College Bound Math Solutions #18

week of March 9, 2015

[image: image1.png]



Note: Students who have not done Set #17 should do that before Set #18. These problems are related to each other, to computer science, and to the square root of 2. Problem #2 is an algorithm (a series of steps) that is just as simple as the one in Set #17. 

This Babylonian method was known over 3,000 years ago. It can be used on other square roots. It's accuracy is incredible (see #3 below). The function graphed above is used in the Newton-Raphson method, which has a wide range of applications, but operates like the Babylonian when finding 
[image: image2.wmf].

1.
These will be more valuable if done by hand, with fractions, not decimals.

(a) 
Divide each number into 2:

[image: image3.wmf]

[image: image4.wmf]
 (b)
Find the average 
[image: image5.wmf]
2.
Finding 
[image: image6.wmf] with paper and pencil. 1 is too small and 2 is too big (for their squares to equal 2), so we start by guessing 
[image: image7.wmf], since it's midway between them. (It's square is 2.25, which is pretty close to 2.) Notice that by dividing 
[image: image8.wmf] into 2 we get a number, 
[image: image9.wmf], that's roughly an equal distance from 
[image: image10.wmf] but on the other side of it, so that their average is a much better approximation than either of them!

	Row
	Steps
	1st time
	2nd time
	3rd time

	1
	Guess (first time only). Then use the Row #3 result from preceding column.
	3/2
	17/12
	577/408

	2
	Divide the Row #1 result into 2.
	4/3
	24/17
	816/577

	3
	Average Row #1 and Row #2
	17/12
	577/408
	below

	4
	Copy the result to the top of the next column.
	
	
	

	5
	Do it all again or stop.
	
	
	


3.
Using a calculator let's see how close these results are to the actual value of 
[image: image11.wmf].

(a)
To 9 decimal places, 
[image: image12.wmf] = 1.414213562

(b)
3/2=1.50000000     Row #3: 1.41666667,   1.414215686,   1.41421356237

(c)
Subtracting 
[image: image13.wmf]:   0.08578...   0.00245...  0.000002124...    0.00000000000

(d)
Just three columns gets the answer to the nearest hundred bllionth!!










_1359610241.unknown

_1359611271.unknown

_1359704209.unknown

_1359704573.unknown

_1359610499.unknown

_1359370241.unknown

_1359095753.unknown

