Learning Local RGB-to-CAD Correspondences for Object Pose Estimation
Georgios Georgakis ${ }^{1}$, Srikrishna Karanam², Ziyan Wu², and Jana Kosecka ${ }^{1}$ George Mason University ${ }^{1}$, Siemens Corporate Technology²

SIEMENS

Ingenuity forlife
Challenges

- Difficult to obtain RGB images with ground-truth 3D geometry.
Reliance on accurate annotated images limits generalizability and scalability.
- Large appearance gap between RGB and synthetic data

Contributions

- A new framework for 3D object pose estimation using texture-less CAD models without explicit 3D pose annotations for the RGB images.
-An end-to-end learning approach for keypoint selection optimized for the relative pose estimation objective
- State-of-the-art results in cross-dataset evaluation, and demonstration of the generalization capability of our method to new instances.

- Evaluation metric: Geodesic distance: $\Delta\left(R_{1}, R_{2}\right)=\frac{\left\|\log R_{1}^{T} R_{2}\right\|_{E}}{\sqrt{2}}$

1) Comparison with supervised approaches - Training on Pix3D - Testing on Pascal3D+

Category	Chair		Sofa	
Metric	Acc ${ }_{6}^{\frac{\pi}{6}}$	MedEr	Aco $\frac{\pi}{6}$	MedEr
Render for CNN [33]	4.3	2.1	11.6	1.2
Vps \& Kps [39]	10.3	1.7	23.3	1.2
Deep3DBox [25]	10.8	1.9	25.6	1.0
Proposed	13.4	1.6	30.2	1.1

2) Model transferability

Test on category instances not seen during training (Pix3D)

Category	Bed					Chair				
Metric	Az.	El.	PI.	Acc ${ }_{6}^{\frac{\pi}{6}}$	MedEr	Az.	El.	PI.	Acc $\frac{\pi}{6}$	MedEr
Baseline-A	38.2	39.6	30.6	9.7	1.9	28.6	41.4	20.3	3.7	1.9
Baseline-ZDDA	29.9	39.6	22.2	4.9	2.3	30.1	44.6	21.5	7.6	1.9
Proposed-joint	66.7	50.0	62.5	29.2	0.9	43.7	50.4	31.3	15.1	1.4

