Lecture 7
The Hamiltonian path problem asks whether the input directed graph has a path from s to t that goes through every node exactly once.

$$
\text { HAMPATH }=\{\langle G, s, t\rangle \mid G \text { is a directed graph with a Hamiltonian path from } s \text { to } t\}
$$

Quiz 7.1: Which of the following paths is not a Hamiltonian path?

B)

Theorem 7.46: HAMPATH is NP-complete.
Proof: To show that HAMPATH is NP-complete, we first have to show that HAMPATHENP and then find an NP-complete problem Z and construct α Karp reduction so that $Z \leq p$ HAMPATH.
(1) HAMPATHENP

A nondeterministic polynomial time TM can "guess" a path from to t and then check in polynomial time if (1) there are no repetitions in the path, and (2) every vertex is visited in the path. If both conditions hold then the NTM accepts, otherwise if rejects.
(2) Show that $3 S A T \leqslant$ PHAMPATH

The Karp reduction should take as an input ANY 3 CNF formula ϕ (that may or may not be satisfiable) and construct a directed graph $G=(V, E)$ so that for $s, t \in V$:
ϕ is satisfiable if and only if there exists a Hamiltonian path from s to t in G.
or
 f is the function that computes
the Earp reduction. lupus is ϕ and output is $(6, s, t)$.
this can be ANY 3CNF formula. No control over the input

This directed graph G is constructed by us! We have control over which graph we generate through the reduction (also we choose s and t).

$$
\begin{aligned}
& \phi \triangleq\left(c_{1}[1] \vee c_{1}[2] \vee c_{1}[3]\right) \wedge \ldots \wedge\left(c_{k}[1] \vee c_{k}[2] \vee c_{k}[3]\right) \quad \begin{array}{l}
\cdot k \text { classes } \\
\cdot \text { exch clause his } 3 \text { literals }
\end{array} \\
& \text { second position } \\
& \text { - each clause has } 3 \text { literals } \\
& \text { - I variables, } x_{1}, \ldots, x_{l}
\end{aligned}
$$

- The main "knob" in ϕ is the truth assignment of α variable X_{i}.
- We have to somehow signal whether $X_{i}=$ TRUE or $X_{i}=$ FALSE through a path on α directed graph
"
The direction of a subgraph traversal can act as a signal about whether $X_{i}=$ TRUE or $X_{i}=$ FALSE

left-to-right $\leadsto X_{i}=$ TRUE traversal of subgraph
 right-to-left $\leadsto X_{i}=$ FALSE traversal of subgraph
- Suppose we have the following concrete input

$$
\phi^{\prime}=\frac{\left(x_{1} v x_{2} v x_{3}\right)}{c_{1}} \wedge \underbrace{\left(\bar{x}_{1} v x_{2} v x_{3}\right)}_{c_{2}} \wedge \underbrace{\left(\bar{x}_{1} v \bar{x}_{2} v \bar{x}_{3}\right)}_{c_{3}}
$$

- Let's see how we can construct a (G, s, t) output for Karp reduction by combining a subgraph per variable of ϕ^{\prime}.

Quiz 7.2: Which of the following Hamiltonian paths does not give a satisfying truth assignment to

$$
\phi^{\prime}=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)
$$

A)

B)

C)

What is the problem with the above approach?
Even though we can translate a satisfying truth assignment to a Hamiltonian $p a t h$, we cannot translate every Hamiltonian path to a satisfying truth assignment. That is:

$$
\phi \in 3 S A T \Longrightarrow(G s, t) \in \text { HAMPATH } \quad \phi \in 3 S A T \underset{x}{\Longleftarrow}(G s, t) \in \text { HAMPATH }
$$

The main problem is that we are not keeping track of whether every clause is satisfied by the chosen Hamiltonian path. In fact we have not encoded clauses af all in the (G, s, t) we have constructed so far.

Somehow we have to keep track of
(1) How many clauses do we have
\longrightarrow lusert one vertex per clause
(2) Which variables are associated with each clause
\rightarrow Connect at most three subgraphs/variables with each clause
(3) which truth assignment of a variable would satisfy each clause
\mapsto Pick the appropriate direction for the edges that connect a subgraph with a clause

Resolve (1) in our running example $\phi^{\prime}=\underbrace{\left(x_{1} \vee x_{2} \vee x_{3}\right)}_{c_{1}} \wedge \underbrace{\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right)}_{c_{2}} \wedge \underbrace{\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)}_{c_{3}}$

Resolve (2) in our running example $\phi^{\prime}=\underbrace{\left(x_{1} v x_{2} \vee x_{3}\right)}_{c_{1}} \wedge \underbrace{\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right)}_{c_{2}} \wedge \underbrace{\left(\bar{x}_{1} \vee \bar{x}_{2} v \bar{x}_{3}\right)}_{c_{3}}$
Notice that c_{1} is associated with variables x_{1}, x_{2}, and x_{3}. Thus, we need to add edges from subgraphs of x_{1}, x_{2}, and x_{3} to c_{1}.

* Let's not commit on the specifics of these edges just yet.

Resolve (3) in our running example $\phi^{\prime}=\left(x_{1} v x_{2} v x_{3}\right) \wedge\left(\bar{x}_{1} v x_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} v \bar{x}_{2} v \bar{x}_{3}\right)$
For example, we want to make sure that x_{1} subgraph can access c_{1} vertex during a left-to-right traversal (because c_{1} has the literal x_{1}). On the other hand, we want to make sure that x_{1} subgraph can access c_{3} vertex during a right-to-left traversal (because c_{3} has the literal \bar{x}_{1}).

(Failed) Atrempt-1: Remove the "horizontal" edge and add two vertices that can go to c_{1} and return back
 The X_{1}-TRUE becomes:

Similarly, change the horizontal edge so that the path can reach C_{3} and return back

The $X_{1}=$ FALSE becomes:

1
The problem now is that we added two vertices for the left-to-right and two vertices for the right-to-left. Thus, regardless of which way we choose, the resulting path is not a Hamiltonian path because we do not pass through af least two vertices.
(Correct) Attempt-2: Instead of four new vertices, add two that are"shared".
 For x_{1}-FALSE

The resulting paths go through all vertices of subgraph x_{1}.

- Thus, we need two extra vertices for each clause at each subgraph
* We will also add separator vertices in-between.

The end result for input $\phi^{\prime}=\underbrace{\left(x_{1} \vee x_{2} \vee x_{3}\right)}_{c_{1}} \wedge \underbrace{\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right)}_{c_{2}} \wedge \underbrace{\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)}_{c_{3}}$ is:

A more formal treatment:
Given any arbitrary 3-SAT input, with n Boolean variables and m clauses, the TM that computes the Earp reduction function outputs a graph $G=(V, E)$ and the nodes $s, t \in V$.
(1) Describe the reduction
(2) Show that it takes polynomial time
(3) Show that $\phi \in 3 S A T \Rightarrow f(\phi) \in$ HAMPATH

Suppose ϕ is satisfiable, for each variable x_{1}, \ldots, x_{l} traverse "horizontal" nodes from left-to-right if $x_{i}=$ TRUE according to the satisfying truth assignment, and right-to-left if $x_{i}=$ FALSE according to the satisfying truth assignment. For each clause c_{1}, \ldots, c_{k} choose one literal that is true (it is possible to have more than one true literals) and detour to pass from c_{j}.
(4) Show that $f(\phi) \in$ HAMPATH $\Rightarrow \phi \in 3 S A T$

Suppose G has a Hamiltonian path from s to t. We need to translate this Hamiltonian path in G to a satisfying assignment in ϕ.
Case Analysis:
Case-A) The Hamiltonian path passes through each subgraph x_{1}, \ldots, x_{l} in order,
Case-B) The Hamiltonian path jumps between subgraphs x_{1}, \ldots, x_{l}.
We will prove that case-B is impossible
For the sake of contradiction, suppose that the Hamiltonian path jumps between subgraphs and that the first (from top-to-bottom) jump happens at vertex α_{i}.

- Observe that either α_{i+1} or α_{i+2} is a separator.

Case B-1 Vertex α_{i+1} is a separator if α_{i-1} and α_{i} concern clause c_{j}

If α_{i+1} is a separator, then the only edges entering α_{i+1} are

$$
\begin{array}{llll}
0 & b_{0} & \text { and } & Q_{c} \\
\alpha_{i} & \alpha_{i 11} & & \alpha_{i+1} \\
\alpha_{i+2}
\end{array}
$$

The Hamiltonian path cannot enter α_{i+1} from α_{i} because α_{i} is α ready traversed The Hamiltonian part cannot enter α_{i+1} from α_{i+2} because if it does, the path would be stuck in α_{i+1} since both of α_{i+1} neighbors are visited

Cannot terminate in $t \Rightarrow$ Contradiction
Case B-2 Vertex α_{i+2} is a separator if α_{i} and α_{i+1} concern clause c_{j}

If α_{i+2} is α separator, then the only edge entering α_{i+1} are

$$
0_{\alpha_{i}} \text { and } \alpha_{\alpha_{i+1}} \alpha_{i+2} \text { and } \sim_{\alpha_{i}}^{\sim} \sim{ }_{c_{j}}
$$

The Hamiltonian path cannot enter α_{i+1} from α_{i} or C_{j} because they are already traversed.
The Hamiltonian path cannot enter ai+1 from α_{i+2} because if $1+$ does, the path would be stuck in α_{i+1} since both of α_{i+1} neighbors are visited

Cannot terminate in $t \Rightarrow$ Contradiction

Recall:
A graph $G=(V, E)$ has an independent set of size k, if there exists a set S of size k vertices such that for any pair of vertices $u, v \in S$, there is no edge (u, v).
We define the language for the problem Subset Sum

$$
\text { SUBSET-SUM }=\left\{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, t\right) \left\lvert\, \begin{array}{l}
\text { All } \alpha_{i} \text { are positive integers and there exists } \\
\alpha \text { subset of } \alpha_{i} \text { integers that sums to } t
\end{array}\right.\right\}
$$

Theorem: SUBSET-SUM is NP-complete
Proof: To show that SUBSET-SUM is NP-complete, we first have to show that SUBSET-SUMENP and then find an NP-complete problem Z and construct a Karp reduction so that $Z \leq p$ SUBSET- SUM.
(1)SUBSET-SUMENP

A nondeterministic polynomial time TM can "guess" a subset of numbers from $\alpha_{1}, \ldots, \alpha_{n}$ and checks in polynomial time if this subset sums to t. If it does then the NTM accepts, otherwise if rejects.
(2) Show that IND \leqslant P SUBSET

The Karp reduction should take as an input ANY input (G, k) for IND (that may or may not have an ind. Set) and construct α set of numbers $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and a target t such that:
G admits αn ind. set of size k if and only if there is a subset in $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ that sums to t

$$
\begin{aligned}
& (G, k) \in \mathbb{N D} \Longleftrightarrow f((G, k)) \in \text { SUBSET-SUM } \quad \underset{ }{ } \quad \underset{f}{ } \text { is the function that computes } \\
& \text { or }(G, k) \in \mathbb{N D} \quad \text { the Earp reduction. }
\end{aligned}
$$

We have to encode the graph structure of G with a set of numbers Let's see α concrete example
$u_{1} \quad e_{1} \quad u_{2} \quad$ what if we define a number with $|E|+\mid$ dig its for
 each vertex. The $(i+1)$-th digit of u_{j} is 1 if the $i-t h$ edge $h_{\text {as }} u_{j}$ as an endpoint, other wise it is 0 .

Vertex $u_{1} \leadsto$ integer $\alpha_{1}=11001$
Vertex $u_{2} \leadsto$ integer $\alpha_{2}=11100$
Vertex $u_{3} \leadsto$ integer $\alpha_{3}=10110$
Vertex $u_{4} \leadsto$ integer $\alpha_{4}=10011$
Let's see now the sum of independent sets

$$
\begin{aligned}
& s=\left\{u_{1}, u_{3}\right\} \quad \gamma \alpha_{1}+\alpha_{3}=21111 \\
& s=\left\{u_{2}, u_{4}\right\} \nsim \alpha_{2}+\alpha_{4}=21111
\end{aligned}
$$

If we pick $t=211111$ then for this example the independent sets correspond to subsets that sum to t.

Let's see another graph example

Vertex $u_{1} \leadsto$ integer $\alpha_{1}=110101$
Vertex $u_{2} \leadsto$ integer $\alpha_{2}=111000$
Vertex $u_{3} \leadsto$ integer $\alpha_{3}=101000$
Vertex $u_{4} \leadsto$ integer $\alpha_{4}=100110$
Vertex $u_{5} \leadsto$ integer $\alpha_{5}=100011$
Let's see now the sum of independent sets

$$
\left.\begin{array}{l}
s=\left\{u_{1}, u_{3}\right\} \longrightarrow \alpha_{1}+\alpha_{3}=211101 \\
\left.s=\left\{u_{2}, u_{4}\right\} \underset{\alpha_{2}}{ }\right\} \alpha_{4}=21110
\end{array}\right\}
$$

There is no single t value that works for all independent sets of size two.
"II' Patch the discrepancy by introducing one new number per edge.

Vertex $u_{1} \leadsto$ integer $\alpha_{1}=110010<1$
Vertex $u_{2} \leadsto$ integer $\alpha_{2}=111000$
Vertex $u_{3} \leadsto$ integer $\alpha_{3}=101000$
Vertex $u_{4} \longrightarrow$ integer $\alpha_{4}=100110$
Vertex $u_{5} \leadsto$ integer $\alpha_{5}=100011$
Edge $e_{1} \leadsto$ integer $b_{1}=010000$ * The idea is that the
Edge $e_{2} \leadsto$ integer $b_{2}=001000$ inclusion of a vervet will $\begin{aligned} & \text { ill } \\ & \text { slip }\end{aligned}$
Edge $e_{3} \leadsto$ integer $b_{3}=000100 \begin{aligned} & \text { edges (by adding di to the sem) } \\ & \text { The rest of the edges will }\end{aligned}$
Edge $e_{4} \leadsto$ integer $b_{4}=000010 \begin{aligned} & \text { The rest ot the edges } \\ & \text { be }\end{aligned}$ be ane end all edges muss have digit 1 in their corresponding position.
Let's revisit the independent sets
-) $s=\left\{u_{1}, u_{3}\right\} \longrightarrow \alpha_{1}+\alpha_{3}+b_{4}=2\| \| 1$

$$
\alpha_{1}=110010101
$$

-) $s=\left\{u_{2}, u_{4}\right\} \longrightarrow \alpha_{2}+\alpha_{4}+b_{5}=211111$

-) $S=\left\{u_{3}, u_{4}\right\} \rightarrow \alpha_{3}+\alpha_{4}+b_{1}+b_{5}=2 \| 111$
edge e_{2} edges e_{3}, e_{4} manually
on u_{3} on u_{4} remaining edges
-) $s=\left\{u_{2}, u_{5}\right\} \rightarrow \alpha_{2}+\alpha_{5}+b_{3}=2 \| 111$

More formally:
(1) Describe the reduction

Given an undirected graph $G=(V, E)$ with vertex set $V=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$, edge set $E=\left\{e_{1}, \ldots, e_{m}\right\}$, and a target size k for the independent set, the reduction algorithm constructs $n+m+1$ positive integers that de fine an instance of the subset sum problem.
(A) For each vertex u_{i} define the number $\alpha_{i}=10^{m}+\sum_{e_{j} \in A_{i}} \widetilde{10^{m-j}}$, where A_{i}
denotes the set of edges incident to u_{i}
(B) For each edge e_{j}, define the number $b_{j}=10^{m-j}$
(C) Define the target sum $t=k \cdot 10^{m}+\sum_{j=1}^{m} 10^{m-j}$
(2) Polynomial Time

To create each of the α_{i} numbers, we have iterate through the edges of the corresponding vertex. Since each edge is considered twice conce for each endpoint) the total time for this generation is $O(n+m)$. Generating the b_{j} numbers takes $O(m)$ time.
(3) $(G, k) \in \mid N D \Rightarrow f((G, k)) \in$ SUBSET-SUM

If (G, k) is a member of language IND, then there exists a set of vertices S of size k that is an independent set. By construction, for every vertex in S, there exists an associated number in f 's output. Let A be the set of numbers that correspond to the vertices in S. The fact that there is no edge between any pair of vertices in S means that the sum of A^{\prime} will not have any number with digit larger than I (except the $m-t h$ digit). If there was a digit 2 then the collection of vertices S would contain both endpoints of the same edge. Since set s has size k, the sum A^{\prime} will have digit k in the $m-t h$ position (from right-to-left). If we add to $\operatorname{sum}(A)$ all the edge-numbers b_{j} that have no end points in S, then we will get a subset of integers that sums to t. Thus, the output of reduction f is a member of the language SUBSET-SUM.
(4) $f((G, k)) \in$ SUBSET-SUM $\Rightarrow(G, k) \in \mathbb{N D}$

If $f((G, k))$ is a member of language SUBSET-SUM, then there exists a subset of numbers that sums to $t=k \cdot 10^{m}+\sum_{j=1}^{n} 10^{m-j}$. Since every digit of t is one (except the m_{-}th), we know that every $\mathrm{j}^{j=1}$ edge is considered exactly one time; either because the summation includes the corresponding b_{j} or because the summation includes exactly one of the edge's endpoints. Next, we argue that the vertices associated with the numbers α_{i} that sum to t, can not shave an edge in between the corresponding vertices of the graph. If they did share an edge, say e_{j}, then the $j-$ th digit of the summation would have been 2 , contradiction. Thus, the α_{i} included in the summation comprise an independent set. Finally, we have exactly k terns from $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ in the summation because the $m-t h$ digit of the summation is k. Therefore, the instance (G, k) is a member of the language IND.

