$\mathbf{CS600}$

Due Date: 10/08/23

Homework 3

Students are welcome to work together, but every student must write up their own solutions independently! I strongly encourage students to use LaTex for writing up their solutions. Please see the course web page for a template file.

Question 1: We say that a graph G = (V, E) has a vertex cover of size k if there exists a set of k vertices, $S \subset V$, |S| = k, such that for all edges $(u, v) \in E$, either $u \in S$ or $v \in S$. Let $VC = \{(G, k) \mid G \text{ is a graph with a vertex cover of size } k\}$. Show that VC is \mathcal{NP} -complete by giving a reduction from 3SAT. That is, show $3SAT \leq_p VC$. (Hint: if ϕ is a boolean formula with n variables and ℓ clauses, then, for $f(\phi) = (G, k), k = 2\ell + n$.)

Question 2: We say that a graph G = (V, E) has a *dominating set* of size k if there exists a set of k vertices, $S \subset V$, |S| = k, such that for all vertices $v \in V$, either $v \in S$ or there exists and edge (u, v) such that $u \in S$. That is, every node is either in S, or neighbors a node in S. Let $\mathsf{DomSet} = \{(G, k) \mid G \text{ is a graph with a dominating set of size } k\}$. Show that DomSet is \mathcal{NP} -complete, by giving a reduction from VC. That is, show $\mathsf{VC} \leq_p \mathsf{DomSet}$.