Learning Local RGB-to-CAD Correspondences for Object Pose Estimation

Georgios Georgakis¹, Srikrishna Karanam², Ziyan Wu², and Jana Kosecka¹ George Mason University¹, Siemens Corporate Technology²

Object Pose Estimation

- Given an RGB image of an object, estimate rotation matrix $R \in SO(3)$ and translation vector $t \in \mathbb{R}^3$.
- **R** is parameterized by the three Euler angles: <u>azimuth</u>, <u>elevation</u>, <u>in-plane rotation</u>.

Object Pose Estimation

- Essentially estimate an object's orientation and position relative to a coordinate system.
- Challenges:
 - Estimating geometry from 2D image plane.
 - Large space of possible rotation matrices.
 - Large variety of object shapes.

Applications

Autonomous driving

Robotic manipulation

Indoor navigation

Augmented Reality

Traditional Pose Estimation

3D Model

Reference frame

 <u>Keypoints</u>: Interest points which yield discriminative representations and can be matched reliably across images.

 Pose estimated through Perspective-n-Point (PnP) using set of correspondences.

Related work

Viewpoint conditioned keypoints [Tulsiani et al. 2015]

Fixed semantic keypoints [Pavlakos et al. 2017]

Single-step pose regression [Poirson et al. 2016]

Classification-Regression Hybrid [Deep3DBox, Mousavian et al. 2017]

Related work

Image

Fixed semantic keypoints

Viewpoint conditioned keypoints

[Pavlakos et al. 2017]

Require 3D pose or keypoint annotations for RGB images.

Predicted Pose

Single-step pose regression [Poirson et al. 2016] Classification-Regression Hybrid [Deep3DBox, Mousavian et al. 2017]

Getting Pose Annotations

Sun et al, Pix3D: Dataset and Methods for Single-Image 3D Shape Modeling, 2018

Correspondence Learning for Object Pose Estimation

- We focus on finding the association of parts of objects depicted in RGB images with their counterparts in 3D depth images.
 - Large appearance gap between RGB and depth data.
 - Large viewpoint variation.

- Learn how to select which parts of objects are most informative (Keypoint detection).
 - We do not rely on keypoint annotations.

Testing

Overview

- We do not use:
 - Explicit 3D Pose annotations on RGB images.
 - Textured 3D models.

Architecture outline

Keypoint learning by relative pose estimation

• **Relative pose loss:** For a weighted set of corresponding points find the rigid transformation for which the re-projection error is minimum.

$$(R,t) = \arg \min_{R \in SO(3), t \in \mathbb{R}^3} \sum_{i=1}^n w_i \| (Rp_i + t) - q_i \|^2$$

• Given the correspondences, there exists a differentiable SVD-based closed form solution for estimating R, t.

Learning keypoint descriptors – Triplet loss

$$L_{Triplet} = \sum_{i}^{N} \max(0, ||f_{i}^{a} - f_{i}^{p}||^{2} - ||f_{i}^{a} - f_{i}^{n}||^{2} + m)$$

• $f_i^a f_i^p f_i^n$: Local features of anchor, positive, and negative from triplet i.

• Triplet examples:

Cross-modality representation learning

- Transfer learned features and keypoints from branches A,B,C to branch D.
- Inspired by knowledge distillation.

Examples of learned representations

View alignment

Cross-modality alignment

Examples of learned representations

View alignment

Cross-modality alignment

Experiments

• Pascal3D+: Manual alignment of generic 3D models on images

Results

• Evaluation metric: Geodesic distance $\Delta(R_1, R_2) = \frac{||\log(R_1^T R_2)||_F}{\sqrt{2}}$

Comparison with supervised approaches

• Training on Pix3D – Testing on Pascal3D+

Category	Chair		Sofa	
Metric	$Acc\frac{\pi}{6}$	MedErr	$Acc\frac{\pi}{6}$	MedErr
Render for CNN [33]	4.3	2.1	11.6	1.2
Vps & Kps [39]	10.3	1.7	23.3	1.2
Deep3DBox [25]	10.8	1.9	25.6	1.0
Proposed	13.4	1.6	30.2	1.1

Ablation Study - Baselines

• Baseline-A: Assess the importance of the cross-modality representation learning.

 Baseline-ZDDA: Assess the importance of learning the keypoints and their viewinvariant representations.

Ablation Study – Results

- Training and testing on Pix3D
 - Both baselines underperform by a large margin.

Category	Bed		Chair	
Metric	$\operatorname{Acc}\frac{\pi}{6}$	MedErr	$\operatorname{Acc}\frac{\pi}{6}$	MedErr
Baseline-A	7.3	1.7	3.3	2.0
Baseline-ZDDA	21.8	1.5	11.5	1.7
Proposed	50.8	0.5	31.2	1.0

- Test on category instances not seen during training
 - In practice impossible to have 3D models for all object instances.
 - Our method shows robustness to unseen instances.

Category	Bed		Chair	
Metric	$\operatorname{Acc}\frac{\pi}{6}$	MedErr	$Acc\frac{\pi}{6}$	MedErr
Baseline-A	9.7	1.9	3.7	1.9
Baseline-ZDDA	4.9	2.3	7.6	1.9
Proposed	45.1	0.6	21.2	1.2

G. Georgakis, S. Karanam, Z. Wu, J. Kosecka, Learning Local RGB-to-CAD Correspondences for Object Pose Estimation, ICCV 2019

Limitation

Α

- We wish to demonstrate how our method can be trained with any available auxiliary data.
- **Problem:** There no suitable large-scale datasets to train our method, without relying on annotations to align RGB and depth (for branches C,D).
- We collected limited number of quadruplet training examples from NYUv2 dataset and got poor performance.

Metric	$\operatorname{Acc}\frac{\pi}{6}$	MedErr
Bed	24.0	1.0
Chair	15.2	1.6

Conclusion

- 3D object pose estimation framework which uses textureless 3D models and does not require explicit 3D annotations in RGB images.
- End-to-end formulation for discovering the keypoints through a relative pose estimation objective.
- Learning general representation that can be matched between RGB and depth images helps our model to generalize better to new datasets.