

Problem

- Local feature learning previously considered detector and descriptor as separate objectives.
- Training requires large number of keypoint annotations.

Contributions

- Joint end-to-end learning of keypoints and view-invariant patch representations.
- Generate patch correspondence on-thefly for self-supervised training.
- Novel score loss for keypoint detection learning.

Approach

- Siamese Faster R-CNN network to bootstrap the learning process.
- Network receives as *input* a pair of depth images and their camera poses and *outputs* a set of proposals and their scores for each image.
- Sampling layer generates ground-truth pairs of patches between the two images on-thefly based on their proximity in 3D space.
- Combination of contrastive and score losses optimize towards the matching objective.

End-to-end Learning of Keypoint Detector and Descriptor for Pose Invariant 3D Matching Georgios Georgakis¹, Srikrishna Karanam², Ziyan Wu², Jan Ernst², and Jana Kosecka¹ George Mason University¹, Siemens Corporate Technology²

Joint Optimization

• Contrastive loss: Separate negative pairs and align positive pairs in feature space.

$$L_{c}(F',l') = \frac{\sum_{n=1}^{N} l'_{n} ||f_{n}^{0} - f_{n}^{1}||^{2}}{2N_{pos}} + \frac{\sum_{n=1}^{N} (1 - l'_{n}) max(0, v - ||f_{n}^{0} - f_{n}^{2})}{2N_{neg}}$$

• Score loss: Train a detector to maximize the number of correspondences between two images.

$$L_s^m(s^m, l^m) = \frac{1}{1 + N_{pos}} - \frac{\gamma \sum_{i=1}^N l_i^m \log s_i^m}{1 + N_{pos}}$$

Testing Simulation/Rendering Keypoin

extraction

Test image

Keypoint detection and matching in index

 True matches decided with a small 3D distance threshold. • Keypoint matching accuracy: Ratio of true matches to

all matches.

References

1. A. Zeng et al, 3dmatch: Learning local geometric descriptors from RGB-D reconstructions, CVPR, 2017 2. S. Salti et al, Learning a descriptor –specific 3D keypoint detector, ICCV, 2015. 3. K. M. Yi et al, LIFT: Learned invariant feature transform, ECCV, 2016. 4. P. Wohlhart, V. Lepetit, Learning descriptors for object recognition and 3D pose estimation, CVPR, 2015. 5. B. Planche et al, Depthsynth: Real-time realistic synthetic data generation from CAD models for 2.5D recognition, 3DV, 2017.

 ${}_{n}^{1}||)^{2}$

3D index

Experimental Results

- Learned representation demonstrates viewpoint-invariance.
- All tables show keypoint matching curacy.

Noisy Stanford 3D models Armadillo Buddh Bunny Dragon Method ISS+SHO1 0.8 0.5 0.6 0.4 ISS+FPFH 2.0 1.7 2.4 1.4 Harris3D+SHO1 8.0 11.4 6.9 6.7 **KPL+SHOT** 18.0 12.8 15.4 9.1 Harris3D+FPFH 14.5 16.0 16.4 10.5 Harris3D+3DMatch 27.8 15.1 17.7 14.9 **Ours-No-Score** 25.2 10.0 18.3 12.5 45.7 25.2 31.9 27.7 Ours

Engine 3D model

Method	Noise-Free	Noisy
ISS+SHOT	47.9	0.5
KPL+SHOT	57.2	2.8
ISS+FPFH	61.1	2.9
Harris3D+SHOT	60.1	5.9
Harris3D+FPFH	79.1	12.8
Harris3D+3DMatch	66.2	20.7
Ours-Rnd	29.8	7.3
Ours-No-Score	40.7	11.1
Ours-Transfer	-	17.8
Ours	67.4	23.8

Keypoint Detection

ISS

Harris3D

Noise-free and noisy 3D models created by adding simulated sensor noise using Depthsynth[5].
Comparison to hand-crafted descriptors and descriptor learning baselines.
Model aclearns to generate keypoints in non-noisy areas.

na	Average
	0.6
	1.9
	8.3
	13.8
	14.4
	18.8
	16.5
	32.6

MSR-7 Scenes

Method	Accuracy
ISS+SHOT	23.0
ISS+FPFH	24.3
Harris3D+FPFH	37.4
Harris3D+SHOT	37.9
Harris3D+3DMatch	38.2
Ours	41.2

Ours