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Java Technology Overview
● Java 2 Standard Edition (J2SE)

– Compiler, tools, runtime and APIs for Java application 
development

● Java 2 Enterprise Edition (J2EE)
– APIs for development, deployment and management 

of server-based, distributed, multi-tier and 
component-based applications

● Java 2 Micro Edition (J2ME)
– Highly optimized version for resource-limited 

consumer device software development



The Java™ 2 Platform

High-End
Server

Java Technology
Enabled Desktop

Workgroup
Server

Java Technology
Enabled Devices



Evolution of Enterprise Applications

● Single-Tier
– monolithic, direct connection

● Two-Tier
– fat clients

● Three-Tier
– Browser, Web Server, DB

– Remote Procedure Calls (RPC-based)

– Component-based (CORBA, RMI, DCOM)

DB
SQL

DB

SQL HTTP



Trends in Enterprise Applications

● Transition from single-tier/two-tier to 
multi-tier applications

● Transition from monolithic applications to 
object-based applications

● Transition from application "fat client" to a 
web browser client



Problems
● The "Middle Tier" is complex

● Each application must duplicate the same 
basic system services:
– concurrent access to resources

– transactional access to resources

– load-balancing among resources

– securing access to resources

– managing resources

– managing persistence of data



Solution - J2EE

J2EE provides
– a standard set of  Application Programming Interfaces 

(APIs), and

– a component-based architecture, and

– the idea of a container to provide standarized system 
services to all applications,

to reduce the complexity of "Middle Tier" 
programming



J2EE Contents
● Platform Specification

– Defines the standard APIs

● Reference Implementation and SDK

– Implements the complete specification as an operational definition 
of J2EE

● Compatability Test Suite

– Tests compliance with the standard, guarantees portability

● Blueprints

– Architecture and design guidelines



J2EE Platform Architecture



J2EE Core Concepts

● Open, published Specification

● Distributed Applications

● Component-Based

● Containers

● Packaging / Assembly

● Deployment

● Roles



J2EE Core Concepts (1)

● J2EE is an open, formal Specification
– What must be supported, but not how

– Agree on standard and compete on implementation

– Sun Microsystems participates but does not control 
the standard

● Applications are distributed
– Application components can run on different devices 

connected by a network



J2EE Core Concepts (2)
● Applications are based on components

– A component is an application-level unit of code

– Supported components:
● JavaBeans (from J2SE)

● Java Applets (client side)

● Java Application Clients (client side)

● Enterprise Java Beans (server side)
● Web Components (server side)

● Resource Adapter Components (server side)

– A component is responsible for:
● Presentation logic

● Business logic



J2EE Core Concepts (3)
● Applications run in containers providing:

– Services to components (transaction management, 
object distribution, concurrent access, security, 
persistence, resource management, life-cycle 
management)

– Standardized access methods to Enterprise 
Information Systems (EIS), such as SAP

– Control over application behaviour at assembly and 
deployment time, as well as at run time (in the code)



Components and Containers
Responsibilities

● Containers handle:
– Concurrency

– Security

– Availability

– Scaleability

– Persistence

– Transactions

– Life-cycle 
Management

● Components 
handle:
– Presentation logic

– Business logic



A Typical J2EE Environment



J2EE Core Concepts (4)
Packaging / Assembly
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J2EE Core Concepts (5)

● Deployment
– Applications are configurable at packaging/assemby 

AND deployment time via deployment descriptors

– Changes can be made without programming:
● Transactional behaviour

● Security characteristics (user/group, role assignments)

● External resource references (databases, EIS)

● Container-specific features (load-balancing, clustering)



Creation Assembly Deployment

Created by 
Component 
Developer

Assembled
and Augmented
by Application 

Assembler

Processed 
by Deployer

Deploy

Enterprise
Components

J2EE Container

J2EE APPJ2EE Modules

J2EE Core Concepts (6)
Roles

● Platform/Container provider
● Tools provider
● Component provider
● Application assembler
● Deployer
● System administrator

Administration



J2EE Application Architecture
● The J2EE Application Architecture defines - but 

does not require - these tiers:

– Client tier (the user interface)

● Browser-based clients

● Standalone application clients, including J2ME clients

● Non-Java clients;  eg, VB making HTTP requests

● Standards on the client tier - HTTP, HTML, XML

– Middle tier (one or more, client services and business logic)

● Web containers for Servlets and JSPs

● EJB containers for Enterprise Java Beans

– Back-end tier (data management)

● Oracle Database or EIS such as SAP



J2EE Application Architecture
Full Multi-Tier Example



J2EE End-to-End Architecture
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Best Practices/Design Patterns

● Java BluePrint for J2EE
– Guidelines, patterns and code examples

– http://java.sun.com/blueprints/enterprise

● J2EE Patterns
– Best practices and design strategies (common 

solutions to common problems)

– J2EE Pattern Catalog from the Sun Java Center



Benefits for Developers

● Containers provide common services

● Freedom on choice for servers, tools and 
components

● Comprehensive resources available

● Integration methods for existing 
information systems

● Configurable security model



Benefits for IT Managers

● Applications are portable

● No vendor lock-in

● Large marketplace, many vendors to 
choose from



J2EE APIs and Technologies
● JDBC (Java Database Connectivity)

● Java IDL (Interface Definition Language for CORBA)

● EJB (Enterprise Java Beans)

● Java Servlets

● JSP (Java Server Pages)

● JMS (Java Message Service)

● JNDI (Java Naming and Directory Interface)

● XML APIs (JAXP, JAXR, JAX-RPC)

● JavaMail

● J2EE Connector Architecture (JCA)

● Transactions (JTA / JTS)



J2EE/EIS Integration APIs

● J2EE Technologies used in EIS integration:

– J2EE Connector Architecture (JCA)
● For Enterprise Information Systems (EIS);  for example, SAP

– JDBC

● For Databases;  for example, ORACLE

– Java Message Service (JMS)
● For Message-Oriented-Middleware;  for example, SunONE Message Queue or 

IBM MQ Series

– Java Naming and Directory Interface (JNDI)
● For Directory Services;  for example, LDAP Directories

– JavaMail
● For E-Mail Systems



J2EE Integration Architecture



JCA Overview
● Process

– EIS provides a JCA-compliant adapter

– J2EE Application Server supports JCA

– EIS Adapter plugs into Application Server

– J2EE Applications running in Application Server access EIS via the 
Adapter

● EIS Vendors provide only one Adapter for all 
Application Servers

● EIS accessed in a standard way in all Application 
Servers



JCA Components



J2EE/SAP Integration Methods
● SAP Web Application Server (mySAP)

– "Fully J2EE Compatible"

– Java and/or ABAP Application runs in server

– Application --> Integration Engine --> SAP

– Adapters allow SAP Exchange Infrastructure to use Java to talk to external 
systems

● SAP Java Connector (JCo)

– SAP-specific Java adapter (deprecated in favour of JCA Adapter)

● SAP J2EE Connector Architecture (JCA) Adapter

– J2EE Application Server supports JCA

– SAP JCA Adapter supports JCA

– J2EE Application Server application calls SAP via the SAP Adapter



J2EE Releases
● J2EE 1.4:

– New APIs for core Web Services protocols

– New management and deployment APIs

– New versions of JSPs, EJBs, Connector APIs

● J2EE 1.5

– Simplification of J2EE Application Development

– Enhance the influence of J2EE in the entire Java Development 
Community

– XML Standards (XMLdsig, XML Encryption, WS-Security

– APIs (Portlets, Java Server Faces, JAXB)



Resources

● Starter Kit
– J2SE, J2EE and J2ME JDK software

– Java training and code samples

– Development tools, including Studio 5 IDE

– Web Services Tutorial and Building Services on the 
J2EE Platform

– J2EE Middleware



Resources continued
● http://java.sun.com/blueprints/enterprise/

• Blueprint - "Designing Enterprise Applications with the J2EE 
Platform, 2nd Edition"

● http://java.sun.com/j2ee

– Software, tutorials and documentation

● http://java.net

– Java Developer Portal

● http://wwws.sun.com/software/products/appsrvr/home_appsrv

– Sun Application Server product web site

● http://wwws.sun.com/software/sundev/index.html

– Sun Studio product web site



J2EE APIs and Technologies
● JDBC (Java Database Connectivity)

● Java IDL (Interface Definition Language for CORBA)

● EJB (Enterprise Java Beans)

● Java Servlets

● JSP (Java Server Pages)

● JMS (Java Message Service)

● JNDI (Java Naming and Directory Interface)

● XML APIs (JAXP, JAXR, JAX-RPC)

● JavaMail

● J2EE Connector Architecture (JCA)

● Transactions (JTA / JTS)



JDBC

● Standard API for accessing tabular data
– Connect to a database or tabular data source 

(including spreadsheets and flat files)

– Send SQL statements

– Process the results

● Packages:
– java.sql

– javax.sql

● http://java.sun.com/products/jdbc/index.html



Java IDL

● Adds CORBA capability

● Enables invocation of remote network 
services using OMG IDL and IIOP

● Includes an ORB for distributed computing 
using IIOP

● J2SE 1.3 includes the IDL-to-Java compiler
● http://java.sun.com/products/jdk/idl/index.html



Enterprise Java Beans
● Standard server-side component

● Session Beans
– Process and task management

● Entity Beans
– Persistent objects in a database

● Message-Driven Beans
– Send/receive asynchronous JMS messages

● http://java.sun.com/products/ejb/index.html



Java Servlets

● Component-based, platform-independent 
method for building web-based 
applications

● An applet that runs on the server side

● Generates dynamic content

● Packages:
– javax.servlet

– javax.servlet.http

● http://java.sun.com/products/servlet



Java Servlets vs. CGI
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Java Server Pages
● Extension of Java Servlets

● Separates the user interface from content 
generation

– Presentation in HTML or XML/XSLT

– Business logic in JavaBeans or Custom Tags

– Easier to maintain

● Packages:

– javax.servlet.jsp

– javax.servlet.jsp.tagext

● http://java.sun.com/products/jsp



Java Message Service

● Access to Enterprise Messaging, or 
Message Oriented Middleware, via 
standard API

● Requires a Message Provider (Sun Message 
Queue is built into Sun Application Server)

● Package javax.jms
● http://java.sun.com/products/jms



Java Naming and Directory 
Interface
● Standard extension to the Java Platform

● Unified interface to naming and directory 
services

● Class libraries and service providers for:
– LDAP, DNS, NIS/NIS+, CORBA COS Naming, RMI 

Registry, file system

● http://java.sun.com/products/jndi



XML APIs

● JAXP (Java API for XML Processing)
– Processing of XML documents using DOM, SAX and 

XSLT

● JAXR (Java API for XML Registries)
– Bindings for Web Services Registries - ebXML Registry 

and UDDI Registry v2.0

● JAX-RPC (Java API for XML-Based RPC)
– Core API for web services development/deployment

– Builds SOAP-based web services



JavaMail

● Platform-independent and protocol-
independent API to build mail and 
messaging applications

● Requires JavaBeans Activation Framework 
extension (javax.activation package)

● http://java.sun.com/products/javamail/index.html



J2EE Connector Architecture
● Standard architecture for connecting the 

J2EE platform to heterogenous Enterprise 
Information Systems (EIS) - such as SAP

● EIS vendor provides a standard resource 
adapter for its EIS

● Adapter plugs into the Application Server, 
providing connectivity between the EIS and 
the enterprise application

● http://java.sun.com/j2ee/connector



Transactions
● Supports distributed transaction 

management

● JTA (Java Transaction API)
– high-level, implementation-independent, protocol-

independent API allowing access to transactions

● JTS (Java Transaction Service)
– Implementation of a Transaction Manager supporting 

JTA

– Implementation of Java mapping to OMG Object 
Transaction Service (OTS) 1.1

● http://java.sun.com/j2ee/transactions.html



J2EE Flexibility

● J2EE specifies, but does not require, multi-
tier architectures

● Both the Web and EJB Containers are 
optional

● There is no bias or preference for one 
architecture over another;  however, there 
can be preferred ways of doing things



Possible Architectures

● Following are just three possibilities:

– Web-Oriented application

– Standalone-Client application

– Multi-Tier application



Web-Oriented

● Cases where EJB Container components would be overkill and deliver 
poor performance

● Web Container hosts presentation logic (JSP) and business logic (Java 
Servlets)

● Web Container components use JDBC, JMS and JCA to access EIS 
Resources



Standalone-Client

● Client accesses EJB Container components directly

– EJB Container components access EIS Resources via JDBC, JMS and JCA

● Client accesses content provided by Web Container components

– Client handles display logic

– Web container components handle business logic, may use EJB Container 
components for EIS access, or may access directly

● Client access EIS directly using JDBC, JMS and JCA

– Client handles all logic



Multi-Tier

● Client is a Web Browser

● Presentation and business logic provided by Web Container 
components

– Java Servlets recommended for request processing and application control

– JSPs recommended for user interface/display logic

● EJB Container components manage access to EIS resources using JDBC, 
JMS and JCA



Logical View

● Tries to use existing security services

● Role-based Security Implementation
– Role - Application Developer

● Declarative Security (deployment descriptors)

● Programmatic Security (Java code)

– Role - Application Deployer
● Configures Security Policy

– Role - Application Container (J2EE Container)
● Enforces Security Policy



Mechanisms
● Authentication

– Web-Tier Authentication

– EJB-Tier Authentication

– EIS-Tier Authentication

● Authorisation

– Declarative and Programmatic

– Provider and User of component

● Signing

● Encryption

– Integrity and Confidentiality

● Auditing



Why Use EJBs

● Takes advantages of the server-side 
component model;  that is, container 
services

● Separates business logic from system code

● Enables component portability across J2EE 
Servers and Operating Systems

● Enables configuration at deployment time 
as well as at development time



EJB Architecture



EJB Component Types
● Session Bean

– Implementation of Workflows or Services
– Stateless (no session state from request to request)
– Statefull (session state persists across requests)

● Entity Bean
– Represents state and behaviour of an actual Object
– State is persistent across requests and clients
– Container-Managed Persistence

● EJB Container manages database interaction
– Bean-Managed Persistence

● Programmer codes SQL statements to manage database interaction

● Message Driven Bean
– Allows the sending and receiving of JMS Messages within an EJB 

Container



J2EE and .NET Development

● J2EE
– One language (Java)

– Many platforms (Solaris, Windows, Linux...)

● .NET
– One platform (Windows)

● Mono effort in progress (Linux and UNIX)

– Many languages (C#, Managed C++, VB.NET...)


