

16TH EUROPEAN CONFERENCE ON

COMPUTER VISION

WWW.ECCV2020.EU

Hierarchical Kinematic Human Mesh Recovery

Georgios
Georgakis*

Ren Li*

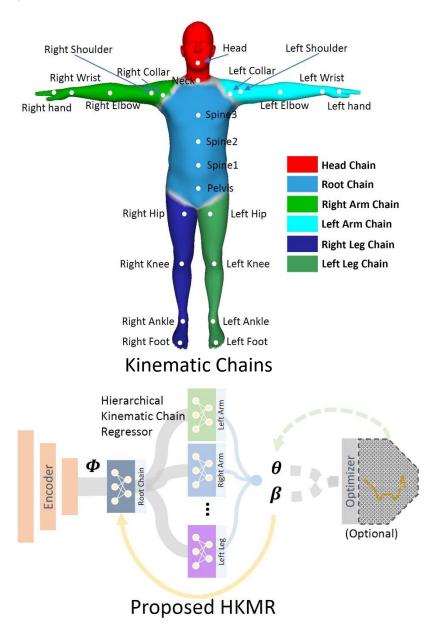
Srikrishna Karanam

Terrence Chen

Jana Kosecka

Ziyan Wu

Contributions

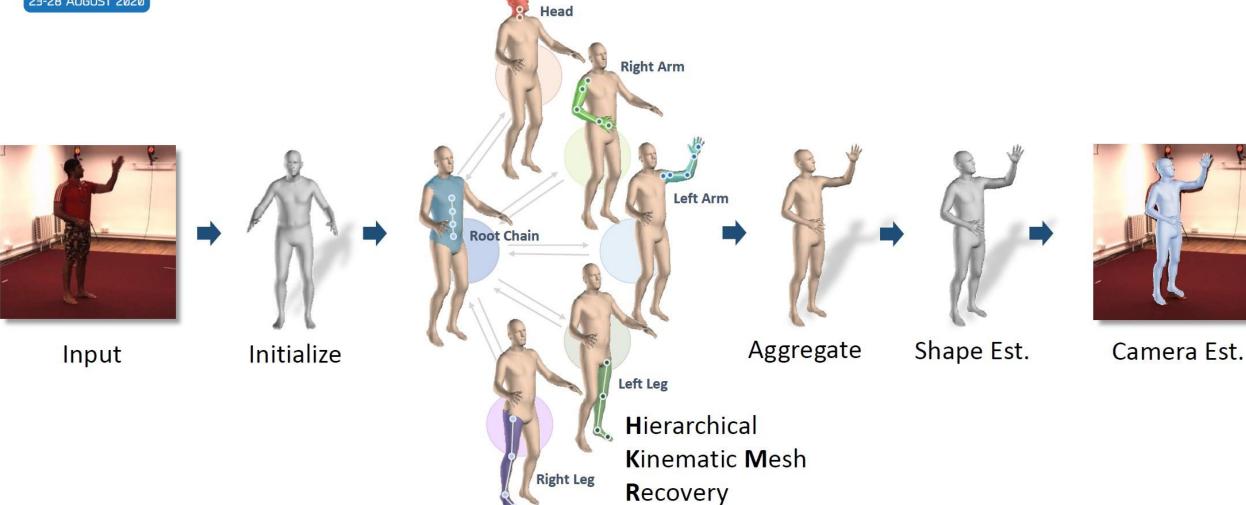


> Hierarchical kinematic chain regressor

- A new parameter regressor explicitly exploiting structural constraints of human body model;
- Flexible to be used in encoder-regressor or encoder-regressor-optimizer paradigms.

> Robustness to occlusions

 Achieving substantial performance improvement on data under a wide variety of occlusion conditions.

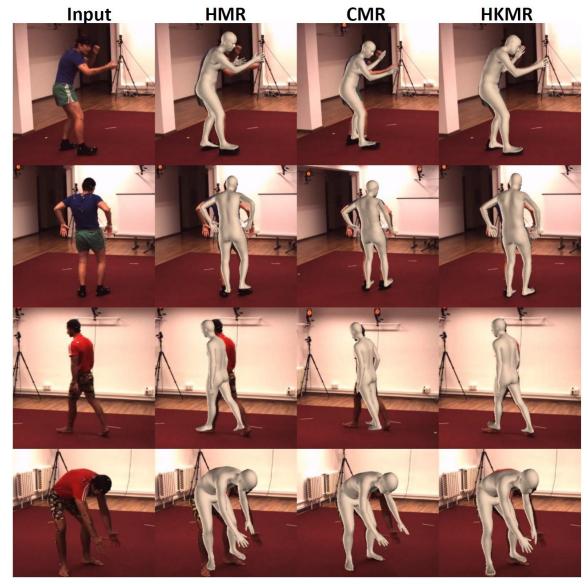


Hierarchical Kinematic Chain Regressor

Experimental Results

LSP	FB	Seg.	Part Seg.		
151	acc.	f1	acc.	f1	
Oracle [3]	92.17	0.88	88.82	0.67	
SMPLify [3]	91.89	0.88	87.71	0.64	
SMPLify+[28]	92.17	0.88	88.24	0.64	
HMR[5]	91.67	0.87	87.12	0.60	
CMR[8]	91.46	0.87	88.69	0.66	
TexturePose [21]	91.82	0.87	89.00	0.67	
SPIN [6]	91.83	0.87	89.41	0.68	
\mathbf{HKMR}_{MF}	92.23	0.88	89.59	0.69	

Human3.6M	P1	P2
HMR [5]	87.97	88.00
Arnab $et al. [20]$	-	77.80
HoloPose [16]	-	64.28
CMR[8]	74.70	71.90
DaNet [17]	_	61.50
DenseRaC [18]	76.80	-
VIBE [19]	-	65.60
SPIN [6]	65.60	62.23
\mathbf{HKMR}_{MF}	64.02	59.62

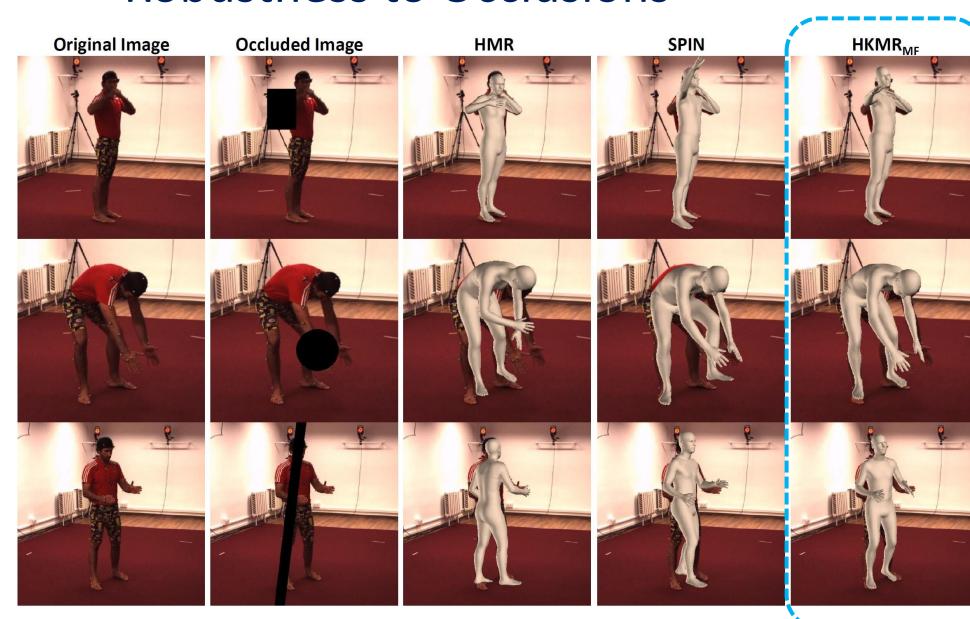

Analyzing HKMR

➤ Ablation study of the impact of various design consideration.

	No joint hierarchy	Forward only	Discriminator	ator Full model		
P1	77.10	75.99	74.21	71.08		
P2	74.28	72.10	71.72	67.74		

➤ Baseline architecture evaluation.

	#Param	Standard		Bar		Circle		Rectangle	
		P1	P2	P1	P2	P1	P2	P1	P2
HMR [5]	26.8M	87.97	88.00	98.74	98.54	95.28	91.71	100.23	99.61
CMR [8]	42.7M	74.70	71.90	82.99	78.85	83.50	79.24	89.01	84.73
HKMR	26.2M	71.08	67.74	78.34	74.91	77.60	71.38	81.33	76.79



Robustness to Occlusions

- Qualitative results under synthetic occlusions.
- Various occlusion patterns were tested.

https://arxiv.org/abs/2003.04232