
Constraints-Based Complex Behavior in Rich
Environments

Jan M. Allbeck1 and Hadas Kress-Gazit2

1 Volgenau School of Information, Technology and Engineering,
George Mason University, Fairfax, VA 22030

2 Sibley School of Mechanical and Aerospace Engineering,
Cornell University, Ithaca, NY 14853

Abstract. In order to create a system capable of planning complex,
constraints-based behaviors for an agent operating in a rich environ-
ment, two complementary frameworks were integrated. Linear Temporal
Logic mission planning generates controllers that are guaranteed to sat-
isfy complex requirements that describe reactive and possibly infinite be-
haviors. However, enumerating all the relevant information as a finite set
of Boolean propositions becomes intractable in complex environments.
The PAR (Parameterized Action Representation) framework provides an
abstraction layer where information about actions and the state of the
world is maintained; however, its planning capabilities are limited. The
integration described in this paper combines the strengths of these two
frameworks and allows for the creation of complex virtual agent behav-
ior that is appropriate to environmental context and adheres to specified
constraints.

Keywords: Complex Behaviors, Representations, Agent Architectures

1 Introduction

Attempting to instruct artificial entities, be they robots or agents in a virtual
environment, requires representing information about the actions, environment,
and agents and being able to efficiently process this data to interpret and execute
the instructions. In this paper we describe the integration of two subsystems that
form a framework for instructing agents to perform complex behaviors in complex
environments while adhering to dictated constraints. Instructions may indicate
what behaviors an agent should perform, but they can also provide constraints
on how they should be performed. A constraint might completely prohibit an
action (e.g. Don’t run). Other constraints may impact the timing or priority of
actions (e.g. Do your homework before playing video games). There could also be
spatial constraints (e.g. Stay out of Room 12). Finally, constraints may include
a variety of factors that form an overall context (e.g. Do not go into a classroom
when a class is in session).

Instructed behaviors can also come in a variety of forms. There may be
simple imperatives containing a single verbs (e.g. Pickup the pencil) or complex

2 Constraints-Based Complex Behavior in Rich Environments

multi-step behaviors involving a sequence of actions or actions that should be
performed in parallel (e.g. While programming, drink coffee). Other directives
may require the agents to plan (e.g. Search the building for weapons). Finally
instructions may include standing orders that dictate how the agents should
handle scenarios they may encounter (e.g. If you see a weapon, pick it up and
move it to Room 13). All of these behaviors can take place in a rich environment
with many objects of many different types. Furthermore, these environments
are dynamic. Other characters are operating within the environment, moving
objects and changing their states and properties. Some instructions such as Do
not go into a classroom when a class is in session, certainly address this dynamic
nature.

In this paper, we present a framework that provides a strong representational
and operational foundation for instructing virtual agents. The first component,
the Parameterized Action Representation (PAR), provides a rich representation,
a system for grounding the terms, and low level controllers for agents in a vir-
tual environment. The second component, Linear Temporal Logic Mission and
Motion Planning, is a framework for creating controllers such that the agent is
guaranteed to satisfy high level task specifications, if they are feasible. The in-
tegration of these components provides constraints based complex planning and
behaviors in rich environments. Additionally, we introduce the notion of meta-
PARs. MetaPARs extend traditional, atomic PARs to provide more information
about the desired behavior and constraints on it. MetaPARs aid the connection
between PAR and the logic framework and will also provide a target represen-
tation for natural language parsers, semantic taggers, or pragmatic processors.

Fig. 1. (a) Virtual World with room numbers shown. (b) Murray, the virtual robot.

To help highlight the features of our framework and ground our discussions,
we will present two example scenarios. One of the scenarios being examined
involves using virtual robots in a building clearing exercise (See Figure 1). The
robot searches the environment, obeying constraints, and reacting as instructed

Constraints-Based Complex Behavior in Rich Environments 3

to the objects he discovers. As an example, Murray, the virtual robot, may be
instructed: “Search rooms 1, 2, 3 and 4. If you see a dead body, abandon the
search and go to room 11. If you see a bomb, pick it up and take it to room 13
and then resume the search.”

To further highlight advantages of the integration, we also present examples
from another scenario. This scenario involves replacing old computers with new
ones. It is set in a university environment and contains instructions such as,
”Replace all of the computers. Do not enter a classroom during a class. Make
sure that classrooms always have at least one computer. Replace all classroom
computers before office computers. Do not remove a computer that someone is
using.” Throughout the rest of this paper we will reference these two scenarios
to frame examples and illustrate the advantages of our integration.

2 Parametrized Action Representation

At a finer level of detail, effective instructions may include, implicitly or ex-
plicitly, several additional elements. There are the core semantics that indicate
the action or actions to be performed. There may even be an action structure
composed of several sub-actions. There are also the participants of the action, in-
cluding the agent being instructed to perform the action and any objects involved
in the action (e.g. Pickup the cup). Instructions may also contain information
related to the context, including path information, manner, or purpose. Initia-
tion conditions are often implicit. Is the agent capable of performing the action?
What state must the world and agent be in before the action is performed?
Finally, effective instructions include either implicitly or explicitly termination
conditions that indicate when an action has been completely successfully or when
it cannot be. The Parameterized Action Representation (PAR) includes all of
these elements and more [4].

In the PAR system, goal states are not specified and then planned for. In-
stead, agents are instructed to perform actions. These instructions can be sent
from a high level controller [1] or from a human user [3]. The only planning
included in the current PAR system is simple backward chaining done through
explicitly pairing the preconditions of an action with other actions that can ful-
fill the conditions if required. The most common pairing is collocating the agent
with an object participant of the action through locomotion. For example, if
instructed to pickup an object, an agent will automatically move to the object.
The location of the object is stored as a parameter of the object (initialized au-
tomatically from the environment and updated through action post-assertions).
Animating the locomotion behavior and navigation is a function of the Simulator
(See Figure 2) [12].

PAR is a rich representation that has been linked to motion generators
in simulation frameworks [1, 3, 4]. PAR actually includes a representation of
both actions and objects. Each are stored in hierarchies in a MySQL database
called the Actionary (See Figure 2). The Actionary holds information about
generic/uninstantiated actions and objects (e.g. what properties change as a

4 Constraints-Based Complex Behavior in Rich Environments

consequence of an action or what properties are true of all chairs) as well as
specific information about instantiated actions and objects (e.g. Agent4 Pickup
Cup0 or Chair6 is RED and located in Classroom7). Instantiated actions and
objects are leaves in the hierarchies inheriting (or if desired overwriting) pa-
rameters from their uninstantiated parents. As actions execute, they change the
state and properties of objects and agents in the simulated environment. These
changes are also automatically registered in the instantiated objects in the Ac-
tionary, which then serves as a representational World Model.

Furthermore, the hierarchies provide a convenient classification system. An
agent might be instructed to explore the environment and pickup all weapons
and move them to a certain room. When the agent perceives an object in the
environment, the agent’s Agent Process (i.e. the PAR control process for the
agent (See Figure 2)) checks to see if the perceived object is a descendant of
the Weapon node in the object hierarchy and if so reacts accordingly. Hence
instructions can use broader more general terms without explicitly enumerating
predicates.

Instantiated objects also contain a lot of useful parameters including proper-
ties (e.g. color and age), postures (e.g. open or closed), states (e.g. on or off and
free or in-use), and location among many others. Here location refers to another
PAR object and not a three-dimensional coordinate, which is another parame-
ter, namely position. For example, Computer8 is located in Office2 or Gun9 is
located in the contents of Agent4. Contents is another PAR object parameter.
It provides a list of all of the objects in a location. Many of these object parame-
ters are updated automatically as post-assertions of actions. For example, Pickup
Obj0 will automatically set the location of Obj0 as the agent executing the action
and add Obj0 to that agent’s contents. In other words, successful execution of a
Pickup action implies that the agent is now holding the object. Furthermore, the
position of the object will automatically change with the position of the agent
until an action, such as Drop is performed to release the relationship. Because all
of these parameters are maintained, they can easily be referenced in conditions
for modifying behaviors.

While PAR is a rich representation that includes the semantics of actions and
objects and provides a level of abstraction, it is not a logic. Plan constraints such
as Do not enter Room7 and Do not remove a computer that is in use, cannot be
represented by PARs. Similarly there is no convenient way to represent general
sets or quantifiers. These limitations have been overcome through integration
with a logic framework.

3 Linear Temporal Logic Mission and Motion Planning

The Linear Temporal Logic mission and motion planning framework [9, 10] cre-
ates continuous control inputs for a robot such that its (possibly infinite) be-
havior satisfies a high-level complex specification that includes temporal oper-
ators and constraints. The idea at the heart of this approach is that a con-
tinuous control problem (i.e. finding velocity commands for the robot’s move-

Constraints-Based Complex Behavior in Rich Environments 5

ment/continuous actions) is abstracted into a discrete domain where boolean
propositions correspond to basic robot states. For example, a proposition Room1

will be true whenever the physical location of the robot or agent is contained in
the area defined as Room 1. Then, the specification is written as temporal logic
formulas and synthesis techniques generate a correct-by-construction automaton
that when executed activates atomic controllers that drive the robot according
to the specifications. In the following we describe the different aspects of this
framework.

3.1 Specification

Formulas written in a fragment of Linear Temporal Logic (LTL) are used to
specify the desired agent behavior and any information about the environment
in which it is operating. These formulas have specific structure [10] and are
defined over a set of boolean propositions which are task and agent specific;
they describe the regions in the environment, events that may be detected (such
as a bomb is seen or a class is in session) and actions the agent can perform
(such as pick up, drop or replace computer).

In addition to the propositions, the formulas include boolean operators (¬
‘not’, ∨ ‘or’, ∧ ‘and’, ⇒ ‘imply’, etc.) and temporal operators (� ‘always’, ♦
‘eventually’,© ‘next’). Loosely speaking, the truth of an LTL formula is defined
over infinite executions of a finite state machine; �p is true if p is true in every
step of every execution, ♦p is true if for every execution there is a step in which
p becomes true and ©p is true if on every execution, p is true in the next step.
The formula �♦p is true if p becomes true infinitely often. We refer the reader
to [6] for a formal description of LTL.

The LTL formulas describe several aspects of the agent’s behavior: its motion
constraints, for example �(Room1 ⇒ (©Room1 ∨©Room5)) states that when
the agent is in room 1, it can either stay there or move to an adjacent room in
the next step. This part of the LTL formula is generated automatically from a
given map of the environment. Other aspects are the desired reaction to events,
for example �(©bomb ⇒ ©PickUp) encodes that the agent should pick up a
bomb if it encounters one, and desired motion, for example �♦(Room1∨Room2)
requires the agent to go to either room 1 or room 2.

3.2 Automaton synthesis and execution

Once the specification is written in the logic, the formula is synthesized into an
automaton such that every execution of the automaton is guaranteed to satisfy
the specification, if it is feasible. If the specification cannot be guaranteed, no
automaton will be generated and the user gets an error message.

The (discrete) synthesized automaton is then transformed into a hybrid con-
troller that provides continuous control commands to the agent. This controller,
based on the state of the agent and its environment, governs the execution of
atomic continuous controllers whose composition induces the intended robot be-
havior.

6 Constraints-Based Complex Behavior in Rich Environments

4 Integration of PAR and the LTL framework

The strength of PARs lay in providing a rich description of agents, the ac-
tions they can perform and the world around them. However, while sequential
planning can be performed by backward chaining, constraint-based, temporal,
complex behaviors cannot be planned by the system. Furthermore, there is no
built in mechanism for remembering events that occurred in the past that influ-
ence future behavior. Integration with the LTL planning framework provides a
solution to these issues.

On the other hand, the LTL planning framework naturally creates complex
behaviors that are guaranteed to satisfy different constraints and temporal re-
lations, but because it plans over a finite set of Boolean propositions, all pos-
sible information has to be enumerated, which makes the approach intractable
when the environment becomes too complex. Furthermore, knowledge of the
agent state (for example, it is holding a bomb) has to be captured using extra
propositions whose truth values need to be reasoned about. The PAR formalism
provides the LTL planning framework an abstraction layer where information
about possible actions and the state of the virtual agent is maintained by PAR
and only information needed for the planning is passed along. Together these
two subsystems complement each other and provide a foundation for specifying
and executing constraints-based complex behaviors in rich environments.

Fig. 2. Integrated System

Constraints-Based Complex Behavior in Rich Environments 7

Figure 2 provides an overview of the integrated system components and their
connections. Before a simulation begins, an External Controller is responsible
for defining a scenario and hence creating the environment, objects, and agents.
From this information, LTL propositions are created. The information is also
stored in the Actionary and a PAR Agent Process is created for each agent.

The External Controller also defines the behavior of the agents. The ultimate
aim is to instruct virtual agents through natural language, in which case this
external controller would include parsers, semantic taggers, and pragmatic pro-
cessors. Currently we are using GUI forms. PARs have previously been linked
to natural language processors [4] and the LTL framework receives input from
structured English [9]. In order to gain the planning and reasoning capabilities
of the LTL framework while maintaining the rich representation of the PAR
formalism, the next section introduces the notion of MetaPARs. These special
PARs include in addition to the standard PAR fields [4] special fields that pro-
vide information regarding desired behavior and constraints. Once these fields
are defined they are converted, together with the workspace description, into
LTL formulas that then get synthesized into an automaton that governs the
execution of atomic PARs.

During a simulation, perceptions are passed from the Simulator to the Agent
Processes. Transitions between states in the Automaton are based on these per-
ceptions as well as other information stored in the World Model (i.e. Actionary).
LTL propositions in the states then specify the atomic PAR actions that should
be performed. These actions are processed by the Agent Processes resulting in
updates to the World Model and control over the virtual agents displayed in the
Simulator.

5 MetaPARs

MetaPARs are an integrated representation of PARs and LTL expressions. The
added fields augment traditional PARs with information further detailing the
desired behaviors and constraints. A PAR is considered a MetaPAR when it
includes the following special fields:

– Primary Action - The main objective of the PAR. Includes behaviors such
as search (area for object), explore (area), find (object), replace (area, old
object, new object), goto (region), etc. These actions can be terminating or
infinite.

– Primary Action Parameters - Parameters for the primary action such as
description of the area to explore or the object to find.

– Memory i ON Condition - Condition for setting a memory proposition used
to indicate that an event of interest occurred. For example, seeing a body
needs to be remembered because it alters the future behavior of the agent.

– Memory i OFF Condition - Condition for reseting memory proposition i.
– Priority ij Condition - Condition for behavior that is in priority ij .
– Priority ij Reaction - Behavior for the agent if the condition is true. We

distinguish between two types of reactions; liveness, behaviors that have to
eventually occur, and safety, behaviors the agent must always satisfy.

8 Constraints-Based Complex Behavior in Rich Environments

– Priority ij Condition Type - Indicate the reaction is one of two types. For
If and only if (iff) the action defined in the reaction field should only occur
if the condition is true. For if the action has to occur when the condition is
true but can occur in other situations as well.

All the Condition and Reaction fields contain LTL formulas over the set of
atomic propositions (atomic PARs and memory propositions). These formulas
can contain, other than the Boolean operators, only the ‘next’ temporal operator
©.3

The priorities define which reaction takes precedence. Priority ij is higher
than kl for i < k and therefore reaction kl will be executed only if condition ij
is not active. Reactions with priorities ij and ik have the same priority and the
execution of one does not dependent on the status of the condition of the other.
When defining these metaPARs the user needs to make sure reactions with the
same priority do not contradict.

Each unique MetaPAR is automatically translated into a conjunction of LTL
formulas corresponding to the MetaPAR’s primary action, parameters, memory
and reactions. These formulas are defined over the set of propositions that cor-
respond to the environment of the agent, the objects in the environment, the
memory propositions and a termination proposition (done) for primary actions
that terminate. Table 1 describes LTL formulas that are generated from the
primary action and parameters of several different MetaPARs. These initial pa-
rameters were created after extended discussions and preliminary corpus analysis
from the robot building clearing domain. It is straight forward to extend this
table to different actions as the need arises.

Table 2 describes the mapping between the rest of the MetaPAR fields (mem-
ory propositions, reactions) and their corresponding LTL formulas. There, propo-
sitions of the form Mi correspond to events that need to be remembered, that
is, the proposition Mi becomes true when the ‘ON’ event is detected and false
when the ‘OFF’ event is encountered. Propositions of the form Ci are used to
represent conditions of required reactions. While not necessary, they simplify the
formulas capturing the reactions and priorities. Note that some formulas, such
as the ones defining the initial conditions of the propositions, are omitted here
to maintain clarity.

Going back to our building clearing example, the MetaPAR ExploreOnce
with parameters Location = {r1, r2, r3, r4} contains one memory proposition
(M1) for remembering that Dead was true at some point in the past and four
reactions. This MetaPAR translates to the following LTL formula where lines
4, 5 and 16 correspond to the primary action, 6 to the memory proposition and
7-15 to the reactions. Initial conditions of the propositions and the topology of
the environment are captured in lines 1-3. The conditions of the reactions are
represented using C1, C21, C22, C23. For example, C1 becomes true when a dead
person is encountered (line 7) and it is the condition for requiring the robot to
go to room 11 and stay there (lines 8,9).

3 For a formal description of the structure the reader is referred to [10].

Constraints-Based Complex Behavior in Rich Environments 9

MetaPAR
Primary
Action

Parameters Corresponding LTL Formula

∧l∈L¬srchl ∧ ¬done
{Didn’t search and not done}

Search until
finding

Location L =
{l1, l2, . . . },
Object obj

∧
l∈L �((l ∨ Srchl)⇔©Srchl)

{If you are in l or you searched there before,

then remember you already searched l }

∧�(©obj ⇒
∧

i(ri ⇔©ri))

{If you see the object, stay where you are}

∧�(©obj ⇔©done)

{If you see the object you are done}

∧�♦((
∧

l∈L Srchi) ∨ done
∨

C∈condition C)

{If has to be true that infinitely often you either

searched the locations, are done or a condition

is true}

∧l∈L¬srchl ∧ ¬done
{Didn’t search and not done}

Explore once Location L = {l1, l2, . . . }
∧

l∈L �((l ∨ Srchl)⇔©Srchl)

{If you are in l or you searched there before,

then remember you already searched l }

∧�((
∧

l∈L©Srchi)⇔©done)

{If you searched all locations, you are done}

∧�♦(done
∨

C∈condition C)

{If has to be true that infinitely often you either

are done or a condition is true}

Explore
infinitely

Location L = {l1, l2, . . . }
∧

l∈L �♦(l
∨

C∈condition C)

{Infinitely often go to l unless a condition is true}

Find Object obj
∧

i �♦(ri ∨ obj
∨

C∈condition C)

{Infinitely often go to all regions unless

you find the object or a condition is true}

¬done
{Not done}

Goto location formula L ∧�(©L ⇔©done)

{If you are in L you are done}

�♦(done
∨

C∈condition C)

{Infinitely often done unless a condition is true}

Table 1. Translation of MetaPAR primary actions into corresponding LTL formulas

10 Constraints-Based Complex Behavior in Rich Environments

MetaPAR Fields Corresponding LTL Formula
Memory i ON Condition
(once ON stays ON)

�((ON Condition ∨Mi)⇔©Mi)

Memory i ON Condition, OFF Condition
�(((ON Condition ∨ Mi) ∧
¬OFF Condition)⇔©Mi)

Priority ij Condition �(Condition⇔©Cij)

Priority ij Reaction (safety - iff) �((©Cij ∧ ¬
∨

k<i,∀l©Ckl)⇔ Reaction)

Priority ij Reaction (safety - if) �((©Cij ∧ ¬
∨

k<i,∀l©Ckl)⇒ Reaction)

Priority ij Reaction (liveness - iff) �♦((Cij ∧ ¬
∨

k<i,∀l Ckl)⇔ Reaction)

Priority ij Reaction (liveness - if) �♦((Cij ∧ ¬
∨

k<i,∀l Ckl)⇒ Reaction)

Table 2. Mapping between the MetaPAR fields and the corresponding LTL formulas

∧
¬M1 ∧ ¬Pick ∧ ¬Drop ∧ ¬C1 (1)∧

i∈{1,...,4}

¬Srchi ∧ ¬C21 ∧ ¬C22 ∧ ¬C23 ∧ ¬done (2)

∧
Topology of the environment (3)∧

i∈{1,...,4}

�((ri ∨ Srchi)⇔©Srchi) (4)

∧
�((

∧
l∈L

©Srchi)⇔©done) (5)∧
�((©Dead ∨M1)⇔©M1) (6)∧
�(©M1 ⇔©C1) (7)∧
�♦(C1 ⇒ r11) (8)∧
�((©C1 ∧ r11)⇒©r11) (9)∧
�((©seeBomb ∧ ¬© haveBomb)⇔©C21) (10)∧
�((©C21 ∧ ¬© C1)⇔©Pick) (11)∧
�((©haveBomb ∧ r13)⇔©C22) (12)∧
�((©C22 ∧ ¬© C1)⇔©Drop) (13)∧
�(©haveBomb⇔©C23) (14)∧
�♦((C23 ∧ ¬C1)⇒ r13) (15)∧
�♦(done ∨ C1 ∨ C21 ∨ C22 ∨ C23) (16)

The LTL formula for the clearing example was automatically synthesized into
an automaton containing 582 states. Figure 3 depicts part of the automaton;

Constraints-Based Complex Behavior in Rich Environments 11

the circles (states) contain the action propositions that are true in that state.
These propositions relate to the behavior of the agent, for example, PU refers to
the agent picking up a bomb. The arrows (transitions) are labeled with sensor
propositions that must be true for that transition to take place, for example, if
a dead body (DB) was found in room 5, the agent must go to room 10 next.
These propositions are easily evaluated by PAR system. All transitions to and
from other states in the automaton were omitted for clarity.

 r5 C23 s1

 r10 C1 M1 s1
 DB

 r10 C1 M1 C21 s1 DB seeB

 r5 PU C21 s1

 DB

 DB seeB

 r5 C23 s1 DB

 DB seeB

 r5 C1 M1 s1
 r10 C1 M1 s1

 r10 C1 M1 C21 s1

 seeB

 r10 C1 M1 C23 s1

 seeB haveB

 DB

 DB seeB

 r5 C1 M1 C23 s1
 seeB

 seeB haveB

 DB

 DB seeB

 r11 C1 M1 s1

 r11 C1 M1 C23 s1

 haveB

 haveB

 haveB

 haveB

 haveB

 haveB

Fig. 3. Part of the automatically synthesized automaton for the clearing example. A
possible execution could be starting from the top left most state: the agent is in room
5 and has searched room 1 (s1 is true) and seen a dead body before (M1 is true). Then,
it goes to room 10. He ignores (does not pickup) bombs he sees along the way since
the reaction to dead bodies has priority over bombs and then he reaches room 11, as
was required.

Interestingly, while executing this metaPAR Murray exhibited an unwanted,
while correct, behavior. It would pick up a bomb, take it to Room 13, drop it
and then begin an infinite loop of picking up the bomb and dropping it. This
behavior was due to an incomplete specification; Murray was never instructed to
ignore bombs in Room 13. This behavior was easily fixed by inserting a condition
‘©seeBomb∧r13’ with reaction ‘¬©PU ’ and with priority 2 and shifting down
the rest of the conditions. Figure 4 depicts snapshots of a simulation of Murray
clearing a building.

Our second scenario, replacing old computers with new ones (See Figure 5),
further highlights some of the capabilities of this integration. For example con-
straints, and therefore behaviors, can be based on dynamic conditions. Naturally,
we can specify a constraint such as Do not go into Room 12, but the framework
can also handle constraints such as Do not enter a classroom during a class. The
applicability of this constraint changes as the simulation progresses. It is also

12 Constraints-Based Complex Behavior in Rich Environments

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Selected frames from the building clearing scenario (a) Murray begins in Room
11 and starts moving toward Room 1. (b) Murray passes through Room 10. (c) After
passing through Room 5, Murray arrives at Room 1, sees a bomb, and picks it up. (d)
He makes his way to Room 13 and drops off the bomb. (e) He then resumes the search
and picks up a bomb in Room 4. (f) After dropping the bomb from Room 4 in Room
13, Murray picks up another bomb in Room 3. (g) Finally, he finishes his search in
Room 2 where he picks up another bomb. (h) Murray drops off the bomb in Room 13
and the scenario ends.

possible to have ordering constraints, such as Replace all classroom computers
before office computers, without strictly ordering all of the replace actions.

(a) (b) (c)

Fig. 5. Selected frames from the replacing computers scenario. (a) Replacing an office
computer. (b) Office computer in use. (c) Class being held in a classroom.

6 Conclusion

While previous work on creating intelligent virtual agents (IVA’s) has produced
some interesting and sometimes complex behaviors [7, 5, 14, 11], the work either
did not allow users to input instructions to the characters or required them to
tediously create decision and knowledge structures a priori. Many other efforts

Constraints-Based Complex Behavior in Rich Environments 13

including [13] have focused on dialog planning which is beyond the scope of our
current work. Like [8] and other work on IVA’s, [13] also includes an element
of plan recognition. The IVA’s analyze user actions and recommend corrections
or future actions based on stored plans for the given task domain. The focus of
our framework is fulfilling complex instructions given by a user. As discussed
in [2], it is important for planning to occur continuously and not be baked into
the IVA. The LTL framework naturally provides plan flexibility since once the
user changes a MetaPAR field a new plan is synthesized automatically.

The work presented in this paper was conducted as part of a large project
aimed at answering the question of how robots (physical or virtual) can be
instructed using natural language. In collaboration with linguists and natural
language processing researchers, we have integrated the rich representation of
PAR with the planning and reasoning capabilities of the LTL-based framework
to create the underlaying representation and reasoning mechanism that will in-
terface with the pragmatics and semantics of the language on one side and with
the low-level robot control on the other. As a part of this project, researchers
have begun collecting corpora that are being used to analyze the type of instruc-
tions that will be found in this domain so that components such as MetaPARs
will be built with enough depth and robustness to meet the needs of the domain.
As we learn more from these corpora, we will extend the MetaPAR representa-
tion. The ultimate analysis of the integration we have presented will come when
all of the components of the entire system are joined together from the natural
language parser through to a robot.

The resulting system enables complex, constrained-based behaviors for robots
or virtual agents that are not possible in either framework alone. We have demon-
strated the representations and frameworks through two rather different scenar-
ios. There are, however, still limitations. We are currently using the LTL frame-
work to determine the route an agent takes from one room to another. While
the LTL framework will guarantee a successful route if one exists, the route
generated is often suboptimal. Using way-point navigation, the PAR framework
along with the Simulator does generate an optimal path. Unfortunately, con-
straints are not taken into account. We plan to address this by having the PAR
framework generate a path that is then checked by the LTL framework to ensure
that it does adhere to all constraints and when possible gives an indication of
the spaces that should be avoided so that an alternative path can be obtained.
As we further explore these domains and others, we may encounter other sub-
optimal plans that will lead to unnatural behaviors. We hope to mitigate these
occurrences through the use of pragmatics and the existing semantics already
available in PARs.

Furthermore, we have been testing this system on a single agent. In the future,
we would like to construct teams of agents. We anticipate resource management
issues as well as possible goal conflicts. The Simulator does include a resource
manager that with extensions should handle some of these issues. Including
agents statuses and referencing action priorities should help resolve some of

14 Constraints-Based Complex Behavior in Rich Environments

the goal conflicts by determining which agent should take precedence, and then
replanning for the others.

Acknowledgements

Partial support for this effort is gratefully acknowledged from the U.S. Army
SUBTLE MURI W911NF-07-1-0216. We also appreciate donations from Au-
todesk and nVidia.

References

1. Allbeck, J.M.: Creating 3D Animated Human Behaviors for Virtual Worlds. Ph.D.
thesis, University of Pennsylvania (2009)

2. Avradinis, N., Panayiotopoulos, T., Aylett, R.: Continuous planning for virtual en-
vironments. In: Vlahavas, I., Vrakas, D. (eds.) Intelligent Techniques for Planning,
pp. 162–193 (2005)

3. Badler, N., Erignac, C., Liu, Y.: Virtual humans for validating maintenance pro-
cedures. Communications of the ACM 45(7), 56–63 (2002)

4. Bindiganavale, R., Schuler, W., Allbeck, J., Badler, N., Joshi, A., Palmer, M.:
Dynamically altering agent behaviors using natural language instructions. In: Au-
tonomous Agents. pp. 293–300. AAAI (2000)

5. Cavazza, M., Charles, F., Mead, S.J.: Planning characters’ behaviour in interactive
storytelling. The Journal of Visualization and Computer Animation 13(2), 121–131
(2002), 10.1002/vis.285

6. Emerson, E.A.: Temporal and modal logic. In: Handbook of theoretical computer
science (vol. B) formal models and semantics, pp. 995–1072. MIT Press, Cambridge,
MA, USA (1990)

7. Funge, J., Tu, X., Terzopoulos, D.: Cognitive modeling knowledge, reasoning and
planning for intelligent character. In: Proceedings of ACM SIGGRAPH. pp. 29–38
(1999)

8. Johnson, W.L., Rickel, J.: Steve: An animated pedagogical agent for procedural
training in virtual environments. ACM SIGART Bullentin 8(1-4), 16–21 (1997)

9. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Translating structured english to
robot controllers. Advanced Robotics Special Issue on Selected Papers from IROS
2007 22(12), 13431359 (2008)

10. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal logic based reactive mis-
sion and motion planning. IEEE Transactions on Robotics 25(6), 1370–1381 (2009)

11. Paris, S., Donikian, S.: Activity-driven populace: a cognitive approach to crowd
simulation. IEEE Computer. Graphics and Applications 29(4), 34–43 (2009),
1669315

12. Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-
density crowd simulation. In: ACM SIGGRAPH / Eurographics Symposium on
Computer Animation (SCA). ACM Press, San Diego, CA (2007)

13. Smith, C., Cavazza, M., Charlton, D., Zhang, L., Turumen, M., Hakulinen, J.:
Integrating planning and dialgue in a lifestyle agent. In: International Conference
on Intelligent Virtual Agents. pp. 146–153. Springer (2008)

14. Yu, Q., Terzopoulos, D.: A decision network framework for the behavioral ani-
mation of virtual humans. In: In Proceedings of ACM SIGGRAPH/Eurographics
symposium on Computer animation. pp. 119–128. Eurographics Association, San
Diego, California (2007)

