{T M}$, we know that M accepts w. In this case, given the definition of M^{\prime}, we have that M^{\prime} accepts w, ie., $\left\langle M^{\prime}, w\right\rangle \in H_{A L T} T_{T M}$.
Whenever $\left\langle M^{\prime}, w\right\rangle \in H A L T T_{T M}$, we know that M^{\prime} halts on input w. Given the definition of M^{\prime}, the only way that M^{\prime} halts is if $M(w)$ accepts. In which case $\langle M, w\rangle \in L_{T M}$.
Theorem 5.28: If $A \leqslant m B$ and B is Turing-recognizable, then A is Turing-recognizable.
Corollary 5.29: If $A \leqslant m B$ and A is not Turing-recognizable, then B is not Turing-recognizable.

