
Notes on Theory of Computation Last updated: August, 2021

Languages, regular languages, finite automata

Content largely taken from Richards [1], Sipser [2], and Dov Gordon’s notes

1 Languages

An alphabet is a finite set of characters, which we will often denote by Σ. For example, Σ = {0, 1}
is an alphabet that we will frequently use. A language over some alphabet Σ is a set of strings made
up of characters from Σ. For example, L1 = {0, 1, 00, 11} is a language over the alphabet Σ = {0, 1}.
An English dictionary is also a language, over the alphabet {a, . . . , z, A, . . . , Z}. However, languages
need not be finite size: “the set of all binary strings ending in 0” is a language over Σ = {0, 1}.
Clearly such a language is not as easy to formally describe, but we will address that issue later on.

It is useful to define a few set operators for languages. The union operator, ∪, is defined as
with any other collection of sets. The concatenation operator, ||, is so natural, we will often omit
the operator all together: L1||L2 = L1L2 = {xy | x ∈ L1 ∧ y ∈ L2}. For any language L, we define
L0 = {Λ}, where Λ is a special string, called the empty string. In other words, L0 is the language
consisting only of the empty string. For k > 0, we recursively define Lk = LLk−1 = {xy | x ∈ L∧y ∈
Lk−1}. That is, we concatenate L with itself k times (and also include the empty string). Finally,
we define the closure operator (sometimes called star operation): L∗ = ∪∞i=0L

i = L0 ∪L1 ∪L2 ∪ . . .
At a high level, the fundamental question of theory of computation is the following: Given a

language L and some string x, how hard is it to determine whether x ∈ L? (Or, as we will often
phrase this question, how hard it is to decide the language L?) We all have some intuition of
what this means. For example, given a string of english characters, one can determine whether
it is a valid English word by scanning through the English dictionary, one word at a time. But
anyone that still uses a paper dictionary knows that they can do better using binary search, and
we may even have seen a proof that you require O(log n) comparison for a dictionary of size n.
Such algorithmic questions aren’t really our focus in this class, though. Rather, we are interested
in characterizing whole classes of languages.

A language that can be decided in polynomial time on a Turing machine is said to be in a class of
languages that we call P (more on this later). But are there languages that are fundamentally easier
to decide than these? Are there languages that can be proven to be strictly harder to decide than
those in P? And, furthermore, why is the Turing machine the right model for computation? What
if we consider other models? And why is time the right metric: how do memory and communication
constraints impact what we can compute? Does access to good random sources help us to decide
more languages? Moreover, why is deciding whether some string x ∈ L the right place to focus
our attention? We will look at almost all of these questions, and more, with the aim of gaining a
deeper fundamental understanding of what is possible in our field and what is not.

1

2 Finite Automata

2.1 Regular Languages

To begin, we start with a very simple model of computation, and a simple class of languages,
which are called the regular languages. The regular languages correspond to languages generated
by regular expressions. Jumping ahead, this is one way to define regular languages, we will see later
in class that regular languages can be defined with respect to deterministic finite automata. We
formalize the class of regular languages recursively, as follows. Let R denote the set of all regular
languages over some alphabet, Σ. Then, we have:

1. ∅ ∈ R and {Λ} ∈ R.

2. ∀σ ∈ Σ : {σ} ∈ R.

3. If L ∈ R then L∗ ∈ R.

4. If L1 ∈ R and L2 ∈ R then L1L2 ∈ R.

5. If L1 ∈ R and L2 ∈ R then L1 ∪ L2 ∈ R.

We note here that ∅ is the empty set with cardinality zero, while {Λ} is the set that contains the
empty string, and as a result, it has cardinality one. Property 4 indicates that the class of regular
languages in closed under the concatenation operation, whereas, property 5 indicates that the it is
closed under the union operation.

Regular languages are so common and useful, that we frequently use a special notation, called
regular expressions in order to define these languages. A useful analogy is the following, operations
‘+’ and ‘×’ and ‘−’ are used to define mathematical expressions where the output is a number,
while operations ‘∪′ and ‘||′ and ‘∗’ are used to define regular expressions where the output is a
language. For brevity, when defining regular expressions, the ‘{’ and ‘}’ are dropped, and union is
denoted by ‘+’.

For example, let’s break down the regular language that comes from the regular expression
(ab + c)∗. Let L be the regular language that is defined by the regular expression (ab + c). First
we have L0 = {Λ}. Then, we have L1 = LL0 = L = {ab, c}. Then, we have L2 = LL1 =
{abab, abc, cab, cc}. Then, we have L3 = LL2 = {ababab, ababc, abcab, abcc, cabab, cabc, ccab, ccc}.
Thus, we define (ab+ c)∗ = L0 ∪ L1 ∪ L2 ∪ L3 ∪ . . .

2.2 Deterministic Finite Automata (DFAs)

A deterministic finite automaton is a state machine that takes an input string and either accepts
or rejects that string. It makes this decision by transitioning through a sequence of states, making
exactly one transition for each character of the input string in a deterministic way. After the
transitions are complete, it accepts if it has terminated in a state marked “accept”, and it rejects if
it has stopped in a state marked “reject”. We will formalize this model of computing in a moment,
but it is helpful to first demonstrate it by example. In the first state diagram in Figure 1, there is
a special start state, labeled ‘A’, and the state labeled ‘C’ has a circle around it, denoting that it
is an accept state. We note that there can be multiple accept states, though that isn’t the case in
these two examples.

2

Figure 1: Two examples of DFAs (taken from Richards [1])

Consider input string ‘bc’: the DFA reads the first character, and transitions from state ‘A’
to state ‘B’. It then reads the second character and transitions into the accept state, ‘C’. Because
this is the last character of input, the machine terminates in the accept state, and we say that the
machine accepts input ‘bc’. Equivalently, we say that ‘bc’ is in the language of this DFA.

Consider now input ‘bcc’: the last character causes a transition out of the accept state and into
state ‘D’, where the machine now terminates. Because ‘D’ is not marked as an accept state, we say
that the DFA rejects this input, or that the input is not in the language of this DFA. Looking more
closely at state ‘D’, you can see that it is a sink: there are no transitions out of ‘D’, so no input
that leads to state ‘D’ will ever be accepted. This is sometimes called a trap state, and usually we
will leave such states out of our diagrams in order to simplify them. Removing ‘D’ and all of its
edges, we will sometimes find that while processing an input string, there is no transition that can
be made. In this case, we interpret this though we had transitioned to a trap state, and say that
the machine rejects the input.

The language of the second DFA in Figure 1 is the language of the regular expression (a+ bb)∗.
(Written as a regular language, this would be L∗, where L = {a} ∪ {bb}.) Note that Λ is in this
language, by the definition of the closure operator; to see why Λ is accepted by the DFA, note
that the start state is also an accept state. We will shortly show that all regular languages can be
decided by DFAs. Actually, we will show a stronger statement: that the class of regular languages
is equivalent to the class of languages decided by DFAs.

2.3 Formally Defining DFAs

Formally, a deterministic finite automaton M is defined by an alphabet Σ, a finite set of states, Q, a
start state, S ∈ Q, a set of accept states, A ⊆ Q, and a transition function δ : Q×Σ→ Q. Putting
this together, M = (Σ, Q, S,A, δ). Returning to the first example in Figure 1 (and ignoring the
trap state D), this DFA can be formally described by (Σ = {a, b, c}, Q = {A,B,C}, A,A = {C}, δ),
where δ is defined as:

δ =

a b c
A C B ⊥
B ⊥ ⊥ C
C ⊥ ⊥ ⊥

Notice here that the transition function outputs ⊥ if the DFA does not consider the correspond-

3

ing transition, e.g., δ(A, c) = ⊥, in which case the state machine rejects the input.
The formalism will help us to prove things about DFAs and the languages that they decide.

Consider a language L that contains a single element of the alphabet, we will show that there
exists a DFA that decides L. Formally, for any alphabet Σ, and any x ∈ Σ, we can see that there
exists a DFA M deciding language L = {x} that is defined as M = (Σ, Q = {A,B}, A,B, δ),
where δ(A, x) = B, and δ otherwise has output ⊥. Informally, the DFA has a start state A that is
non-accepting, and a single accept state B. The only transition allowed goes from the start state
A to the accept state B on input x. The notation L(M) denotes that state machine M decides
language L. We can also define a DFA for {Λ}: it has a single state that is both the start state and
an accept state, and it does not allow any transitions. So we can see that the languages defining
the “base-cases” of the regular languages are all decidable by DFAs.

We now show that if a language L1 is decided by DFA M1, and a language L2 is decided by
DFA M2, then there exists a DFA M that decides L1 ∪ L2. Intuitively, we construct M so that it
tracks the movement of the input through both M1 and M2, simultaneously. To do that, we create
|Q1| · |Q2| states, and label each with a pair of names, one from Q1 and one from Q2. For example,
if A ∈ Q1 and B ∈ Q2 then we create a state ‘(A,B)’ for DFA M . If M is in state (A,B), we can
think of this as indicating that M1 would currently, on this input, be in state A, while M2 would
currently be in state B. If M halts in state (A,B), we want to accept if either A is an accept state
for M1, or if B is an accept state for M2.

To simplify the formal exposition, we’ll assume M1 and M2 share the same alphabet; it is easy to
see that this isn’t necessary. LetM1 = (Σ, Q1, S1,A1, δ1) and letM2 = (Σ, Q2, S2,A2, δ2). We’ll also
assume, without loss of generality, that both machines have a trap state. ThenM = (Σ, Q, S,A, δ) is
defined as follows: Q = {(A,B) | A ∈ Q1∧B ∈ Q2}, S = (S1, S2), A = {(A,B) | A ∈ A1∨B ∈ A2},
and δ((A,B), x) = (δ1(A, x), δ2(B, x)).

To prove that L(M) = L1 ∪ L2, we must show two things, the first direction (i.e., L(M) ⇒
L1 ∪ L2) is to prove that that if w ∈ L(M), then w ∈ L1 ∪ L2 and the other direction (i.e.,
L(M)⇐ L1 ∪ L2) is to prove that if w ∈ L1 ∪ L2 then w ∈ L(M).

First, we prove that if M accepts w, then w ∈ L1 ∪ L2. We will write w = w1 · · ·wk, letting wi

denote the ith character of w. Note that w ∈ L(M) implies that there is a sequence of states in M ,
(S1, S2), (A1, B1), (A2, B2), . . . , (Ak, Bk) such that δ((S1, S2), w1) = (A1, B1), δ((Ai, Bi), wi+1) =
(Ai+1, Bi+1), and either Ak ∈ A1, or Bk ∈ A2. Without loss of generality, let’s assume that
Ak ∈ A1. It follows, by the way M was constructed, that δ1(S1, w1) = A1, and, for i ∈ {1, . . . , k−1},
δ1(Ai, wi+1) = Ai+1. Since Ak ∈ A1, it follows that M1 accepts w, and that w ∈ L1∪L2. Secondly,
we must show that if w ∈ L1 ∪ L2, then M accepts w. We leave this direction as an exercise. We
will later come back to the other regular operators, closure and concatenation.

2.4 Non-deterministic Finite Automata (NFAs)

We consider a very useful relaxation in how we model finite automata. Although it was not made
explicit, we previously did not allow any ambiguity in how our transitions were to be made: for
any state A and any input character x, we have, so far, allowed only a single transition from
A to be labeled with x. Relaxing that gives us a lot more flexibility in our design. Consider
the two examples in Figure 2, again taken from Richards [1]. Both machines decide the same
language: {w ∈ {a, b}∗ | w ends in ab}. The first one is a deterministic finite automation. The
second example, which is non-deterministic, has an ambiguous transition out of the start state: on
input ‘a’, the machine has a choice to make. It could either transition to state q1, or it could stay in

4

Figure 2: An DFA and an NFA that decide the same language (taken from Richards [1])

the start state. We say that this machine accepts an input if there exists some sequence of allowable
transitions that ends in an accept state. Importantly, we only require the existence of some such
sequence of transitions: we do not require that all allowable transitions result in acceptance, and
we do not care about how one might find such a sequence.

An even better example of where non-determinism helps ease the design of a finite automata
is the following language: L = {x ∈ {a, b}∗ | the kth symbol from the last is ‘a’}, where k is some
fixed integer. We described an NFA for this language in class, and we will design a DFA for this
language in the homework.

To formally define NFAs, we have to change the definition of our transition function. Whereas
in DFAs, we have δ : Q × Σ → Q, we now have to allow δ to map the same domain to a set of
states, rather than to a single state. Formally, δ : Q × Σ → 2Q, where 2Q denotes the power-set.
Looking again at example 2 in Figure 2, we have

δ =

a b
q0 {q0, q1} {q0}
q1 ⊥ {q2}
q2 ⊥ ⊥

Additionally, it is helpful to allow Λ transitions. These transitions allow the machine to move
from one state to another without using up any of the input string. We don’t bother to formalize
this.

2.5 Equivalence of DFAs and NFAs

How much additional power does this non-determinism give us? It seems to make machine design
a lot simpler, but does it allow us to decide a larger class of languages? It turns out that it does
not: the set of languages decidable by NFAs is exactly the regular languages, just as for DFAs. We
prove now that the two models are equivalent in this sense.

It is clear from the definitions that every DFA is also an NFA, so we only need to show that for
every NFA, M = (Σ, Q, q0,A, δ), there exists a DFA, M ′ = (Σ, Q′, S′,A′, δ′), such that L(M ′) =
L(M). The intuition is similar to the one above for showing a DFA that decides the union of two
languages. We will create a new state for every possible subset of Q. For example, if we have
|Q| = k states in the NFA, then we create 2k states for its equivalent DFA. To illustrate this point,
let’s define DFA’s state ‘{q1, q5, q7}’; this state captures the fact that M with input x can follow
paths that lead to state q1, q5, or q7. We emphasize here that a single state in this DFA essentially
represents multiple states from the NFA. In this way, our DFA will keep track of all the possible
places we could currently be in the NFA, given the input string seen so far. Furthermore, the state
{q1, q5, q7} is an accept state if any of q1, q5, or q7 are accept states for M . Formally, for DFA M ′

5

we have Q′ = 2Q, S′ = {q0}, A′ = {T ∈ Q′ | ∃t ∈ T s.t. t ∈ A}, and δ′(T, x) =
⋃

q∈T δ(q, x).
Remember here that T is a single state of the DFA that represents a set of states from the NFA,
thus, the expression δ′(T, x) =

⋃
q∈T δ(q, x) is a transition from a single state (i.e., T) of the DFA

to a single state (i.e.,
⋃

q∈T δ(q, x)) of the DFA.
We need to prove two things: 1) For w = w0 · · ·wk−1, if w ∈ L(M), then w ∈ L(M ′), and

2) if w ∈ L(M ′), then w ∈ L(M). We start with the first statement, suppose M accepts w, i.e.,
w ∈ L(M). Because M is an NFA, we know that there exists some sequence of states, q0, q1, . . . , qk,
such that, qi+1 ∈ δ(qi, wi), and the last state is an accept state, i.e., qk ∈ A. We switch our attention
now to the corresponding DFA M ′ with the same input w. Let T0, T1, . . . , Tk, be the states in DFA
M ′ such that for each i ∈ {0 . . . , k}, Ti+1 = δ′(Ti, wi). We want to show that these transitions lead
to an accept state of the DFA, i.e., Tk ∈ A′. To show this, we first argue that qi ∈ Ti, that is, the
state from the NFA is an element from the ‘set-state’ of the DFA. We proceed with an inductive
argument. This clearly holds for q0, since T0 = S′ = {q0} (base case). Suppose that indeed qi ∈ Ti
(inductive hypothesis), and recall that by the definition of δ′, Ti+1 =

⋃
q∈Ti

δ(q, wi). From the
definition of Ti+1 we have:

Ti+1 = δ′(Ti, wi) =
⋃
q∈Ti

δ(q, wi) = δ(qi, wi) ∪

 ⋃
q∈Ti

δ(q, wi)

 = qi+1 ∪

 ⋃
q∈Ti

δ(q, wi)

 ,

where for the third equality we used the inductive hypothesis (that is qi ∈ Ti) and for the fourth
equality we used the definition of qi+1 (that is qi+1 ∈ δ(qi, wi)). The above steps show that
qi+1 ∈ Ti+1. Finally, since qk ∈ Tk, and qk ∈ A, it follows that Tk ∈ A′.

We now need to prove that if w ∈ L(M ′), then w ∈ L(M). Using the same notation, let
T0, . . . , Tk be the sequence of states of the DFA such that Ti+1 = δ′(Ti, wi). We have to show
that given input w there exists some sequence of states from Q of the NFA, q0, . . . , qk, such that
qi+1 ∈ δ(qi, wi), and qk ∈ A. To show this, we will use the ‘set-states’ T0, . . . , Tk of the DFA M ′

and the fact that M ′ accepts w. We start by fixing qk and work backwards to q0. To choose qk, we
note that because Tk ∈ A′, then by definition of A′, there is some qk ∈ Tk such that qk ∈ A. Let’s
pick any such qk. For i < k, assume qi+1 has already being fixed. Since Ti+1 =

⋃
q∈Ti

δ(q, wi), there
exists some qi ∈ Ti such that qi+1 ∈ δ(qi, wi). Choose any such qi, and repeat. Since T0 = {q0}, we
can (and must) choose q0 as our start state. This concludes the proof.

Actually, technically, we also have to show how to handle Λ-transitions when constructing
M ′. This is easily done. For each q ∈ Q, let E(q) be the set of states that is reachable using
only Λ-transitions. Then, instead of defining δ′(T, x) =

⋃
q∈T δ(q, x), we define it as δ′(T, x) =⋃

q∈T (δ(q, x) ∪ E(q)). The rest of the proof would proceed as before.

2.6 Equivalence of Regular Languages and DFAs

Using NFAs, it becomes much easier to show that all regular languages can be decided by a DFA,
i.e. the direction of the proof regular⇒DFA. We leave it as a homework problem to show that

1. if a language L is decidable by a DFA, then L∗ is decidable by some NFA, M .

2. if L1 and L2 are decided by DFAs M1 and M2, then L = L1L2 is decidable by some NFA, M .

To complete the equivalence proof (that is, the class of regular languages and the class of
languages decidable by DFAs are the same) we must also show that every language that is decidable

6

by a DFA is regular, i.e., the direction DFA⇒regular. This is not a difficult proof, but we omit it
in this class so that we can move on to other interesting things.

2.7 Some Languages Are Not Regular

There are some languages that cannot be decided by any finite automaton. To demonstrate this,
we first prove a useful lemma that is famously known as the pumping lemma.

Lemma 1 (Pumping Lemma) If L is a regular language, then there exists a number p (the
pumping length) such that for any w ∈ L with |w| > p, w can be divided into 3 strings, w = xyz
such that:

1. ∀i ≥ 0, xyiz ∈ L
2. |y| > 0

3. |xy| ≤ p

Proof Since L is regular, we know that there exists some finite automaton M that decides L.
We define p to be the number of states in M . Let n be the total length of the input string. For
w = w1, . . . , wn, let q0, . . . , qn be the sequence of states that lead from start to accept on string w.
Because n > p (by assumption in the lemma statement), there must be some state in this sequence
that is repeated (by the pigeonhole principal). We’ll call the first such state q∗. Let qs be the first
appearance of q∗ in our state sequence, and let t be the index of the first repetition of q∗. That
is, qs = qt = q∗: they represent the same states, but appear in different places on this list. Then
we define x = w1 · · ·ws, y = ws+1 · · ·wt, and z = wt+1 · · ·wn. An example of this partition is
illustrated in Figure 3.

Figure 3: An illustration of how we define the three strings x, y, and z using the fact that a state
q∗ is repeated.

We now show that the three properties of the lemma are satisfied. For the first property, let’s
consider i = 0, so that we have input string xz = w1, . . . , ws, wt+1, . . . , wn. We know that using
the first s characters the automaton will reach state qs, since these are the same characters in the
original input, w. Furthermore, since qs = qt, we know that the string wt+1, . . . , wn will transition
the automaton through states qt+1, . . . , qn, and will eventually reach the same accept state that
results from processing the original string w. For i = 1, it is true by assumption that xyz ∈ L. For
i > 1, we claim that at the end of each repetition of string y, we end in state qt. This is certainly
true at the end of the first repetition of string y, by the way we defined state qt. Since qt = qs,

7

the next repetition of string y transitions through states qs+1, . . . , qt, just as the first occurrence
of string y did. Since the last repetition of string y leaves us in state qt, it follows that string z
transitions the automaton to accept state qn.

For the second property, it follows immediately that |y| > 0 from the definition of y. For the
third property, recall that qt is the first state to be repeated in the transition sequence. This implies
that all t states, i.e., q0, . . . , qt−1 are unique. Suppose, for the sake of contradiction, that t > p, then
it follows that there must be more than p states in automaton M , which violates our definition of
p, contradiction.

We now use the pumping lemma to show that L = {anbn|n ≥ 0} is not regular. Suppose, for
the sake of contradiction, that L is regular, and let M be the deterministic finite automaton that
decides it. Since we assumed that L is regular, from Lemma 1, we know that there exists a pumping
length p for which the pumping lemma holds. By the pumping lemma, we know that any string
w ∈ L with |w| > p can be written as xyz such that y can be “pumped”. The important part here
is the word “any”; in the rest of the proof we will come up with a string that is longer than p but
violates the pumping lemma. We define the value j as j = dp/2e and we will show that ajbj cannot
be pumped. Specifically, regardless of how y is chosen for this string, xy2z /∈ L. To prove this we
have to perform a case analysis and consider the following three cases:

1. String y is defined so as it contains only a values. In this case, xy2z has more as than bs.
Therefore xy2z is not in language L.

2. String y is defined so as it contains only b values. In this case, xy2z has more b values than
as. Therefore xy2z is not in language L.

3. String y is defined so as it contains a number of as and a (potentially different) number of bs.
Then note that xy2z has a substring in which some as come after some bs. Therefore xy2z is
not in language L.

We note that we could have also considered j = p, and the argument would have been simpler.
But this argument is more “interesting”, and demonstrates a proof by case analysis.

An important thing to pay attention to in the proof above is the ordering of quantifiers. The
pumping lemma says that if L is regular, then ∃p such that ∀w, |w| > p, ∃xyz = w where x, y,and z
satisfy the conditions of the lemma. To show that a language is NOT regular, we have to show that
this statement is NOT true. That is, we have to show that ∀p, ∃w, |w| > p such that ∀xyz = w,
x, y, and z fail to satisfy the criteria of the lemma.

If you revisit the proof you will see that we did not structure the proof argument based on a
specific value of p. The pumping lemma says that there exists a p but does not provide a way to
find its value. Therefore, in order to prove that the statement is NOT true, we have to build an
argument that holds for every possible value of p ≥ 1. Notice that no matter what value p is given
to us, in our proof we construct a w, i.e., w = adp/2ebdp/2e, such that every possible splitting up of
w contradicts one of the properties of Lemma 1.

3 Pushdown Automata

Pushdown automata are very similar to finite automata, but we equip the state machine with a
stack for reading and writing data. The pushdown automaton still operates by scanning the input,

8

left to right, one character at a time. The automaton terminates when it has read the last character
of the input. Transitions are labeled with expressions of the form “a, b/c” where a ∈ Σ is a value
of the input, and b, c ∈ Γ, where Γ, called the “tape alphabet”, is the set of characters that can
pushed and popped from the stack. It is reasonable to assume that Σ ⊆ Γ. The notation b/c
means that you can take this transition if the character at the top of the stack is b, and, in doing
so, you replace character b with character c. Note that you can only take a transition a, b/c if the
next character of the input is a AND the character at the top of the stack is character b. If we
don’t wish to put anything new onto the stack, we can use a transition of the form a, b/Λ. In this
case, we would pop character b from the stack, and the number of elements on the stack would be
reduced by one. If we wish to only add something to the stack, we can use a transition of the form
a,Λ/c and the number of elements on the stack would be increased by one. We can also ignore the
input and just operate on the stack, which is denoted by Λ, a/b. We can ignore both the input and
also not pop anything, denoted by Λ,Λ/c. Such transitions can be taken regardless of the values of
the next input character and the character at the top of the stack, i.e., they only push a character.
We also allow to push multiple characters onto the stack at once (though we do not allow multiple
pops at once). For example, a, b/bc would pop 1 b, push 1 b, and then push 1 c. The top (resp.
bottom) character of the stack is the leftmost (resp. rightmost) character when the contents of the
stack are represented as a sequence. For example, when we say that the content of the stack is abc,
then a is at the top of the stack, right under it is b, and at the bottom of the stack we have c.

Empty stack: We don’t have any explicit mechanism for testing the stack to see if it is empty.
Instead, if that is something we care to do, we can create a transition at the start that pushes a
special symbol onto the stack, and we can later interpret as an indicator that the stack is empty.
This can be seen in Figure 4 below, where $ plays that role. Note that we do not read an input
character in that transition and we do not pop anything; we only start processing input after we’ve
initialized our stack by pushing $.

Termination: The automata terminate when the last character of the input is read. It accepts if
and only if it terminates in an accept state. Just as with finite state automata, we assume there
is a trap state for rejecting that is not made explicit: if it is ever impossible to make a transition,
and there is still input that hasn’t been processed, then the machine is assumed to transition into
a reject state and to stay there. Note that in the case where we ignore the input tape, we also
delay termination by one transition. So, we can take many transitions of the form Λ, a/b, and these
transitions do not “consume” any of the input. We will next walk through the example in Figure
4 below, which will demonstrate this point.

Example: Much like the previously defined finite automata which can be categorized as DFA and
NFA, the pushdown automata can also be deterministic (denoted as DPDA) or non-deterministic
(denoted as NPDA). We walk through the NPDA in Figure 4, using input abba.

• There is only one transition we can take from the start state. We transition to state Even,
the input tape still holds abba, and the stack now holds $.

• Since the first input character is a, the only legal transition is to >a. The input tape holds
bba and the stack holds a$.

• Since the top of the stack is now a, the only legal transition is b, a/Λ, which leaves us in the
same state. (Note we cannot take the transition labeled Λ, $/$ yet, because the top of the

9

stack we had character a.) This transition removes the a at the top of the stack. The input
tape now holds ba, and the stack now holds $.

• The only legal transition is the one labeled Λ, $/$, to state Even. The remaining input is still
ba, since the Λ in that transition does not use up an input character. This transition pops
and pushes $, so the stack still holds $.

• As a next step, we transition to state >b, the input tape holds a and the stack holds b$.

• We transition using a, b/Λ, remaining in the same state. The input tape is now empty, and
the stack now holds $.

• We now have a choice to make. We can terminate and reject, or we can transition one more
time to state Even using Λ, $/$ and then accept. Recall that the definition of non-determinism
says that a string is in the language as long as there exists some sequence of choices that
leads to accept. So, in this case, the string is in the language.

Figure 4: ML accepting language L = {(a+ b)∗ | there are an equal number of as and bs}

The Power of PDAs: Overall, the above execution of the NPDA shows the power of this new
computational model which introduces a stack of infinite memory. It is worth noting here that
even though the memory is infinite, we can only access a single location at a time, i.e., the top of
the stack. We will later see an even more powerful computational model where we can access more
memory. Let’s take a step back and see why the stack is crucial in this example. In case we have
seen character a more times than b in the input tape (that is, NPDA is in state >a), then the stack
acts as a “counter” that keeps track of how many more times we have seen a. We cannot do this
“accounting” with the previously introduced finite automata. Thus, with this new model at our
disposal, we can even recognize some non-regular languages.

3.1 Formal Notation for Non-deterministic Pushdown Automata

A NPDA can be denoted by (Q,Σ,Γ, δ, q0, QA), where Q is the set of states, Σ is the input alphabet,
Γ is the tape alphabet (which might contain Σ), δ is a transition function, detailed below, q0 is a

10

special start state, and QA ⊆ Q is a set of accept states. The function δ maps a state, an input
character, and a character read from the stack, to a state and a sequence of characters to be written
to the stack. However, in the non-deterministic case, note that it might map the same input onto
multiple outputs. We therefore let the co-domain be the power set of Q× Γ∗. Formally, then, δ is
a function δ : Q× Σ× Γ→ 2Q×Γ∗

.
A machine accepts string w if and only if w can be written as w1w2 · · ·wn, where each wi ∈

Σ ∪ {Λ}, and there exists a sequence of states r0, r1, . . . , rn, ri ∈ Q, and a sequence of strings
s0, . . . , sn, si ∈ Γ∗, such that

1. r0 = q0, s0 = Λ, and rm ∈ QA.

2. ∀i ∈ {1, . . . , n}, ∃α, β ∈ Γ ∪ {Λ}, γ ∈ Γ∗, such that si−1 = αγ, si = βγ, and (ri, β) ∈
δ(ri−1, wi−1, α)

Intuitively, w1 · · ·wn denote the input string, but possibly “padded” with internal Λ values to
account for places that we might take a transition that doesn’t read any input. The first condition
states that we start in the start state with an empty stack, and we terminate in an accept state.
The second condition says that we transition through some valid sequence of states, maintaining
valid stack content.

Specifically, we maintain the validity of the stack content by guaranteeing that when we tran-
sition from state ri−1 to state ri (via δ(ri−1, wi−1, α)), there is indeed a string si−1 = αγ that
represents the content of the stack at the moment for which the top of the stack (i.e., the leftmost
character of si−1) matches the expectation of the transition function δ (i.e., its third input). The
above notation guarantees that we pop correctly; a similar condition holds for pushing character β
to the stack.

3.2 NPDAs and DPDAs Are Not Equivalent

Unlike in the case of DFAs and NFAs, non-determinism in the case of push-down automata does
in fact increase the expressiveness of the model. That is, there are language that can be decided
by a NPDA that cannot be decided by a DPDA. An example of such a language is L = {anbn |
n ≥ 0}

⋃
{anb2n | n ≥ 0}. We leave it as an exercise to show that L can be decided by an NPDA.

Also, we do not prove in this class that there is a pumping lemma, similar to the one for regular
languages, which shows that certain languages cannot be decided by NPDAs. One language that
cannot be decided by any PDA is L′ = {anbncn | n ≥ 0}.

Returning back to the original point, we want to prove that L = {anbn | n ≥ 0}
⋃
{anb2n | n ≥ 0}

cannot be decided by any DPDA. To show this we prove that if there was a DPDA that decides L
then we can use it to construct a PDA for L′, but, as we know, this is impossible; therefore, there
is no DPDA that decides L. Since we know that L can be decided by an NPDA, we have shown
that the deterministic PDAs are less powerful than nondeterministic PDAs.

We now see this proof in more detail. Suppose that there is a DPDA M that decides language
L. Let M1 = ({a, b}, Q1, q0,A1, δ1) and M2 = ({a, b}, Q2, S2,A2, δ2) be identical copies of the
machine that decides L, but we relabel each state so that the copy of any given state from M1 can
be distinguished from the copy of the same state from M2. The next step is to construct a PDA M ′

deciding L′ (which we know it is not possible). We start with M ′ = ({a, b, c}, Q1 ∪ Q2, q0,A2, δ
′),

where, for x ∈ {a, b}, ∀q1 ∈ Q1, δ′(q1, x) = δ1(q1, x), and ∀q2 ∈ Q2, δ′(q2, x) = δ2(q2, x). Notice
that the start state of M ′ is the start state of M1 and that the accept states of M2 are (only) the

11

Figure 5: Machine M ′, deciding language L′ = {anbncn | n ≥ 0}, which we know to be impossible.
Figure is taken from the proof of Theorem 14.2 of [1].

accept states of M2. With respect to the transition, the new transition function δ′ imitates (at least
for now) the transitions of functions δ1 and δ2 on their corresponding and relabeled states. But we
are not done with the transition function δ′, we need to find a way to connect the two DPDAs. As
a next step, we make the following two modifications to δ′ in order to define its behavior on inputs
of type c.

1. For each accept state p1 ∈ A1, let q1 = δ(p1, b) be the state that the automaton transition to
when in p1 with input b, we ignore the stack symbols on this modification. Suppose that q2

is the corresponding “twin” state of q1 but in machine M2. Then, define the new transition
δ′(p1, c) = q2.

2. For every q ∈ Q2, let t = δ(q, b). Set δ′(q, b) = reject and define a new transition instead
δ′(q, c) = t that moves on input c. This last modification essentially changes all transitions
that are associated with input b in M2, to use up a c instead.

To prove that the modifications in M ′ are enough to decide L′, we start by arguing that if w ∈ L′,
then M ′ ends in an accept state. To see this, consider what happens after aibi are processed. Since
aibi ∈ L, we know that at this point in the computation, M1 is in an accept state. Since w ∈ L′,
the next i characters are c, and because we’re in an accept state of M1, the first of occurrence
of c causes a transition to a state in M2. From there, the transitions within M2 follow the last i
transitions of δ2 on input aib2i, i.e., the last stretch of the i long sequence of bs. Since we modified
these transitions to use up a c instead of b, the machine M ′ with input aibici reaches an accept
state.

On the other hand, if M ′ accepts on some string w, then we must argue that w ∈ L′. We first
note that if w does not begin either with aibic, or with aib2ic, then M ′ must reject. This is because
all accept states are in M2, so w has to touch some state in A1, and then transition with a c to M2.
Furthermore, if there are any characters other than c after the transition to M2 is made, then it is
easy to see that M ′ will reject: input b will cause a reject explicitly due to our modification, and
input a will cause a reject because M2 does not allow a character a after the first appearance of a
b. At this point in the proof we have established that there is at least one c and there are two more
questions to resolve: 1. Is the string aibi or aib2i before the first c? 2. How many more cs follow its
first occurrence? Suppose w is of the form aib2icj . If M ′ accepts, it follows that M2 would accept
aib2i+j , violating our assumption that M2 decides L. This is because before processing the first c,

12

we transition to M2 and then process cs as if they were bs. So if w is of the form aib2icj and is
accepted, then M2 would have accepted aib2i+j . Therefore, it must be that w is of the form aibicj .
Finally, if j 6= i, by the same previous argument, M ′ must reject, or else M2 would accept a string
aibi+j , where 0 6= j 6= i, violating our assumption about M2. We conclude that w is of the form
aibici, as claimed.

References

[1] D. Richards Logic and Language Models for Computer Science, third edition. World Scientific
Publishing Co., 2018.

[2] M. Sipser. Introduction to the Theory of Computation (2nd edition). Course Technology, 2005.

13

