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1 Architecture and Training Details

– Encoder: We use the standard ResNet50, giving a 2048-dimensional feature
vector.

– Chains Qc: Each Qc is implemented with a set of fully connected layers. The
ψ embedding module Ec comprises two fully connected units (with ReLU
activations and dropout in training) with 32-dimensional outputs each. The
input dimensionality of Ec varies according to the chain. This is 2070 for the
root chain, 2085 for the arm chains, 2082 for the leg chains, and 2076 for
the head chain. Finally, each ∆θi is realized with one single fully connected
layer with a 3-dimensional output.

– Number of inner iterations: 4 (so 2 forward-backward cycles).
– Number of outer iterations T = 3.
– Shape estimating neural network: Three fully connected units (with ReLU

activations and dropout during training) with output units of 512, 128, and
10 respectively.

– Camera estimating neural network: Three fully connected units (with ReLU
activations and dropout during training) with output units of 512, 128, and
3 respectively.

– VAE encoder: Input dimensionality of 69 (23 joint pose parameters); two
fully connected units (with Leaky ReLU activation, batch normalization,
and dropout in training) with output units of 512 and 32 each, so the latent
space dimensionality is 32.

– VAE decoder: Input dimensionality of 32 (latent space vector); two fully con-
nected units (with Leaky ReLU activation, batch normalization, and dropout
in training) with output units of 512 and 69 each, so the output dimension-
ality is 69.

– HKMR training parameters. We set the loss weights λsmpl = 1, λ2D = 1,
λ3D = 1, and λKL = 0.001. We use a batch size of 128, a learning rate
of 3e − 4 and the Adam optimizer in training. In each batch, half of the
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data samples have only 2D annotations and the other half have 2D and 3D
annotations.

– HKMRMF training parameters: We follow the same configuration as SPIN
[1].

2 Additional results

In Figure 1, we show some qualitative renderings of the estimated shape and
pose with our method (HKMR) and compare it with other baselines HMR [2]
and CMR [3]. We note improved mesh fits with our method. In Figure 2, we
show complete (degree of occlusion greater than 1) occlusion robustness bar
plots, comparing our proposed method with SPIN. These results correspond
to the experiment of Table 3 (left) in the main paper, where we only showed
results with degree of occlusion set to 1. As can be noted from these results,
our method outperforms SPIN, giving lower MPJPE across both protocols and
various degrees of occlusion.

In Figure 3, we isolate the impact of occluding just the root chain joints. This
is particularly important since our method first estimates the root parameters
followed by other chain parameters conditioned on the root parameters. The
results in Figure 3 correspond to Figure 6 (and the accompanying discussion)
in the main paper, but with errors computed only across the four root chain
joints (instead of all the joints). As can be noted from the results, our proposed
method is more robust to occlusions across the root joints when compared to
HMR [2] and CMR [3].

Protocol #1 Protocol #2
MPJPE Recon. MPJPE Recon.

SMPLify[4] - - - 82.3
Pavlakos et al.[5] - - - 75.9

NBF[6] - - - 59.9
HMR[2] 87.97 58.1 88.0 56.8

Arnab et al.[7] - - 77.8 54.3
HoloPose[8] - - 64.28 50.6

CMR[3] 74.7 51.9 71.9 50.1
DaNet[9] - - 61.5 48.6

DenseRaC[10] 76.8 - - 48.0
SPIN[1] 65.60 44.1 62.23 41.1

HKMR 71.08 52.1 67.74 50.1
HKMRMF 64.02 45.9 59.62 43.2

Table 1. Comparison with the state of the art on Human3.6M.
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Fig. 1. Qualitative baseline architecture comparison: HMR vs. CMR vs. HKMR on
the Human3.6M dataset.

In Table 1, we show both MPJPE and reconstruction error (“Recon.” in
table), i.e., MPJPE with Procrustes (rigid) post-processing, results on both pro-
tocols of the Human3.6M dataset, comparing our performance to the state of
the art. These results correspond to Table 4 (right) in the main paper but with
additional columns for the reconstruction error.

In Figure 4, Figure 5 and Figure 6, we show additional qualitative results
of our proposed method on the LSP, MPII validation, and COCO validation
datasets respectively.
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Fig. 2. Robustness to (single) occlusions: SPIN, our proposed method HKMRMF .

Fig. 3. Robustness to (root) occlusions: HMR, CMR and our proposed method HKMR.
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Fig. 4. Qualitative results on the LSP dataset.
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Fig. 5. Qualitative results on the MPII validation dataset with invisible joints.
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Fig. 6. Qualitative results with the side view on the COCO validation datatset.
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