
Notes on Theory of Computation Last updated: September, 2021

Turing Machines, Diagonalization, the Halting Problem, Reducibility

1 Turing Machines

A Turing machine is a state machine, similar to the ones we have seen until now, but with the
addition of an infinite memory space on which it can read from and write to every location. Notice
here that this is a much stronger computational model than the PDAs where we could only read
and write from a single location, i.e., the top of the stack. The memory in a Turing machine is
modeled as an infinite tape of individual cells, that is a tape that has a beginning (leftmost cell)
but no “rightmost” end. Comparing again with the PDAs, for the case of a PDA we know that
we are always reading/writing at the “top” of the stack; for the case of a Turing machine we need
an extra piece of information to describe the movement of the tape “head” that allows reads and
writes. When determining each state transition, the Turing machine can read the character at the
location of the tape head, choose to replace the character in that cell with some other character,
and move the head right or left. Finally, to simplify the notation we assume that the input string
to the Turing machine is written in the beginning of the tape, all other cells of the tape contain
the “blank” symbol t, and the head is initialized at the leftmost cell of the tape.

Formally, a Turing machine is defined as a 7-tuple (Q,Σ,Γ, qstart, qa, qr, δ) where Q is the finite
set of states, Σ is the input alphabet where a special “blank” symbol t is not part of Σ, Γ is the
alphabet of the tape for which Σ ⊆ Γ and we assume includes a special “blank” symbol t that is
used to represent empty cells on the tape, qstart ∈ Q is the start state, and qa, qr ∈ Q are special
accept states and reject states. We highlight here two important details: first, the fact that the
input alphabet Σ does not contain the blank symbol t means that the input string extends up to
the first occurrence of t when scanning from left to right; second, the fact that the alphabet of the
tape Γ can be (potentially) different from the alphabet of the input Σ means that Γ is allowed to
contain special symbols such as x∈ Γ that can be used by the Turing machine to mark important
locations on the tape without being falsely considered part of the input. δ is a transition function,
δ : Q× Γ→ Q× Γ× {L,R}. The input of δ is the current state of the machine, and the character
currently in the cell where the tape head is found. The output of δ is a new state, a character that
replaces the content of the current tape cell, and a direction for the head to move, i.e., ‘L’ for left
and ‘R’ for right. For example, the notation δ(q, a) = (r, b, L) means that when the machine is at
state q and the head is over a tape containing a, then the machine moves to state r, writes the
symbol b where a was, and moves the head by one position to the left. A corner case occurs in the
following scenario: If the tape head of a Turing machine is at the leftmost cell of the tape and it
attempts to move left, then the head remains in the same cell even though the transition function
commands a move to “L” direction.

Note that we require explicit accept and reject states for Turing machines, because, unlike with
automata, there is no specific halting condition with a Turing machine; the machine is allowed to

1

repeatedly scan the memory tape without ever reaching a halting state. The accept states and the
reject states are trap states, and the machine halts its computation if it ever enters one of these
two states. Overall, given an input string, a Turing machine can either accept, reject, or loop.

Deciding a Language. As before, we are interested in the languages that are decided by
Turing machines. However, because the machine could possibly get stuck in an infinite loop (which
happens by never entering either halting state) a subtlety arises here that did not occur in the case
of automata. Specifically, if there exists any input on which the Turing machine M fails to halt,
then M does not decide any language. That is, we say M decides the language L if and only if 1)
M enters the accept state for every x ∈ L, and 2) M enters the reject state for every x /∈ L. That
said, even if M does run forever on some inputs, it is still sometimes useful to describe the set of
strings that M halts and accepts.

Recognizing a Language. We say that M recognizes L, if M halts and accepts every x ∈ L.
Notice that this is a weaker notion than decidability in which the machine needs to not only accept
all x ∈ L but also reject all x /∈ L. It follows that if M decides L, it also recognizes L, but the
opposite is not necessarily true. It is also useful to note that Turing machines are capable of more
than just deciding whether a string belongs to a language. The machine can also halt with certain
output on its tape. The output of M on input x, denoted M(x), is the string contained on the tape
(before the trailing blank symbols) when the machine halts. When there is no output tape, then
the output is ‘1’ if M halts in state qa and the output is ‘0’ is M halts in state qr.

Computable Functions. A Turing machine M computes a function f : {0, 1}∗ → {0, 1}∗
if M(x) = f(x) for all x. Assuming f is a total function, and so is defined on all inputs, this in
particular means that M halts on all inputs. We say a function f is computable, if there exists
some Turing machine that computes f .

1.1 Comments on the Model

(by Jonathan Katz) Turing machines are not meant as a model of modern computer systems.
Rather, they were introduced (before computers were even built!) as a mathematical model of what
computation is. Explicitly, the axiom is that “any function that can be computed in the physical
world, can be computed by a Turing machine”; this is the so-called Church-Turing thesis. (The
thesis cannot be proved unless one can formally define what it means to “compute a function in
the physical world” without reference to Turing machines. In fact, several alternate notions of
computation have been defined and shown to be equivalent to computation by a Turing machine;
there are no serious candidates for alternate notions of computation that are not equivalent to
computation by a Turing machine. See [1] for further discussion.) In fact, an even stronger axiom
known as the strong Church-Turing thesis is sometimes assumed to hold: this says that “any
function that can be computed in the physical world, can be computed with at most a polynomial
reduction in efficiency by a Turing machine”. This thesis is challenged by notions of randomized
computation that we will discuss later. In the past 15 years or so, however, this axiom has been
called into question by results on quantum computing that show polynomial-time algorithms in a
quantum model of computation for problems not known to have polynomial-time algorithms in the
classical setting.

There are several variant definitions of Turing machines that are often considered; none of these
contradict the strong Church-Turing thesis. (That is, any function that can be computed on any of
these variant Turing machines, including the variant defined earlier, can be computed on any other
variant with at most a polynomial increase in time/space.) Without being exhaustive, we list some

2

examples (see [1, 2] for more):

• One may fix Γ to only include {0, 1} and a blank symbol.

• One can allow the machine to have k tapes, rather than 1 tape, with k tape heads reading at
each step. One can also allow a specially designated input tape and output tape.

• One may allow the tape heads to stay in place, rather than only moving left or right.

• One can allow the tapes to be infinite in both directions, or two-dimensional.

• One can allow random access to the work tapes (so that the contents of the ith cell of some
tape can be read in one step). This gives a model of computation that fairly closely matches
real-world computer systems, at least at an algorithmic level.

The upshot of all of this is that it does not matter much which model one uses, as long as one is ok
with losing polynomial factors in the runtime. On the other hand, if one is concerned about “low
level” time/space complexities then it is important to fix the exact model of computation under
discussion. (We will discuss runtime and space requirements later.) For example, the problem of
deciding whether an input string is a palindrome can be solved in time O(n) on a two-tape Turing
machine, but requires time Ω(n2) on a one-tape Turing machine.

1.2 An Example

We describe how to read a state diagram of a Turing machine based on an example directly out of
Sipser’s book [3]. The Turing machine ML accepts the language L = {02n |n ≥ 0}, i.e., the language
consisting of all strings of 0s whose length is a power of 2.

Formally, ML is defined as (Q,Σ,Γ, q1, qaccept, qreject, δ), where: Q is the set of states {q1, q2, q3, q4,
q5, qaccept, qreject}, Σ = {0} is the input alphabet, Γ = {t, 0, x} is the tape alphabet, and δ is
described in Figure 1. The label “0→ t, R” that is written between states q1 and q2, means that
when the machine is in state q1 with the head reading 0 from the tape, the machine goes to q2,
replaces the current content of the cell with t, and moves the head to the right.

This machine performs multiple scans over the tape, some scans are performed from left to right
and some scans are performed from right to left. Intuitively, what this machine does is: a) it checks
if there are no “0”s on the input tape (q1) and rejects if this is the case. Otherwise, it scrolls to
right until it finds the second “0” on the tape (q2) and crosses this off by replacing it with an x.
If it cannot find a second “0”, then there is exactly one “0” remaining on the tape, and it accepts
because the number of 0s in the input is a power of two, i.e., 20. After that, it crosses off every
other “0” (q3 and q4). If it reaches the end (i.e. by finding a t) when there are an odd number of
“0”s, it rejects (q4), otherwise, it moves from right all the way to the left until it finds the first “0”
and begins again (q5). Essentially, each scan “cuts” the number of 0s in half. Note: there is one
confusing thing in this state diagram! When q1 replaces the first “0” with a t, this is to help the
machine find the beginning of the tape during the “rewinding”. But you should think of this first
“0” as still remaining, and not as thought it has been crossed off.

3

Figure 1: ML accepting language L = {02n |n ≥ 0}, taken from Sipser’s book [3].

2 Diagonalization

We will use a proof technique called diagonalization to demonstrate that there are some languages
that cannot be decided by a Turing machine. This techniques was introduced in 1873 by Georg
Cantor as a way of showing that the (infinite) set of real numbers is larger than the (infinite) set
of integers. We will define what this means more precisely in a moment.

Definition 1 Given two sets, A and B, and a function f : A → B, we say that f is injective
(one-to-one) if it never maps two different elements from A onto the same element from B: ∀a, b ∈
A, a 6= b⇒ f(a) 6= f(b)

Definition 2 Given two sets, A and B, and a function f : A → B, we say that f is surjective
(onto) if every value in B has a pre-image under f : ∀b ∈ B, ∃a ∈ A s.t. f(a) = b.

If a function is both one-to-one and onto, then we say it is bijective, or a correspondence. Cantor
proposed that we can use a correspondence to compare the sizes of infinite sets, the same way would
finite sets. In particular, we are interested in determining whether some infinite set is the same
size, or larger than the set of natural numbers N = {1, 2, 3, . . .}. If a set S has a correspondence
with the natural numbers, i.e. f : N→ S, we say that the set is infinitely countable.

Consider, for example, the set of even numbers {2, 4, 6, . . .}. We might think that this set
is smaller than the set of natural numbers, since it is fully contained within the set of natural

4

numbers. But we can also see that there is a correspondence mapping from N to the set of even
numbers: f(a) = 2a. (Verify for yourself that f is both one-to-one and onto.)

How about the set of positive rational numbers Q = {mn | m,n,∈ N}? Our first intuition might
be that this set is “larger” than N, but in fact we can again build a correspondence between the
two sets. To do that, let’s start by building a matrix of all positive rational numbers, placing any
number with i in the numerator in the i-th row, and any number with j in the denominator in the
j-th column.

Figure 2: Illustration of the diagonalization, taken from Sipser’s book [3].

Then, we go through the array, mapping each new item to one of the natural numbers. However,
when doing that, we don’t simply iterate over them row by row, or column by column, because each
row and column has infinite size, and we’d never get past the first row or column! Instead, we move
through the matrix along diagonals that go up from left to right: 1

1 ,
2
1 ,

1
2 ,

3
1 ,��AA

2
2 ,

1
3 ,

4
1 ,

3
2 ,

2
3 ,

1
4 ,

5
1 ,��AA

4
2 ,��AA

3
3 ,��AA

2
4 ,

1
5 . . . Note that in order to ensure that our mapping is one-to-one, we have to skip any repeated
values. So, for example, we skip 2

2 , because we already included 1
1 = 2

2 . We also skipped 4
2 ,

3
3 and

2
4 for the same reasons. In this example, the correspondence f simply maps the a ∈ N onto the ath
element on this list. f is one-to-one because we have only included one “copy” of each equivalent
rational number on the list, so no two natural numbers are mapped onto the same rational number.
f is onto because there is no (positive) rational number left off of our list.

Theorem 1 The set of real numbers R is uncountable.

Proof We show this by contradiction. Suppose set R was countable, and let f be the correspon-
dence with N. We will show that there exists some b ∈ R that is not in the image of f , violating the
assumption that f is onto. To do this, we start by ordering all the elements of R according to the
values of their pre-images: f(1), f(2), f(3), f(4), Because f is a correspondence, all elements
of R must appear somewhere on this list. We will now define a real number b ∈ R that does not
appear on this list, demonstrating a contradiction. Recall that real numbers can be infinitely long.

5

Choose the i-th digit of b such that it is different from the i-th digit of f(i). Suppose that b appears
in the j-th position of this list (i.e. that f(j) = b). But this cannot be true, because we know
that b differs from f(j) in the j-th position! This is called diagonalization, because we define the
contradictory value by appropriately setting its value along the diagonal.

2.1 Unrecognizable Languages

We use a similar technique to prove that there exists some language that cannot be decided.
Actually, we can prove something even stronger. Recall, we say that a machine M recognizes L
if it halts and accepts for every x ∈ L, and for every x /∈ L, it either halts and rejects, or it runs
forever. We will show that there exist languages that are not even recognizable. We show this by
proving that there are more languages than Turing machines: this proof goes through because the
set of Turing machines is countable, but the set of languages is not! We use the following lemmas
and corollaries in our proof.

Lemma 2 Any set X ⊆ N is countable.

Corollary 3 For any alphabet Σ, the set of strings Σ∗ is countable.

Corollary 4 The set of all valid Turing machines is countable.

Lemma 5 The set of infinite binary sequences is uncountable.

The proof of Lemma 5 is essentially identical to the proof that R is uncountable, so we omit it.
Note that the key difference between the statement of Corollary 3 and Lemma 5 is that is that no
string in the set described in Corollary 3 can have infinite length (even though we place no limit on
the size that any string in that set can have). In other words, for any string w ∈ Σ∗, there exists
some constant c such that w ∈ Σc.

Theorem 6 There exist languages that are not Turing recognizable.

Proof We already observed that the set of all Turing machines is countable. To show that the set
of all languages is uncountable, we give a correspondence from the set of all languages to the set of
infinite binary strings. Since Lemma 5 shows that the set of infinite binary strings is uncountable,
then the set of all languages is uncountable as well. To describe this correspondence, we define a
function f that maps an infinite binary string to a language.

To define f , we start with a fixed ordering on all binary strings: we list all strings of length 1
in lexicographic order, followed by all strings of length 2 in lexicographic order, etc. We call the
above ordering the canonical list of all strings. As a next step we will pick an infinite string (the
input to f) and we will use it in combination with the canonical list of all strings to construct a
language (the output of f). Let w be an infinite binary string that f takes as input. We define
the language f(w) by including the j-th string of the canonical list as a member of the language
f(w) if and only if the j-th bit of w is 1. For example if w = 10 . . ., then the 1st string of the
canonical list, i.e., “0”, is in the language but the 2nd string, i.e., “1”, is not. It is easy to show
that mapping f is onto; that is, simply define the inverse function: given some language L we can
work “backwards” and find w such that f(w) = L by starting with the same canonical ordering on
all strings, and letting the jth bit of w be 1 iff the j-th string is in L. To see that f is one-to-one,

6

consider any two distinct inputs (infinite binary strings) w 6= w′, and, suppose they differ on the
i-th bit. Then f maps these inputs to outputs such that f(w) 6= f(w′), since the two languages
differ on whether they include the i-th string from the canonical list of all strings. Since f is both
onto and one-to-one, mapping f is a correspondence between the set of infinite binary strings and
the set of all languages.

Therefore, we showed that the set of all languages is uncountable while the set of Turing
machines is countable. It follows, at least intuitively, that there exists some language that is not
recognized by any Turing machine. To formalize this, we actually require an additional lemma.

Lemma 7 Let S be some infinite set, and let f be a surjective (onto) function f : N → S. Then
there exists a bijection g : N→ S.

Proof From our assumption we know that f is onto, but it is not necessarily one-to-one, which
means that it is possible that there exist a, b ∈ N s.t. a 6= b and f(a) = f(b). Intuitively, we want to
“re-map” f on one of these inputs so that they no longer collide. Since S is infinite, we can simply
choose the next available value, and “shift” everything down. More formally, to define g, we start
by ordering the elements of S as follows: For every s ∈ S, let m(s) = min({j | f(j) = s}). That
is, in case an s ∈ S is associated with a single element j of N with respect to f , then m(s) is this
j; in case s ∈ S is associated with multiple elements of N, then m(s) is the smallest elements of N
among them. Sort the elements of S according to m(s). After ordering the elements of S this way,
denote the ordered list as s′1, s

′
2, . . . First, we show that this ordering is complete. Suppose for the

sake of contradiction that s′i 6= s′j , but m(s′i) = m(s′j). This implies that:

m(s′i) = m(s′j)⇒ min({j | f(j) = s′i}) = min({j | f(j) = s′j})⇒ ∃k ∈ N : f(k) = s′i ∧ f(k) = s′j

But this contradicts the definition of a function since f : N → S maps the same input to two
distinct outputs. An illustration is depicted in Figure 3.

Figure 3: The new ordering is s2, s4, s1, s3, s5 because m(s2) < m(s4) < m(s1) < m(s3) < m(s5).

We define g(i) = si and we need to show that g is a bijection. To see that it is injective, note
that none of the elements in S appear in our ordered list more than once, since m(s) is unique for
each s. To see that g is surjective, note that because f is surjective, m(s) is well defined for every
s ∈ S, so every element in S is included somewhere on our list; it follows that every element in S
has a pre-image under g.

7

Armed with the Lemma 7 we can now continue with the proof of the theorem. Consider the
surjective function f ′ mapping the set of Turing machines onto the set of recognizable languages
(This function is not a correspondence since there might be multiple Turing machines that recognize
the same language; but it will suffice for our proof). Suppose for the sake of contradiction that
surjective function f ′ is onto the set of all possible languages. Then, by Lemma 7 there exists a
bijection g (correspondence) between a countable set (Turing machines) and an uncountable set (set
of all possible languages). Since f ′ is not a surjective function, it follows that there exists a language
from the set of all languages without a pre-image under f ′. This language is not recognized by any
Turing machine.

2.2 Universal Turing Machines and Uncomputable Functions

(Text mainly by Jonathan Katz) An important observation (one that is, perhaps, obvious nowadays
but was revolutionary in its time) is that Turing machines can be represented by binary strings. In
other words, we can view a “program” (i.e., a Turing machine) equally well as “data”, and run one
Turing machine on (a description of) another. As a powerful example, a universal Turing machine
is one that can be used to simulate any other Turing machine. We define this next.

Fix some representation of Turing machines by binary strings, and assume for simplicity that
every binary string represents some Turing machine (this is easy to achieve by mapping badly formed
strings to some fixed Turing machine). We will use 〈M〉 to denote the binary representation of the
machine M . Consider the function f(〈M〉 , x) = M(x). Is f computable? Perhaps surprisingly, f
is computable. A Turing machine U computing f is called a universal Turing machine. We stress
that here we require there to be a fixed Turing machine U , with a fixed alphabet and a fixed set of
states, that can simulate the behavior of an arbitrary Turing machine M that may use any number
of states, and any size alphabet!

Note that the function f(〈M〉 , x) = M(x) is a partial function, since in this context the given
Turing machine M may not halt on the given input x and we leave f undefined in that case. To
simplify things, we will consider the total function

f ′(〈M〉 , x, 1t) =

{
1 if M(x) halts and accepts within t steps,
0 otherwise

whose computability is closely linked to that of f .

Theorem 8 There exists a Turing machine U such that (1) U(〈M〉 , x, 1t) = M(x) if M halts on
x within t steps, and 0 otherwise. Furthermore, (2) for every M there exists a constant c such that
the following holds: for all x, if M(x) halts within t steps, then U(〈M〉 , x, 1t) halts within c · t log t
steps.

We do not prove this theorem here, and instead refer to Arora and Barak [1]. Intuitively,
though, the idea is that U can maintain the current state of M on its own work tape. U is given
the binary representation of M as input, which includes M ’s transition function, δ. At each step,
U scans its work tape to fetch the current state of M , and the character currently pointed to by
M ’s tape head. U can then scan the description of δ, and compute how M would update its own
state. It then returns to the portion of the tape maintaining M ’s state and updates it accordingly.
After each step, U will decrement a counter that starts at t: if the counter ever reaches 0, U will
halt and reject.

8

Another natural possibility is to consider the (total) function

fhalt(〈M〉 , x) =

{
1 if M(x) halts with output 1
0 otherwise

;

What about fhalt? Is it computable? By again viewing Turing machines as data, we can show that
this function is not computable!

Theorem 9 The function fhalt is not computable.

Proof Suppose for the sake of contradiction that there is some Turing machine Mhalt computing
fhalt. Then we can define the following machine M∗(〈M〉):

On input 〈M〉, compute Mhalt(〈M〉 , 〈M〉). If the result is 1, output 0; otherwise out-
put 1.

Intuitively, M∗ is given the description of a machine, 〈M〉. It duplicates the input, running Mhalt

on the duplicate input. Recall that Mhalt looks at its first input, interprets it as a machine, and
runs that interpreted machine on the 2nd input. In this case, the second input happens to also be
the description of a machine. So running Mhalt on the input (〈M〉 , 〈M〉) amounts to asking “does
M halt and accept its own description?” A strange, but perfectly reasonable question!

Now, consider and even stranger, but still perfectly reasonable question. What happens when
we run M∗ on itself ? Consider the possibilities for the result M∗(〈M∗〉):

• Say M∗(〈M∗〉) = 1. By the definition of M∗, this implies that Mhalt(〈M∗〉 , 〈M∗〉) = 0. But,
by the definition of Mhalt, that means the first input, 〈M∗〉, does not halt and accept the
second input, 〈M∗〉. In other words, M∗(〈M∗〉) does not halt with output 1, a contradiction.

• Say M∗(〈M∗〉) = 0. By the definition of M∗, this implies that Mhalt(〈M∗〉 , 〈M∗〉) = 1. But,
by the definition of Mhalt, that means the first input, 〈M∗〉, does halt and accept the second
input, 〈M∗〉. In other words, M∗(〈M∗〉) halts with output 1, a contradiction.

• It is not possible for M∗(〈M∗〉) to never halt, since Mhalt(〈M∗〉 , 〈M∗〉) is a total function,
and therefore halts on all inputs.

We have reached a contradiction in all cases, implying that Mhalt as described cannot exist.

Remark: The fact that fhalt is not computable does not mean that the halting problem cannot
be solved “in practice”. In fact, checking termination of programs is done all the time in industry.
Of course, they are not using algorithms that are solving the halting problem – this would be
impossible! Rather, they use programs that may give false negatives, i.e., that may claim that
some other program does not halt when it actually does. The reason this tends to work in practice
is that the programs that people want to reason about in practice tend to have a form that makes
them amenable to analysis.

We can actually visualize the proof that the halting problem cannot be decided as an example of
diagonalization. To prove that Lhalt is not decidable, we begin by assuming that it Mhalt decides it,
and we list the output of this machine on all possible inputs. Recall that it takes two inputs: 〈M〉
and w, where the first is the description of a Turing machine, and the second is interpreted as
the input to M . We will list the outputs of Mhalt by listing all possible Turing machines on one

9

side of a matrix, and all of their descriptions on the other side of a matrix. (Note that there is a
correspondence mapping the set of Turing machines to the set of finite-length strings, so the second
input to Mhalt can always be interpreted as the description of some Turing machine. However, this
point is not essential for the proof: we’re simply only interested in the strings that represent Turing
machines and therefore only list those along the top row.)

We can now list the output of Mhalt:

〈M1〉 〈M2〉 〈M3〉 〈M4〉 . . .

M1 : accept accept reject reject . . .

M2 : accept reject reject reject . . .

M3 : reject accept reject accept . . .

...
...

...
...

...
. . .

We defined M∗(〈X〉) to run Mhalt(〈X〉 , 〈X〉) and swap Mhalt output; that is M∗(〈X〉) halts

and outputs 1 if and only if Mhalt(〈X〉 , 〈X〉) does not halt with output 1. Since M∗ is a valid
Turing machine, it must appear somewhere on the list we described above. We fill in its output in
the table below:

〈M1〉 〈M2〉 〈M3〉 〈M4〉

M1 : accept accept reject reject . . . accept

M2 : accept reject reject reject . . . reject

M3 : reject accept reject accept . . . accept

...
...

...
...

...
. . . reject

M∗ : reject accept accept reject . . . ???

...
...

...
...

...
...

. . .

So, the entry Mhalt(〈M∗〉 , 〈M∗〉) will be an accept (halts with output 1) when M∗(〈M∗〉)

halts and outputs 1. From the “if and only if” condition above the second statement can be
swapped with its equivalent statement which results in: entry Mhalt(〈M∗〉 , 〈M∗〉) will be an accept
(halts with output 1) when Mhalt(〈M∗〉 , 〈M∗〉) does not halt with output 1. Similarly, the entry
Mhalt(〈M∗〉 , 〈M∗〉) will be a reject (does not halt with output 1) when M∗(〈M∗〉) does not halt
with output 1. When we swap with its equivalent statement we get: entry Mhalt(〈M∗〉 , 〈M∗〉) does
not halt with output 1 when Mhalt(〈M∗〉 , 〈M∗〉) halts with output 1. Both cases create a paradox.

Finally, we give a constructive proof that some languages cannot be recognized. (Note that our
previous proof, which used the fact that the set of Turing machines is countable, did not leave us
with the description of an actual language; it was only a proof of existence of such a language.)

10

Recall that a language L is defined as a set of strings. The complement L of a language is the
complement of set L, i.e., every string not in the set.

Consider the language Lhalt = {〈M〉, x |M halts with output 1 on input x} and its complement
Lhalt = {〈M〉, x | M does not halt with output 1 on input x}. We will prove that this language is
not recognizable by any Turing machine. We begin with the following theorem.

Theorem 10 A language is decidable if and only if both it and its complement are Turing recog-
nizable.

Proof Let L be some decidable language. It follows immediately from the definitions that L is
recognizable. To see that L is also recognizable, let ML be the machine that decides L, and define
ML as the machine that runs M and reverses its output. In the other direction, suppose L and L
are recognizable by ML and ML respectively. To decide L, we can construct a Turing machine that
runs both of these machines in parallel, alternating the steps of each computation. (The alternation
of steps is important, in case either one of these machines never terminates.) On input x, if ML(x)
halts with output 1, then halt and output 1. If ML halts and outputs 1, halt and output 0.

We have proven that Lhalt is not decidable. However, note that Lhalt is recognizable, since on
input (〈M〉, x) we can always simulate M on x: if M halts and outputs 1, then we do the same.
(The fact that it is not decidable means that it might not halt when M does not accept x; in this
case, our simulation would not halt either.) It follows that Lhalt is not recognizable: otherwise,
both Lhalt and Lhalt would be recognizable and by the previous theorem would imply that Lhalt is
decidable, contradiction.

3 Reducibility

Consider the following language LA/R = {〈M〉, x | M halts on input x and outputs either 0 or 1}.
This looks very similar to Lhalt, which we know is undecidable, so it is not surprising that this
language is also undecidable. But how do we prove that? We can do it through a reduction: we
demonstrate that if there is a Turing machine MA/R that decides LA/R, then there is a Turing
machine Mhalt that decides Lhalt. Since we already know that the latter statement is untrue, it
follows that the former statement is untrue.

Theorem 11 The language LA/R is undecidable.

Proof We prove it by constructing Mhalt that does the following.
Mhalt(〈M〉, x) :

1. Our new machine Mhalt runs internally MA/R with the passed inputs, i.e., MA/R(〈M〉, x).

(a) If MA/R outputs 0, halt and output 0.

(b) If MA/R outputs 1, then run internally M on input x until it halts. Output whatever
M outputs.

If we are in case (a), we know that MA/R output 0 which means that the input is not in the
language LA/R so the input is not in Lhalt either. If we are in case (b), we know that MA/R output
1 which means that the input is in the language LA/R. The issue now is that we don’t know what
is the output of M on input x; if the output is 1 then the pair (〈M〉, x) is in the language Lhalt

11

whereas if the output is 0 then the pair (〈M〉, x) is not in the language Lhalt. To resolve this, we
simply run internally M and imitate its output (remember that we already know that M halts
since it MA/R output 1).

3.1 Mapping Reductions

Theorem 12 The language Lsome = {〈M〉 | M is a Turing machine that accepts some string } is
undecidable.

Proof We again assume that there exists some Turing machine Msome deciding Lsome, and demon-
strate that this gives rise to a Turing machine Mhalt that decides Lhalt. We describe Mhalt as follows.
Mhalt(〈M〉, x) :

1. Write down a description of a new Turing machine M ′(y) that runs internally M as follows.
M ′ :

(a) On input y 6= x, reject.

(b) On input y = x, run M(y) and output whatever it outputs.

That is, M ′ plainly ignores all the inputs y unless it is y = x, in which case it runs M on this
input.

2. Run Msome(〈M ′〉), and output whatever it outputs.

If Msome(〈M ′〉) outputs 1 then we know that M ′ is a Turing machine that accepts some string.
Interestingly, M ′ is engineered so as to reject all inputs that are not x. The only case where M ′

accepts occurs when M(x) halts and outputs 1. Since Msome output 1, then it must be that M
halts and outputs 1 on input x.

Note that 〈M ′〉 described in the previous reduction has a particular property of interest. If
(〈M〉 , x) ∈ Lhalt, then 〈M ′〉 accepts some string (namely, x), whereas if (〈M〉 , x) /∈ Lhalt, then
〈M ′〉 rejects every string. There is a nice way of generalizing the reductions described above, using
what is called a mapping reduction. To convey more intuition we use the notation Lnew to talk
about a new language that we want to analyze and Lknown to talk about a language for which we
have knowledge about its complexity, e.g., undecidable. Typically, textbooks refer to Lknown as L1

and Lnew as L2.

Definition 3 Let Lknown and Lnew be two languages over alphabet Σ. A function f : Σ∗ → Σ∗ is
a mapping reduction from Lknown to Lnew, i.e., Lknown ≤m Lnew, if f is computable by a Turing
machine, and ∀x ∈ Σ∗, f(x) ∈ Lnew ⇔ x ∈ Lknown.

Now, to reduce Lknown to Lnew, we can just describe a mapping reduction, f . The rest of
the proof follows generically: suppose that Mnew decides Lnew. Then, define Mknown that runs
Mnew(f(x)) and outputs the result. It is clear that Mknown decides Lknown. If it is known that
Lknown is undecidable, then, since f is shown to exist, it follows that Mnew must not exist, and that
Lnew is not decidable either.

Let’s revisit the reduction from Lhalt to LA/R, and this time prove the same result using a
mapping reduction, f . We need to give a computable function f such that

f(〈M〉, x) ∈ LA/R ⇔ (〈M〉, x) ∈ Lhalt

12

Note that since LA/R takes as an input 〈M〉 and x, function f needs to output the description
of a Turing machine 〈M〉 and an appropriate input x. Specifically, on input (〈M〉, x), f outputs a
(〈M ′〉, x), where M ′ does the following.
M ′(〈M〉, x) :

1. Simulate M on input x.

(a) If it outputs 1, halt and output 1.

(b) If it outputs 0, loop forever.

To argue that reduction function, f , is computable by a Turing machine, we simply have to
argue that a Turing machine can take (〈M〉 , x) as input, and reliably halt with 〈M ′〉 as output
on its tape. Note that the Turing machine that does this, thereby computing f , does not have to
simulate M . It just needs to take the description of M , (denoted 〈M〉), and modify the description
of M to contain the extra loop in the case of rejection. Modifying the code of 〈M〉 can be done
reliably, without risk of running forever, so f is computable. (Notice though that simulating M
would give no such guarantee, since M might run forever.)

Let’s now do the same with the reduction we built from Lhalt to Lsome. f(〈M〉, x) = 〈M ′〉,
where M ′ is exactly as previously described: it rejects on all strings y 6= x, and runs M(y) when
y = x. If (〈M〉 , x) ∈ Lhalt, then 〈M ′〉 ∈ Lsome, and if (〈M〉 , x) /∈ Lhalt, then 〈M ′〉 /∈ Lsome. To
argue that f is computable, note that it only needs to modify the description of 〈M〉 to perform
the extra comparison, x == y, before proceeding to execute the original code of M .

Theorem 13 The language LEQ = {(〈M1〉, 〈M2〉) | L(M1) = L(M2)} is undecidable. (Here, we
write L(M) to denote the language decided by machine M .)

Proof We first define a language L∅ = Lsome. That is, L∅ = {〈M〉 | M does not accept any string}.
Note that L∅ is not decidable (prove this to yourself). We show that LEQ is not decidable by pro-
viding a mapping reduction from L∅ to LEQ. Since L∅ is undecidable, it follows that LEQ is also
undecidable. We have to give a computable function f that maps x ∈ L∅ to x′ ∈ LEQ, and maps
x /∈ L∅ to x′ /∈ LEQ. The function is as follows. Let 〈M2〉 be the description of a turing machine
that rejects all strings. f(〈M1〉) = (〈M1〉, 〈M2〉). To see that this is a good mapping reduction, first
we argue that f is computable. This follows because f simply needs to write the description of 2
Turing machines to its output tape: one machine description it copies from its own input tape, and
the other is a hard-coded description, 〈M2〉, which can just be stored in the states of the machine
computing f .

We now argue that it preserves membership as it is supposed to. Suppose x ∈ L∅. This means
that x describes a machine that accepts no inputs. In that case, the output of f is the description of
two machines, both of which accept no input, so f(x) ∈ LEQ. On the other hand, suppose x /∈ L∅.
In that case, x describes a machine that accepts some input. Since f outputs (x, 〈M2〉), where x
describes a machine that accepts some input, and 〈M2〉 describes a machine that accepts no input,
it follows that the output of f is not in LEQ.

The existence of a mapping reduction suffices to show that LEQ is not decidable. To repeat
why this is, note that we can complete the argument generically, as follows. Suppose MEQ decides
LEQ. Then, we claim that the following machine, M∅, decides L∅.

M∅(〈M〉) :

1. Run MEQ(f(〈M〉)), and output whatever it outputs.

13

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

[2] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley Publishing Company, 1979.

[3] M. Sipser. Introduction to the Theory of Computation (2nd edition). Course Technology, 2005.

[4] R. Kannan. Towards separating nondeterminisn from determinisn. Math. Systems Theory 17(1):
29–45, 1984.

[5] W. Paul, N. Pippenger, E. Szemeredi, and W. Trotter. On determinism versus non-determinisn
and related problems. FOCS 1983.

[6] R. Santhanam. On separators, segregators, and time versus space. IEEE Conf. Computational
Complexity 2001.

14

