

Challenges

- Difficult to obtain RGB images with ground-truth 3D geometry.
- Reliance on accurate annotated images limits generalizability and scalability.
- Large appearance gap between RGB and synthetic data.

Contributions

- A new framework for 3D object pose estimation using texture-less CAD models without explicit 3D pose annotations for the RGB images.
- An end-to-end learning approach for keypoint selection optimized for the relative pose estimation objective.
- State-of-the-art results in cross-dataset evaluation, and demonstration of the generalization capability of our method to new instances.

Approach Overview

- · Learn keypoints and their descriptors from depth images rendered from CAD models (A,B).
- Transfer this knowledge to the RGB domain (C,D).
- Four constraints that enforce viewpoint and modality invariance of local features, and learn how to select keypoints consistently across modalities.

Learning Local RGB-to-CAD Correspondences for Object Pose Estimation Georgios Georgakis¹, Srikrishna Karanam², Ziyan Wu², and Jana Kosecka¹ George Mason University¹, Siemens Corporate Technology²

Keypoint Learning

• Relative pose loss: For a weighted set of corresponding points $P = \{p_1, p_2, ..., p_n\}, Q = \{q_1, q_2, ..., q_n\}$ find the rigid transformation for which the reprojection error is minimum.

$$(R,t) = \arg \min_{R \in SO(3), t \in \mathbb{R}^3} \sum_{i=1}^n w_i \| (Rp_i + t) - q_i \|$$

• Keypoint consistency loss: Align keypoint predictions on rendered depth and RGB.

$$L_{cons} = -\frac{1}{n} \sum_{i=1}^{n} y_i^C \log y_i^D$$

1) Comparison with supervised approaches

• Training on Pix3D – Testing on Pascal3D+

Category	Chair		Sofa		
Metric	$\operatorname{Acc}_{\overline{6}}^{\overline{\pi}}$	MedEr r	$\operatorname{Acc}_{\overline{6}}^{\overline{\pi}}$	MedEr r	
Render for CNN [33]	4.3	2.1	11.6	1.2	
Vps & Kps [39]	10.3	1.7	23.3	1.2	
Deep3DBox [25]	10.8	1.9	25.6	1.0	
Proposed	13.4	1.6	30.2	1.1	

2) Model transferability

Test on category instances not seen during training (Pix3D)

Category	Bed				Chair					
Metric	Az.	EI.	PI.	$\operatorname{Acc}_{\overline{6}}^{\overline{\pi}}$	MedEr r	Az.	EI.	PI.	$\operatorname{Acc}_{\overline{6}}^{\overline{\pi}}$	MedEr r
Baseline-A	38.2	39.6	30.6	9.7	1.9	28.6	41.4	20.3	3.7	1.9
Baseline-ZDDA	29.9	39.6	22.2	4.9	2.3	30.1	44.6	21.5	7.6	1.9
Proposed-joint	66.7	50.0	62.5	29.2	0.9	43.7	50.4	31.3	15.1	1.4
Proposed-alternate	75.7	61.1	74.3	45.1	0.6	52.0	57.4	38.0	21.2	1.2

L_{Rel-Pose}

imate relative pose R

• Evaluation metric: Geodesic distance: $\Delta(R_1, R_2) = \frac{\|\log R_1^T R_2\|_F}{\sqrt{2}}$