Homework 2

Students are welcome to work together, but every student must write up their own solutions, independently! I strongly encourage students to use LaTex for writing up their solutions. Please see the course web-page for a template file.

Question 1: Let $L_{\text {mason }}=\{\langle M\rangle \mid M$ is a TM that decides a language containing the string "Mason" $\}$. Show that $L_{\text {mason }}$ is undecidable. (Hint: Assume that there is exists such a TM and reach a contradiction.)

Question 2: Let $L=\{\langle M\rangle \mid M$ decides a language containing exactly 4 strings $\}$. Show that L is undecidable.

Question 3: Let $L=\left\{\langle M\rangle \mid M\right.$ is a TM that accepts w^{R} whenever it accepts $\left.w\right\}$. Show that L is undecidable

Question 4: Let $L=\left\{\left\langle M_{1}, M_{2}, w\right\rangle \mid M_{1}(w)\right.$ and $M_{2}(w)$ both halt, with opposite output $\}$. Show that L is undecidable by giving a mapping reduction.

Question 5: Respond with a True or False and provide a one-sentence explanation for each answer:

- $A \leq_{m} B$ means that " A problems are no harder to solve than B problems"
- $A \leq_{m} B$ means that "Being able to solve any B problem \Rightarrow Being able to solve any A problem"
- If $A \leq_{m} B$ and B is decidable, then A is decidable
- To prove that A is undecidable, you can construct a reduction $A \leq_{m} B$ for some undecidable language B

