Overview of CFGs

• Why? -- overcoming FA/RE limitations

• CFG Basics

• Programming Language examples
 o Algebraic expressions
 o If Statements

• Ambiguous structure
 o Expressing it
 o Eliminating it
Regular Languages

• Regular Languages are Useful
 o Numbers
 o Variable Names

• And Have Several Forms
 o RE, FA, NFA(-L)
 o Lex, a Genuine Software Tool

• But …
Limitations of Regular Languages

• No Balanced Delimiters

• No (other) Nested Promises, like…

 ➢ C: if () { };
 ➢ Unix: if … fi

• “Limited Representational Power”
Lower Bound on How Many States

- (ab)* requires at least 2 states
 - some strings are accepted, …
 - some not.

- a*b* requires at least 2 states
 - For some strings, adding a is accepted, …
 - some not.

- Some languages require at least 3 (or k) states.

- Some languages require more and more states.
“Distinguishable” Strings

• Motivation: show the weakness of regular languages

• The idea of “Distinguishing”:

 It’s a relationship among 4 things:
 strings \(x, y \) and \(z \) and language \(L \).

 \(z \) distinguishes \(x \) and \(y \) with respect to \(L \)

 \(xz \) and \(yz \) differ in \(L \)-membership;

 (i.e., one is \(\text{in} \) and the other is \(\text{out} \).)
Example of Distinguishability

• Let $L = \{ab\}^* = \emptyset, ab, abab, ...$

• Let $x = aba$ and $y = abab$

• Let $z = ba$

• Then z distinguishes x and y wrt L.

• Why?

• Also \emptyset distinguishes x and y wrt L.
“Distinguishable” Strings

- Distinguishable:

 \[x: y: L: \]
 \[x \text{ and } y \text{ are distinguishable with respect to } L \]
 \[z: z \text{ distinguishes them} \]

- Distinguished by \[\curvearrowright \]

 \[x \curvearrowright = x \curvearrowright L \text{ but } y \curvearrowright = y \curvearrowright L \text{ (or vice versa)} \]

- Now \[\curvearrowleft \text{ or in the future (non-\curvearrowleft)} \]
$L = \{a^n b^n\}$

- Distinguishable strings need different states of a DFA.

- aaa and $aaaaa$ are distinguishable with respect to L (use bbb)

- a^i and a^j are distinguishable whenever $i \neq j$.

- $\{a^n b^n\}$ needs a state for each integer.

- so L has no Finite Automaton
 (suppose it did; how many states?)

- No DFA \quad No FA \quad No RE
CFGs

• Context-free grammar is a 4-tuple,

\[G = (V, \Sigma, S, P) \]

• Example:

\[G_1 = (\{S\}, \{a, b\}, S, P) \]

where \[P = \{S \rightarrow aSb, S \rightarrow \epsilon\} \]
Deriving Strings

• $\epsilon \in \Sigma^*$

• $S \in aSb \in aaSbb \in aaaSbbb \in aaabbb$

• $S \in \epsilon \in aaabbb$

• $n : S \in \epsilon \in a^n b^n$
Language Formalities

\[G = (V, \epsilon, S, P) \]

\[\mathcal{L}(G) = \{ x \mid S \rightsquigarrow^* x \} \]

\[G_1 = (\{S\}, \{a, b\}, S, P) \]

where \(P = \{ S \rightsquigarrow aSb, S \rightsquigarrow \epsilon \} \)

\[\mathcal{L}(G_1) = \{ a^n b^n \} \]
$$\mathcal{L}(FA) = \mathcal{L}(RE) \cap \mathcal{L}(CFG)$$

- $a^n b^n$ is representable by CFG, not FA, RE

- and CFGs can do the 3 ops of RE

 - concatenation: $A \cdot B \cdot C$
 - alternation: $A \cup B \cup C$
 - closure: $A \cdot A \cdot B \cdot C$

- Therefore $\mathcal{L}(RE) \cap \mathcal{L}(CFG)$.
Example

- Write a CFG for \((a+b*c)d)*\n
\[
S \rightarrow TS | \epsilon \\
T \rightarrow Ud \\
U \rightarrow a | V \\
V \rightarrow bV | c
\]
Balanced Parentheses

- $G_3 = \{\{S\}, \{a, b\}, S, P\}$ where P contains

 $S \rightarrow \varepsilon$
 $S \rightarrow S \ S$
 $S \rightarrow (\ S \)$

- A Derivation in G_3

 $S \rightarrow (S) \rightarrow (S S) \rightarrow ((S) S)$
 $\rightarrow ((S)(S)) \rightarrow ((() (S)))$
 $\rightarrow ((()))$
Algebraic Expressions

• $E \rightarrow E + E \mid E \mid a \mid b \mid c$

• Generates the right strings, but...

• $E + E \rightarrow E$ (e.g.) is ambiguous
Fixing the Grammar

• Remove ambiguity by one-way branching

\[E \rightarrow E + T \mid E \rightarrow T \mid T \]
\[T \rightarrow a \mid b \mid c \]
Fixing the Grammar, part II

- Fix precedence with an extra level

\[
E \rightarrow E + T \mid T \\
T \rightarrow T \rightarrow F \mid F \\
F \rightarrow a \mid b \mid c
\]
Fixing the Grammar, part III

• Parentheses overcome precedence

\[
\begin{align*}
E &\to E + T | T \\
T &\to T \cdot F | F \\
F &\to (E) | a | b | c
\end{align*}
\]