
• Noise-free and noisy 3D models created by adding simulated sensor noise using Depthsynth[5]. 
• Comparison to hand-crafted descriptors and descriptor learning baselines. 
• Model aclearns to generate keypoints in non-noisy areas. 
• Learned representation demonstrates viewpoint-invariance.  
• All tables show keypoint matching curacy. 
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• Siamese Faster R-CNN network  to bootstrap the learning process.  

• Network receives as input a pair of depth images and their camera poses and outputs 

a set of proposals and their scores for each image. 

• Sampling layer generates ground-truth pairs of patches between the two images on-the-

fly based on their proximity in 3D space. 

• Combination of contrastive and score losses optimize towards the matching objective. 

• Local feature learning previously considered detector and descriptor as separate objectives. 

• Training requires large number of keypoint annotations. 

Problem 

• Joint end-to-end learning of keypoints 

and view-invariant patch representations. 

• Generate patch correspondence on-the-

fly for self-supervised training. 

• Novel score loss for keypoint detection 

learning. 

Contributions 

Approach 

• Contrastive loss: Separate negative pairs 

and align positive pairs in feature space. 

• Score loss: Train a detector to maximize the 

number of correspondences between two images. 

Joint Optimization 

• True matches decided with a small 3D distance threshold. 

• Keypoint matching accuracy: Ratio of true matches to 

all matches. 

Testing 

Experimental Results 
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Method Armadillo Bunny Dragon Buddha Average 

ISS+SHOT 0.8 0.5 0.6 0.4 0.6 

ISS+FPFH 2.0 1.7 2.4 1.4 1.9 

Harris3D+SHOT 8.0 11.4 6.9 6.7 8.3 

KPL+SHOT 18.0 12.8 15.4 9.1 13.8 

Harris3D+FPFH 14.5 16.0 16.4 10.5 14.4 

Harris3D+3DMatch 14.9 17.7 27.8 15.1 18.8 

Ours-No-Score 10.0 18.3 25.2 12.5 16.5 

Ours 25.2 31.9 45.7 27.7 32.6 

Method Noise-Free Noisy 

ISS+SHOT 47.9 0.5 

KPL+SHOT 57.2 2.8 

ISS+FPFH 61.1 2.9 

Harris3D+SHOT 60.1 5.9 

Harris3D+FPFH 79.1 12.8 

Harris3D+3DMatch 66.2 20.7 

Ours-Rnd 29.8 7.3 

Ours-No-Score 40.7 11.1 

Ours-Transfer - 17.8 

Ours 67.4 23.8 

Method Accuracy 

ISS+SHOT 23.0 

ISS+FPFH 24.3 

Harris3D+FPFH 37.4 

Harris3D+SHOT 37.9 

Harris3D+3DMatch 38.2 

Ours 41.2 


