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Recursion theorem, NP-completeness

Evgenios Kornaropoulos & Dov Gordon, taken from [1], Chapters 6-7

1 P, NP, and NP-Completeness

What Is Complexity Theory About? The fundamental question of complexity theory is to
understand the inherent complexity of various languages/problems/functions; i.e., what is the most
efficient algorithm (Turing machine) deciding some language?

We now give the definitions of running time for deterministic Turing machines.

Definition 1 Let M be a deterministic Turing machine that halts on all inputs. The running time
(or time complexity) of M is the function f : N→ N, where f(n) is the maximum number of steps
that M takes on any input of length n. Customarily, we use n to represent the length of the input.

A convenient terminology for capturing “complexity” is given by introducing the notion of a
class, which is simply a set of languages. Two basic classes are:

• time(f(n)) is the set of languages decidable in time O(f(n)). Formally, L ∈ time(f(n)) if
there is a Turing machine M and a constant c such that (1) M decides L, and (2) M runs in
time c · f ; i.e., for all x such that |x| ≥ 1, M(x) halts in at most c · f(|x|) steps.

• space(f(n)) is the set of languages that can be decided using space O(f(n)).

Note that we ignore constant factors in the above definitions. This is convenient, and lets us
ignore low-level details about the model of computation.1

Given some language L, then, we may be interested in determining the “smallest” f for which
L ∈ time(f(n)). Or, perhaps we want to show that space(f(n)) is strictly larger than space(f ′(n))
for some functions f, f ′; that is, that there is some language in the former that is not in the latter.
Alternately, we may show that one class contains another. As an example, we start with the
following easy result:

Lemma 1 For any f(n) we have time(f(n)) ⊆ space(f(n)).

Proof This follows from the observation that a machine cannot write on more than a constant
number of cells per move.

1This decision is also motivated by “speedup theorems” which state that if a language can be decided in time
(resp., space) f(n) then it can be decided in time (resp., space) f(n)/c for any constant c. (This assumes that f(n)
is a “reasonable” function, but the details need not concern us here.)
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1.1 The Class P

We now introduce one of the most important classes, which we equate (roughly) with problems that
can be solved efficiently. This is the class P, which stands for polynomial time:

P def
=
⋃
c≥1

time(nc).

That is, a language L is in P if there exists a Turing machine ML and a polynomial p such that
ML(x) runs in time p(|x|), and ML decides L.

Does P really capture efficient computation? There are debates both ways:

• For many problems nowadays that operate on extremely large inputs (think of Google’s search
algorithms), only linear-time are really desirable. (In fact, one might even want sublinear-time
algorithms, which are only possible by relaxing the notion of correctness.) This is related to
the (less extreme) complaint that an n100 algorithm runs in polynomial time but it is not
really “efficient” in any sense.

The usual response here is that n100-time algorithms rarely occur. Moreover, when algorithms
with high running times (e.g., n8) do get designed, they tend to be quickly improved to be
more efficient.

• From the other side, one might object that P does not capture all efficiently solvable problems.
In particular, a randomized polynomial-time algorithm (where the output is correct with high
probability) seems to also offer an efficient way of solving a problem. Most people today would
agree with this objection, and would classify problems solvable by randomized polynomial-
time algorithms as “efficiently solvable”. Nevertheless, it may turn out that such problems
all lie in P anyway; this is currently an unresolved conjecture. (We will discuss the power of
randomization, and the possibility of derandomization, later in the semester.)

As mentioned previously, quantum polynomial-time algorithms may also be considered “effi-
cient”. It is fair to say that until general-purpose quantum computers are implemented, this
is still debatable.

Another important feature of P is that it is closed under composition. That is, if an algorithm A
(that otherwise runs in polynomial time) makes polynomially many calls to an algorithm B, and if
B runs in polynomial time, then A runs in polynomial time.

We note here that through the rest of these notes we may use the terms “language” and
“problem” interchangeably. As we discussed in the previous lectures, all problems can be encoded
as a language, e.g., the problem “Given a graph G = (V,E) is it possible to construct a Hamiltonian
path?” concerns graphs, nevertheless it can be expressed as a decision problem for the appropriate
language.

1.2 The Class NP

The languages that belong to class P can be solved efficiently. On the contrary, for a lot of
interesting problems, we do not know any efficient way to determine whether they admit a solution.
Some of these problems though have a distinctive feature that is called polynomial verifiability. For
example, going back to the Hamiltonian path problem, even though we do not know of any efficient
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algorithm to determine whether a given graph admits a Hamiltonian path, if someone knew of a
Hamiltonian path for the given graph, then it would be easy to persuade us of its existence by
simply providing the path, also called a witness.

The above class of problems are those whose solutions can be verified efficiently. This is the
class NP. (Note: NP does not stand for “non-polynomial time”. Rather, it stands for “non-
deterministic polynomial-time” for reasons that will become clear later.) Formally,

Definition 2 L ∈ NP if there exists a Turing machine ML and a polynomial p such that (1) ML(x,w)
runs in time2 p(|x|), and (2) x ∈ L iff there exists a w such that ML(x,w) = 1.

With w we denote the witness (or, sometimes, a proof ) that is used to persuade us that x ∈ L.
Notice here that the TM of the above definition requires a witness w as an input. Compare this to
the definition of P where the TM decides without any witness: “a language L ∈ P if there exists a
Turing machine ML and a polynomial p such that (1) ML(x) runs in time p(|x|), and (2) x ∈ L iff
ML(x) = 1”.

Stated informally, a language L is in P if membership in L can be decided efficiently. A language
L is in NP if membership in L can be verified efficiently (given a correct proof). Another example
is given by the following language:

IndSet =

{
(G, k) :

G is a graph that has
an independent set of size k

}
.

We do not know an efficient algorithm for determining the size of the largest independent set in an
arbitrary graph; hence we do not have any efficient algorithm deciding IndSet. However, if we know
(e.g., through brute force, or because we constructed G with this property) that an independent
set of size k exists in some graph G, it is easy to prove that (G, k) ∈ IndSet by simply listing the
nodes in the independent set: verification just involves checking that every pair of nodes in the
given set is not connected by an edge in G, which is easy to do in polynomial time. Note further
than if G does not have an independent set of size k then there is no proof that could convince us
otherwise (assuming we are using the stated verification algorithm).

It is also useful to keep in mind an analogy with mathematical statements and proofs (though
the correspondence is not rigorously accurate). In this view, P would correspond to the set of
mathematical statements (e.g., “1+1=2”) whose truth can be easily determined. NP, on the other
hand, would correspond to the set of (true) mathematical statements that have “short” proofs
(whether or not such proofs are easy to find).

We have the following simple result, which is the best known as far as relating NP to the time
complexity classes we have introduced thus far:

Theorem 2 P ⊆ NP ⊆
⋃

c≥1 time(2n
c
).

Proof The containment P ⊆ NP is trivial. As for the second containment, say L ∈ NP. Then
there exists a Turing machine ML and a polynomial p such that (1) ML(x,w) runs in time p(|x|),
and (2) x ∈ L iff there exists a w such that ML(x,w) = 1. Since ML(x,w) runs in time p(|x|), it
can read at most the first p(|x|) bits of w and so we may assume that w in condition (2) has length
at most p(|x|). The following is then a deterministic algorithm for deciding L:

2It is essential that the running time of ML be measured in terms of the length of x alone. An alternate approach
is to require the length of w to be at most p(|x|) in condition (2).
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On input x, run ML(x,w) for all strings w ∈ {0, 1}≤p(|x|). If any of these results in
ML(x,w) = 1 then output 1; else output 0.

The algorithm clearly decides L. Its running time on input x is O
(
p(|x|) · 2p(|x|)

)
, and therefore

L ∈ time
(
2n

c)
for some constant c.

The “classical” definition of NP is in terms of non-deterministic Turing machines. Briefly, the
model here is the same as that of the Turing machines we defined earlier, except that now there are
two transition functions δ0, δ1, and at each step we imagine that the machine makes an arbitrary
(“non-deterministic”) choice between using δ0 or δ1. (Thus, after n steps the machine can be in up
to 2n possible configurations.) Machine M is said to output 1 on input x if there exists at least one
sequence of choices that would lead to output 1 on that input. (We continue to write M(x) = 1 in
this case, though we stress again that M(x) = 1 when M is a non-deterministic machine just means
that M(x) outputs 1 for some set of non-deterministic choices.) Non-deterministic TM M decides
L if x ∈ L⇔M(x) = 1. A non-deterministic machine M runs in time T (n) if for every input x and
every sequence of choices it makes, it halts in time at most T (|x|). The class ntime(f(n)) is then
defined in the natural way: L ∈ ntime(f(n)) if there is a non-deterministic Turing machine ML

such that ML(x) runs in time O(f(|x|)), and ML decides L. Non-deterministic space complexity
is defined similarly: non-deterministic machine M uses space T (n) if for every input x and every
sequence of choices it makes, it halts after writing on at most T (|x|) cells of its work tapes. The
class nspace(f(n)) is then the set of languages L for which there exists a non-deterministic Turing
machine ML such that ML(x) uses space O(f(|x|)), and ML decides L.

The above leads to an equivalent definition of NP paralleling the definition of P:

Claim 3 NP =
⋃

c≥1 ntime(nc).

The major open question of complexity theory is whether P ?
= NP; in fact, this is one of

the outstanding questions in mathematics today. The Clay Mathematics Institute is offering a 1
million US dollars reward to anyone who has a formal proof that P = NP or that P 6= NP. The
general belief is that P 6= NP, since it seems quite “obvious” that non-determinism is stronger
than determinism (i.e., verifying should be easier than solving, in general), and there would be
many surprising consequences if P were equal to NP. But we have had no real progress toward
proving this belief.

Conjecture 4 P 6= NP.

A (possibly feasible) open question is to prove that non-determinism is even somewhat stronger
than determinism. It is known that ntime(n) is strictly stronger than time(n) (see [3, 4, 5] and
references therein), but we do not know, e.g., whether time(n3) ⊆ ntime(n2).

1.3 Karp Reductions

What does it mean for one language L′ to be harder3 to decide than another language L? There
are many possible answers to this question, but one way to start is by capturing the intuition that
if L′ is harder than L, then an algorithm for deciding L′ should be useful for deciding L. We can

3Technically speaking, I mean “at least as hard as”.
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formalize this idea using the concept of a reduction. Various types of reductions can be defined; we
start with one of the most central:

Definition 3 A language L is Karp reducible (or many-to-one reducible) to a language L′ if there
exists a polynomial-time computable function f such that x ∈ L iff f(x) ∈ L′. We express this by
writing L ≤p L

′, where the subscript p refers to the polynomial-time computability of f .

The existence of a Karp reduction from L to L′ gives us exactly what we were looking for.
Say there is a polynomial-time Turing machine (i.e., algorithm) M ′ deciding L′. Then we get a

polynomial-time algorithm M deciding L by setting M(x)
def
= M ′(f(x)). (Verify that M does,

indeed, run in polynomial time.) This explains the choice of notation L ≤p L
′.

Let’s consider a concrete example by showing that 3SAT ≤p CLIQUE. Recall, 3SAT is the set
of satisfiable Boolean formulas in conjunctive normal form. For example, (x1∨x2∨x3)∧(x̄1∨x3∨x4).
(One possible solution is (x1 = 1, x2 = 0, x3 = 1, x4 = 0).) The language CLIQUE = {(G, k) |
G has a clique of size k}. In order to show that 3SAT is Karp reducible to CLIQUE we need to
construct a polynomial-time computable function f that takes a Boolean, CNF formula φ as input,
and outputs the description of a pair (G, k) with the property that (G, k) ∈ CLIQUE ⇔ φ ∈ 3SAT .
Suppose φ has k clauses. We construct a graph with 3k nodes, and label them each with the variables
of φ. In other words, there is a 1-1 mapping between literals in the CNF and nodes in the graph.
Then, we draw edges between every pair of nodes, except a) we do not draw an edge between two
nodes if their corresponding literals appear in the same conjunction, and b) we do not draw an
edge between two nodes if their corresponding literals are the negation of one another.

This example appears in Sipser’s book [1]:

Figure 1: An example of the function f mapping φ to (G, k).

Suppose that some φ ∈ 3SAT , which means that it has some satisfying assignment. We claim
that f(φ) = (G, k) ∈ CLIQUE. To see this, choose one literal in each clause that is assigned
the value of 1 in the satisfying solution (note that there is at least 1 such value in each clause).
We claim that the corresponding nodes constitute a clique in (G, k). This holds because each of
the k chosen values appear in different clauses and do not contradict one another. To show that
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(G, k) ∈ CLIQUE implies that φ ∈ 3SAT , consider any clique of size k, and assign the value 1
to the variables corresponding to the nodes in the clique. Because there are edges between all of
these nodes, the variables must appear in different clauses, and must not contradict one another.

1.4 NP-Completeness

1.4.1 Defining NP-Completeness

A problem is NP-hard if it is “at least as hard to solve” as any problem in NP. It is NP-complete
if it is NP-hard and also in NP. Formally:

Definition 4 Language L′ is NP-hard if for every L ∈ NP it holds that L ≤p L
′. Language L′ is

NP-complete if L′ ∈ NP and L′ is NP-hard.

Note that if L is NP-hard and L ≤p L
′, then L′ is NP-hard as well. This follows from the transitive

property of reductions. In fact one can prove the following theorems:

Theorem 5 If language L is NP-hard and L ∈ P, then P = NP.

Theorem 6 If language L is NP-complete, then L ∈ P if and only if P = NP.

An NP-complete is as hard as any other problem in class NP, or to put it differently any NP
problem can be transformed into any of the NP-complete problems. The last theorem explains

the term “complete”, i.e., to resolve the question P ?
= NP it is enough to study whether any

NP-complete can be decided in polynomial time.
We highlight here a very important detail. In the previous lectures we talked about mapping

reductions and we argued that if we know that L is undecidable and we show that L ≤m L′ for
a new language L′, then L′ is undecidable as well. In this subsection the language of interest is
the L′ in the relation L ≤p L

′ and language L is any member of NP, as opposed to a fixed and
undecidable language. This shows the power and the versatility of reductions.

1.4.2 Existence of NP-Complete Problems

A priori, it is not clear that there should be any NP-complete problems. One of the surprising re-
sults from the early 1970s is that NP-complete problems exist. Soon after, it was shown that many
important problems are, in fact, NP-complete. Somewhat amazingly, we now know thousands of
NP-complete problems arising from various disciplines.

Here is a trivial NP-complete language:

L =
{

(M,x, 1t) : ∃w ∈ {0, 1}t s.t. M(x,w) halts within t steps with output 1.
}
.

The above language is in NP because given an input it is simple to verify whether M accepts
the input by simulating M . It is NP-complete because the verifier for any instance of a problem
in NP can be encoded as polynomial TM machine that verifies if a given input halts within t steps
with output 1.

We refer the reader to Section 2.3 [2] for the proof that 3SAT is NP-complete. To show
that 3SAT is NP-complete, we start by showing that SAT is NP- complete, which is the main
challenge. We will then reduce from SAT to 3SAT , which is straightforward.
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