Lecture 6

- The Prs. NP question can be seen as a question about the power of nondeterminism in the Turing machine model. Recall that we resolved the same question on simpler computational models such as DFA vs. NFA and DPDA vs. NPDA.
- Interestingly, the above statement considers the NP definition using nondeterministic Turing machines. If we switch to the NP definition that uses a certificate, then we can rephrase the question as:
"Is recognizing the correct answer easier than coming up with an answer?"

but if

(?) Let's entertain the idea of $P=N P$ for a minute: If one can show that an NP-complate problem can be solved in polynomial time, then $P=N P$. The consequences would be tremendous! Mathematicians and engineers would be replaced by a program since the following language is NP-complete (so if $P=N P$ we can construct proofs tor any provable statement in poly-time)

$$
\text { THEOREMS }=\left\{\left\langle\psi, I^{n}\right\rangle \mid \psi \text { has a formal proof of length } \leq n \text { in axiomatic system } A\right\}
$$

VLSI designers will be able to compute optimum circuits with minimum power requirements. We will be able to find the simplest formula/ theory that explains any given dat $\alpha \Rightarrow$ Drug discovery and financial markets would be changed forever.
Interestingly, there would be no need for randomness. If $P=N P$, then there is no efficiency gain from using randomized algorithms
No privacy since every known efficient encryption scheme would be vulnerable to a reconstruction. \Rightarrow No hardness assumption (Publickey crypto) No One-Way functions (Symmetric key crypto)

NP-Completeness (Sipser, Chapter 7.4)
In the 1970s Cook and Levin discovered that some problems in NP had a structure that could be associated with all the problems in NP. These problems are called NP-complete and they have the property that if there is a polynomial time algorithm for any of these problems, then all problems in NP would be polynomially solvable. The first NP-complete problem we will see is called the satisfiability problem
Warm UP: Boolean variables can only take the values I (ie, TRUE) or O (ie, FALSE). Boolean operations AND, OR, and NOT are denoted as Λ, V, and ?.
A Boolean formula is an expression involving Boolean variables and operations. for example $\quad \phi=(\bar{x} \wedge y) \vee(x \wedge \bar{z})$.
A Boolean formula is satisfiable it there exists an assignment of O sand I_{s} to the Boolean variables so that ϕ evaluates to 1 .
The satistiability problem is to test whether a given formula is satisfiable.

$$
S A T=\{\langle\phi\rangle \mid \phi \text { is a satisfiable Boolean formula }\}
$$

Theorem 7.27: Language SAT EP if and only if $P=N P$
Polynomial Time Reducability -
In Lecture 4 we saw that if problem A reduces to problem B, a solution to B can be used to solve A. In the following, we define a version of reducability that takes into account the efficiency of the reduction.
Definition 7.28: A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is a polynomial time computable function it some polynomial time TM M exists that halts with just $f(w)$ on its tape, when started on any input w.
Definition 7.29: Language A is polynomial time (Karp) reducible to language B, denoted $\alpha s A \leq p B$, if α polynomial time computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ exists, where for every $w \in \Sigma^{*}$

$$
w \in A \text { if and only if } f(w) \in B \text {. }
$$

Pictorially:

- The large rectangle represents all possible strings - Notice that the let hand side partitions all possible strings with respect to their membership (or not) to language A (or its component $\bar{A} \triangleq \sum^{*} \backslash A$) - Notice that f doesn't have to output all possible strings in B (which is why the green rectangle is α subset of B).

Transform a poly-time $T M$ that decides B to a polytime $T M$ that decides A :

Definition 7.34:
A language B is NP-complete if it satisfies two conditions

1. B is in $N P$, ie, $B \in N P$
2. Every A in $N P$ is polynomial time reducible to B

Definition:
A language B is $N P$-hard if $A \leqslant p B$ for every $A \in N P$
Notice that a language doesn't have to be in NP to be NP-hard
Theorem: $0\left(\right.$ Transitivity) if $A \leqslant_{p} B$ and $B \leqslant_{p} C$, then $A \leqslant_{p} C$
(2) If language B is $N P$-hard and $B \in P^{\prime}$, then $P=N P$
(3) If language B is $N P$-complete and $B \in P$, then $P=N P$
(4) If language B is NP-complete, then $B \in P$ if and only if $P=N P$

$$
\text { If } B \in P \text { then } P=N P \sim(2) \text { says the same }
$$

Remarks:

- An NP-hard problem is at least as hard as the hardest problems in NP.
- An NP-hard problem may even be undecidable (e.g., the undecidable""HALT" language is NP-hard).
$-N P$-complete is the class of decision problems in $N P$ that ave the hardest in $N P$.

Quiz 6.1: Which of the following statements is false?:
A) Language A can be both in P and NP
B) Language A can be both $N P$-complete and $N P$-hard
C) If language A is in $N P$ and can be decided in poly-time, $P=N P$
D) There are no "harder" problems in NP than the NP-complete problems

Theorem 7.36: If B is $N P$-complete and $B \leqslant p C$ and $C \in N P$, then C is $N P$-complete
The Cook-Levin Theorem: SAT is NP-complete
Proof Idea: To prove NP-completeness we first have to show that SAT is in NP.
A nondeterministic polynomial time machine can "guess" an assignment to
a given formula ϕ and accept if the assignment satisfies ϕ.
For the second part, we need to show that every $L \in N P$ is polynomial time reducible to SAT.
Because we are focusing on an L that is in $N D$, we know from the NTM-based definition that there exists α NTM M^{\prime} that decides L.

The essence of the proof is to construct a Karp reduction that takes as an input a string w that may or may not be in L and translate it to a Boolean expression ϕ^{\prime} such that: :) ϕ^{\prime} is satisfiable if M^{\prime} accepts

- M^{\prime} accepts it ϕ^{\prime} is satisfiable.

Thus, $w \in L \Longleftrightarrow \phi^{\prime} \in S A T$.
On a high-level the constructed Boolean formula ϕ ' "simulates" the execution of the given NTM M^{\prime} that guarantees the membership $L \in N P$.
*) The ingenuity of the Cook-Levin theorem is that
(1) Can process ANY language LENP without caring about the specifics of the problem, e.g., is it a graph theory problem? is it a number theory problem?
(2) It is the very firs + NP-complete problem which means it didn't use Theorem 7.36 to reduce another NP-complete problem X to SAT
SAT
A literal is a Boolean variable or a negated Boolean variable, eeg., x or \bar{x}. A clause is a sequence of literals connected with ORs, e.g., ($x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3} \vee x_{4}$). A Boolean formula is in conjuctive normal form, called CNF-formula, if it comprises several clauses connected with AND s, egg.,

$$
\begin{aligned}
& 1 \text { clauses connected with ANDS, e.g.i } \\
& \left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee \bar{x}_{5} \vee x_{6}\right) \wedge\left(x_{3} \vee x_{6}\right)
\end{aligned}
$$

If all the clauses have at most k literals, then the form is called $k C N F$. Language 3 SAT is defined αs :

$$
\begin{aligned}
& 5 \text { detined } \alpha \text { : } \\
& 3 S A T=\{\langle\phi\rangle \mid \phi \text { is a satisfiable } 3 C N F \text {-formula } \alpha\} \text {. }
\end{aligned}
$$

(no tin Sipper)
Theorem: SAT $\leqslant p$ SLAT
Proof: We need to show that 3SATENP and also present a polynomial time (sketch) function that maps any CNF formula ϕ (valid input to test SAT membership) to α 3CNF formula ψ such that ψ is satisfiable if and only if ϕ is satisfiable.

A nondeterministic polynomial time machine can "guess" an assignment to a given 3CNF formula and accept if the assignment satisfies the formula.

Intuition for the mapping:-
From $4 C N F$ to $3 C N F \leadsto$ Suppose we have $\phi=x_{1} v \bar{x}_{2} v \bar{x}_{3} v x_{4}$, then we can introduce a new variable z_{1} and construct the following two clauses

$$
c_{1}:\left(x_{1} \vee \bar{x}_{2} \vee z_{1}\right) \text { and } c_{2}:\left(\bar{x}_{3} \vee x_{4} \vee \bar{z}_{1}\right)
$$

If ϕ is satisfiable \Rightarrow there exists an assignment to z_{1} that satisfies both c_{1} and c_{2} If c_{1} and c_{2} are satisfiable \Rightarrow there exists an assignment such that ϕ is satisfiable
Generalize: Suppose we have a clause of size k

$$
\begin{gathered}
\phi=(\underbrace{\left(x, v \ldots v x_{k-2}\right.}_{\downarrow} \vee \underbrace{\left.x_{1} v \ldots v x_{k-2} \vee \bar{z}_{1}\right)} \text { (} c_{2}: \begin{array}{c}
\left(\bar{x}_{k-1} v x_{k} \vee z_{1}\right) \\
3 \text { literals }
\end{array}) .
\end{gathered}
$$

\Leftrightarrow Apply this poly-time transformation until all clauses have at most 3 literals
IND
An independent set of size k is a set of vertices S such that $|S|=k$ and for all edges $(u, v) \in E$ at most one endpoint is in S.
\mapsto Either (1) $u \notin S$, or (2) $v \notin S$, or (3) $u, v \notin S$.

Language $\operatorname{IND}=\{\langle(G, k)\rangle \mid G$ is a graph with an independent set of size $k\}$
Theorem $3 S A T \leqslant$ IND.

Proof: Intuitively we want to receive a 3SAT valid input ϕ (it may or may not be satisfiable) and create a graph σ such that if there is a k-size independent set we can traslate it to α satisfying assignment for ϕ.

We need to encode an input of 3SAT to a graph example: $\underbrace{\left(x_{1} \vee x_{2} \vee x_{3}\right)}_{c_{1}} \wedge \underbrace{\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right)}_{c_{2}} \wedge \underbrace{\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)}_{c_{3}}$
(Incorrect) Attempt -1: Introduce a vertex for every literal of every clause where we assign the value that makes it true. For example, for $c_{1}=\left(x_{1} v x_{2} \vee x_{3}\right)$

4
(
$x_{1}=F$
c_{2}
$x_{2}-T$
2

\triangle Every satistfing assignment of ϕ can be translated to an independent set SAT \Rightarrow IND V
Not every independent set can be translated to a satisfying assignment SAT $\Leftarrow I N D X$
($\times x^{-7}$
($x+7$ ($x+7$

The highlighted set is a index pendent set of size 3 but cannot give us a satisfying assignment
(tit)
$X_{\text {1 }}$ cannot be both TRUE and FALSE
($x=7$ ($x=T$
($x=F$
(Incomes)
Attempt-2: Use the edges of the constructed graph to forbid assignments where the same variable appears as both TRUE and FALSE
Add an edge if the troth assignments of the same variable are conflicting.

- With the addition of these edges we cannot allow vertices like
$\left.\begin{array}{l}x_{1}=T \\ 1\end{array}\right)$ and $\begin{aligned} & x_{1}=F \\ & c_{3}\end{aligned}$
to be both in the independent set. Similar argument for
($\begin{gathered}x_{2}-T \\ c_{1}\end{gathered}$ and

4! This improved graph construction is still not what we want. Much like before, every satistfing assignment of ϕ can be translated to an independent set

$$
\text { SAT } \Rightarrow \text { IND } V
$$

Not every independent set can be translated to a satisfying assignment $3 S A T \Leftarrow$ IND X

The highlighted set is a inde pendent set of size 3 but cannot give us a satisfying assignment

The first clause C_{1} is not satisfied by this truth assignment.

* Attempt-3: Add more edges to guarantee that exactly one literal is picked from each clause.

That is, add edges between every per of literals in each clause.

the number of
If we fix $k=3$, then not only every satisfying assignment gives an independent set but also every independent set gives α satisfying assignment.

$$
\begin{aligned}
& 3 S A T \Rightarrow \text { IND } V \\
& 3 S A T \Leftarrow \text { IND } V
\end{aligned}
$$

A more formal treatment:
Given any arbitrary 3-SAT input, with a Boolean variables and m clauses, the TM that computes the Earp reduction function outputs a graph $G=(V, E)$.
(1) Describe the reduction

The vertex set of of G is defined as $V=V_{1} \cup V_{2} \cup \ldots \cup V_{m}$, where V_{j} is a group of vertices that has up to three vertices (one vertex per literal) that correspond to literals of the j-th clause. The edge set is defined as $E=E_{1} \cup E_{2}$, where E_{1} contains one edge for each pair of vertices that belong to the same clause, and E_{2} contains one edge for pair of conflicting vertices (egg., $x_{3}=7$ and $x_{3}=F$). The Kaye reduction assigns $k=m$.
\rightarrow Renererber the output of f should
(2) Show that it takes polynomial time be a $\langle(\sigma, K)\rangle$.
Since we have m clauses, the resulting graph will have at most 3 m vertices. Since there are m clauses, the edge set E_{1} contains at mos $+3 m$ edges while the edge set E_{2} contains at most 3 . (3m-1)edges.
So, overall the Kava reduction creates a graph with
$O(m)$ vertices and $O(m)$ edges which takes polynomial time.

(3) Show that $\phi \in 3 S A T \Rightarrow f(\phi) \in \mathbb{N D}$

Given a truth assignment that satisfies ϕ, there must be α literal that is true for each clause. We form the set S from the graph G that was given as an output in the Karp reduction by choosing the vertices as follows:

Iterate through $\alpha \|$ clauses, for each clause pick a literal that is TRUE (we might have move than one) according to the given truth assignment and choose the corresponding vertex from G as a men ber of the vertex set S.

- Prove that m is an independent set of size m : S is constructed by choosing exactly one vertex per clause, therefore $|S|=m$. As a next step, we have to show that there are no edges between the vertices in S. Notice that:
(1) Each vertex of S belongs to a different clause-cluster, therefore there are no edges from E_{1} between any pair of vertices from S.
(2) The given truth assignment is not conflicting, therefore there are no edges from E_{2} between any pair of vertices from S.
Thus, the constructed set S is an independent set of size m.
(4) $f(\phi) \in \mathbb{N D} \Rightarrow \phi \in 3 S A T$

We emphasize here that we are not trying to prove that all independent
on grbitrovy - graphs
give
Given an independent set S of size m (from the graph that output by the Karp reduction) we want to find a truth assignment that satisfies ϕ.
Because of the way we constructed G, an independent set of size m must have exactly one vertex from each clause/cluster (due to the E_{1} edges).
Additionally, since S is an independent set, there are no E_{2} edges that connect vertices in's. Therefore, there are no conflicting truth assignments. Thus, to generate α truth assignment that satisfies ϕ, we pick the literal associated with each node in S and assign either TRUE or FALSE depending on its label in 6 .

