Homework 1

Students are welcome to work together, but every student must write up their own solutions, independently! I strongly encourage students to use LaTex for writing up their solutions. Please see the course web page for a template file. When problems require you to draw a state machine, feel free to include a hand-drawn picture with your typed-up solutions.

Question 1: Give the state diagram of the DFA that recognizes the language
$L=\{w \mid w$ contains at least two 1 s and at most one 0$\}$. For the automaton, you can use either a graph editor, e.g., yEd, or simply a picture/scan of a handwritten automaton.

Question 2: Give the state diagram of the NFA that recognizes the language $L=L_{1} \circ L_{2}$, where $L_{1}=(001)^{*}$ and $L_{2}=(0 \cup 010)^{*}$.

Question 3: Convert the following NFA to an equivalent deterministic finite automaton:

Provide both the state diagram as well as the definition of each component of the proposed $M=(\Sigma, Q, S, \mathcal{A}, \delta)$.

Question 4: Prove that the language $L=\left\{a^{n} b^{m} a^{n} \mid m, n \geq 0\right\}$ is not regular. Hint: Use the pumping lemma and read carefully the case analysis from the notes. Remember that your proof should show that regardless of which pumping length p one chooses, you can come up with a string w such that all possible partitions of w to $x y z$ contradict one of the properties of the pumping lemma.

Question 5: Let w be a string over alphabet $\{a, b\}$ and let $w^{\mathcal{R}}$ be string w written backwards, e.g., $w=a a b$ and $w^{\mathcal{R}}=b a a$. Construct a state diagram from the PDA (push-down automaton) that recognizes language $L=\left\{w w^{\mathcal{R}} \mid w \in\{a, b\}^{*}\right\}$.

