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Abstract

We present a generic tracker which can handle a variety
of different objects. For this purpose, groups of low-level
features like interest points, edges, homogeneous and tex-
tured regions, are combined on a flexible and opportunistic
basis. They sufficiently characterize an object and allow
robust tracking as they are complementary sources of infor-
mation which describe both the shape and the appearance
of an object. These low-level features are integrated into
a particle filter framework as this has proven very success-
ful for non-linear and non-Gaussian estimation problems.
In this paper we concentrate on rigid objects under affine
transformations. Results on real-world scenes demonstrate
the performance of the proposed tracker.

1 Introduction

Object tracking in monocular image sequences still suffers
from a lack of robustness due to temporary occlusions, ob-
jects crossing, changing lighting conditions, specularities
and out-of-plane rotations. In general, trackers can be sub-
divided into two categories. First, there are generic trackers
which use only a minimum amount of a priori information
as e.g. the mean-shift approach by Comaniciu et al. [3] and
the color-based particle filter developed by Perez et al. [9].
Secondly, there are trackers that use a very specific model of
the object, like e.g. the spline representation of the contour
by Isard et al. [7, 8]. The goal of this paper is to develop a
tracker that is generic in terms of handling different objects,
but includes many different features that together build a
good representation of the object. By using local and com-
plementary information the robustness against appearance
changes and distractors can be greatly increased. As an
initialization, the user delineates the object to be tracked.
Within this region of interest (ROI) the features are ex-
tracted. We focus on low-level features like interest points,
edges and color distributions of regions and combine them
in a flexible way. Each feature alone has certain drawbacks,
for example color distributions are not very robust against
occlusion and lighting changes while interest points are not
discriminative enough and unstable under unexpected trans-

formations. But these features can be seen to complement
each other. Moreover, they can be extracted automatically.
We integrate these features into the observation process of
a particle filter [7] which has been proven very successful
for non-linear and non-Gaussian estimation problems and
handles clutter and temporary occlusions well.

The integration of different cues into tracking frame-
works has already been discussed in the literature [8, 10,
14, 15]. The authors in [8, 15] integrate multiple features
into a particle filter. Isard et al. [8] combine color and con-
tour information using importance sampling. Wu et al. [15]
present an approach to combine visual cues by including
them into the state, but then decouple the prediction and ob-
servation of the different cues. Triesch et al. [14] propose
an adaptive scheme that they call “Democratic Integration”,
for incorporating visual cues. The cues agree on a result
which serves as the basis for the adaptation of the individ-
ual cues. Finally, Rasmussen et al. [10] define a target as a
conjunction of parts, and introduce a constrained joint like-
lihood filter as a data association method to generate the
measurement for a Kalman filter.

To the best of our knowledge, the proposed tracker has
a unique combination of properties. It automatically com-
bines multiple, low-level cues as equivalent partners in the
tracking process. As the tracking performance does not de-
pend on a single cue, the system can behave opportunisti-
cally. It has a good chance to find some features that allow
to track an object robustly. The tracker is simultaneously
tolerant to a wide gamut of object and camera motions and
allows to cope with affine deformations. Also, a particle
filter is used, with the resulting broad scope of allowed mo-
tions and noise models. The features all contribute to a joint
likelihood of the object state given the observations.

2 Feature Extraction

From the whole wealth of possible features we restrict our-
selves to local, low-level features. They are extracted from
the image in a fast bottom-up way without any a priori
knowledge besides the object outline / region of interest that
the user (or an object detector) indicates in the first frame.
The locality of the features helps to overcome problems of
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partial occlusion and image clutter. A variety of different
feature types (points, edges, regions) are considered which
are described in the sequel. An example output of the fea-
ture extraction is shown in figure 1.

Figure 1. Features
extracted in the
white framed region
of interest. White
dots indicate the
interest points, the
edges are shown
in black and the
regions in gray.

Interest Points Robust tracking requires first and fore-
most that the interest points are repeatable. In their com-
parison Schmid et al. [11] concluded that the Harris detec-
tor has the highest repeatability rate. The “good features
to track” of Shi and Tomasi [12] are, similarly to the Har-
ris detector, based on the second moment matrix. Another
important criterion is speed. Here, the SUSAN1 detector
by Smith et al. [13] is especially appealing. It is on av-
erage ten times faster than the Harris detector. Other ad-
vantages of the SUSAN detector are its better localization
accuracy and the fact that fewer parameters are involved.
However, our experiments on real data have shown that the
SUSAN detector is less repeatable, but this can be remedied
by renouncing on the contiguity test that is used to suppress
false positives. Without this test, the SUSAN detector is
also very repeatable, the disadvantage being that quite a lot
of false positives are detected, particularly at strong edges.
In order to get the best of both worlds, we have combined
the two detectors. SUSAN (without contiguity test) is used
to quickly extract candidate points. To suppress false pos-
itives, the Harris response is computed only at the candi-
date points which strongly reduces computational complex-
ity. Finally, a non-maximum suppression is applied to find
the local maxima; these are the interest points. As we deal
with color images, this additional information should not
be neglected. The use of color information (RGB) in the
context of the Harris detector has been reported to improve
the repeatability of the detector [4]. The SUSAN detec-
tor can also be straight-forwardly generalized to color im-
ages. Again, there is an improvement in comparison with
the gray-level version with respect to the repeatability.

Straight and Curved Edges For edge extraction we use
the well-known Canny edge detector enhanced for color im-
ages by replacing the norm of the intensity gradient from
the single-band case with the maximum of the norm of the
gradients in the R-, G-, and B-channel. This way some

1Smallest Univalue Segment Assimilating Nucleus

more edges than in the single-band case are detected. Af-
ter edge detection and edge linking, the edges are broken at
points of high curvature and straight line segments are fit-
ted to those segments; these are the straight edges. Then
remaining short broken edges are linked together and ap-
proximated by B-splines; these are the curved edges.

Textured Regions A simple and efficient way to extract
textured regions is to detect interest points that have an as-
sociated scale which fixes the size of a square region around
the point. We use the approach introduced by Baumberg [1],
extended to make use of color information. First, the color
Harris detector [4] is run at multiple integration scales us-
ing a geometric progression of fixed scale settings. Then
the features are ordered based on the scale-normalized Har-
ris response and stored in a list. Finally, starting from the
region with the strongest response, every region in the list
is checked, whether it overlaps with any of the previous re-
gions and if yes, it is abandoned. This way the regions are
spread over the object and their number can be kept at a
computationally tractable level. The photometrical infor-
mation content of the textured regions is represented by a
weighted color histogram, as in [3, 9].

Homogeneous Regions The idea to extract the homoge-
neous regions is very similar to the approach used for the
textured regions. First, at different scales the average of the
variances in the three color channels is computed over a lo-
cal window with a size given by the current scale. Then, the
features are ordered based on the scale-normalized variance
and stored in a list. Finally, starting from the region with the
lowest response, every region in the list is checked, whether
it overlaps with any of the previous regions and if yes, it is
abandoned. Again, a limited number of regions is created,
distributed over the object. The photometrical information
is given by the average color of the region. Again we work
in the HSV space to be more invariant against illumination
changes. The saturation and the brightness value of each
pixel of such a region are compared against two thresholds
0.1 and 0.2, respectively, to decide if the region is a “hue
region” or a “value region”. If more than 3/4 of the pixels
have a saturation and a brightness bigger than the thresh-
olds, the region is taken as a “hue region”. In the converse
case, the region is considered as a “value region”, and if
less than 3/4 of the pixels are of one kind, then the region is
abandoned.

3 Tracking

Particle filters [7] offer a probabilistic framework for
recursive dynamic state estimation. They are based
on a sampling approach, where the posterior density
function is approximated by a weighted particle set
{(x(n)

t , π
(n)
t )}N

n=1. Each particle x(n)
t represents one hy-

pothetical state of the object with a corresponding dis-
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crete sampling probability π
(n)
t . In our case, an ob-

ject configuration vector x(n)
t is denoted as x(n)

t =
{x(n), y(n), v

(n)
x , v

(n)
y , s

(n)
x , s

(n)
y , θ(n), h(n)}, where the first

four values specify the kinematic parameters, that is the po-
sition and the velocity of the modeled object. The remaining
values indicate the affine transformation parameters which
describe the scaling in x- and y-direction, orientation and
shearing. The dynamics are currently represented as a first
order model. Because the low-level features (x1

t , . . . ,x
M
t )

are rigidly connected to each other, the object state is com-
pletely described by mapping the features according to the
transformation parameters, under the assumption that they
are coplanar. The samples are weighted using the multi-
feature observation density described next. Assuming con-
ditional independence of the observations from the different
cues given xt [5, 10], the multi-feature observation density
p(zt|xt) is the product of the individual likelihoods of the
different features described below:

p(zt|xt) =
I∏

i=1

pI(zt|xi
t)

J∏
j=1

pE(zt|xj
t )

K∏
k=1

pT (zt|xk
t )

L∏
l=1

pH(zt|xl
t) (1)

where I is the number of interest points, J the number of
edges, K the number of textured regions, L the number of
homogeneous regions, and M = I +J +K +L is the total
number of features in the model.
Interest Point Observation Density First, centered at the
hypothesized interest point xi

t, a square-shaped search re-
gion is defined. Then, the response of the combined detec-
tor of section 2 is computed at each pixel within the search
region. Writing dmin for the distance from the center of the
search region to the closest above-threshold interest point,
the observation likelihood pI(zt|xi

t) for the interest point

xi
t is given by pI(zt|xi

t) ∝ exp
(
− (di

min)2

2σ2
I

)
. In order to

prevent an unreliable measurement (e.g. due to occlusion
or noise) from having to much influence on the joint like-
lihood we introduce a residual probability for it. The same
approach is also used for the other features types dscribed
below. Note that the high number of observation density
evaluations per frame requires a fast interest point detector.
This backs up our choice from section 2.
Straight / Curved Edge Observation Density First, at R
regularly space points along the hypothesized edge xj

t , line
segments normal to the edge are cast into the image. Next,
a one-dimensional edge detector is applied to the image in-
tensity along each of these R measurement lines. Writ-
ing νmin(r) for the distance on the rth measurement line
from the normal base point to the nearest above-threshold
edge, the observation likelihood for the edge xj

t becomes

pE(zt|xj
t ) ∝

∏R
r=1 exp

(
− (νj

min
(r))2

2σ2
E

)
.

Textured Region Observation Density First, the HV
color histogram for the hypothesized region p(xk

t ) is com-
puted, as described in section 2. In order to compare the his-
togram of the hypothesized region (i.e. the region according
to the affinity of the sample) p(xk

t ) with the reference his-
togram q from the initial model, a similarity measure based
on the Bhattacharrya coefficient ρ[p(xk

t ), q] [3] is used to
define the observation likelihood for the textured region xk

t

as follows: pT (zt|xk
t ) ∝ exp

(
− (dk

B)2

2σ2
T

)
.

Homogeneous Region Observation Density The com-
parison of a hypothesized homogeneous region xl

t with a
reference homogeneous region is done by computing the
difference of their average colors. Attention has to be
payed to the case of “hue” regions because the hue chan-
nel is an angular representation. In this case, the dis-
tance between the two average colors H1 and H2 is given

by dhue = sin
(

(H1−H2)
2

)
. Then, the observation like-

lihood for the homogeneous region xl
t can be written as:

pH(zt|xk
t ) ∝ exp

(
− (dk

hue/value)2

2σ2
H

)
.

4 Results

This section shows two sequences which demand the use
of multiple features in order to robustly and precisely track
the objects in question. No specific assumptions about the
object and camera motion are made. All parameters, except
the ones for the dynamical model and the number of sam-
ples, have been fixed to the same value for all experiments.

Figure 2 shows the tracking of a book that undergoes
large scale changes and out-of-plane rotations as well as
in-plane rotation and translation. The contour of the book
alone, as used in [7], did not suffice for robust tracking
under the rather abrupt affine transformations and in the
presence of similarly shaped distractors. Also, if the track-
ing is solely based on color cues, as in [9], it fails due to
the strong lighting changes like the specular reflections in
frame 270. However, the use of multiple, complementary
features (see fig. 1) allows to robustly and precisely track
the book throughout the sequence. The next example se-
quence, shown in figure 3, shows the capability of the pro-
posed tracker to handle very similar objects. The silver-gray
car crosses a similar vehicle. The first three frames show the
failure of a tracker based on a colour histogram alone [9].
After the crossing in frame 34 the tracker switches from the
car in front to the similar car on the second lane, because
during several frames the second car matches the color his-
togram better. In contrast, as can be seen from the fourth
and fifth frames, the multi-cue tracker is able to distinguish
between the two cars due to its more discriminative object
model that makes also use of shape information. Although
the system, in general, is able to robustly track an object
using the complete object model, there are situations where
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frame 1 frame 200 frame 270 frame 410

Figure 2. The book sequence shows the robustness of the proposed tracker against large affine shape
changes and specular reflections. The thick contour indicates the object’s mean state.

frame 1 frame 34 frame 54 frame 34 frame 54

Figure 3. 1,2,3: Simple color histogram tracker; 4,5: New multi-feature tracker. The thick contour is
the object’s mean state and the thin ones are the samples approximating the posterior distribution.

some of the automatically extracted features act as distrac-
tors rather than to support the system. This happens, for
instance, with texture regions over the windows of cars. As
the background changes all the time, they do not offer reli-
able information. Therefore, by making use of some prior
knowledge the user can select the most promising features
from the automatically extracted ones in order to obtain an
even better object model. Furthermore, by throwing away
the distracting features the speed performance of the tracker
is improved. Work is underway to have the tracker decide
for itself which features to give preference.

5 Conclusions and Future Work
The proposed tracking method adds the robustness of op-
portunistic low-level features to that of particle filtering.
The system extracts the different cues automatically and
combines them in a flexible manner to build a character-
istic representation of an object. The multi-cue tracker is
applicable in many areas. Moreover, it can handle affine
transformations. Our research interests now focus on adap-
tive models which also exploit spatial configurations of fea-
tures. The photometrical description of the regions could
be adapted to also deal with heavily changing lighting con-
ditions. Robustness against partial occlusions can be im-
proved by devising a system that is able to detect and tem-
porarily switch off occluded features.

Support by SNF NCCR IM2 is gratefully acknowledged.
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