
Optional
Packages

Java 2
Enterprise

Edition
(J2EE)

Java 2
Standard
Edition
(J2SE)

JVM

Java
Card
APIs

CardVM

Optional
Packages

Personal
 Basis Profile

Personal
Profile

Foundation Profile

CDC

MIDP

CLDC

KVM

Java 2 Platform Micro Edition
(J2METM)

The Java™ 2 Platform

Java Technology Overview
● Java 2 Standard Edition (J2SE)

– Compiler, tools, runtime and APIs for Java application
development

● Java 2 Enterprise Edition (J2EE)
– APIs for development, deployment and management

of server-based, distributed, multi-tier and
component-based applications

● Java 2 Micro Edition (J2ME)
– Highly optimized version for resource-limited

consumer device software development

The Java™ 2 Platform

High-End
Server

Java Technology
Enabled Desktop

Workgroup
Server

Java Technology
Enabled Devices

Evolution of Enterprise Applications

● Single-Tier
– monolithic, direct connection

● Two-Tier
– fat clients

● Three-Tier
– Browser, Web Server, DB

– Remote Procedure Calls (RPC-based)

– Component-based (CORBA, RMI, DCOM)

DB
SQL

DB

SQL HTTP

Trends in Enterprise Applications

● Transition from single-tier/two-tier to
multi-tier applications

● Transition from monolithic applications to
object-based applications

● Transition from application "fat client" to a
web browser client

Problems
● The "Middle Tier" is complex

● Each application must duplicate the same
basic system services:
– concurrent access to resources

– transactional access to resources

– load-balancing among resources

– securing access to resources

– managing resources

– managing persistence of data

Solution - J2EE

J2EE provides
– a standard set of Application Programming Interfaces

(APIs), and

– a component-based architecture, and

– the idea of a container to provide standarized system
services to all applications,

to reduce the complexity of "Middle Tier"
programming

J2EE Contents
● Platform Specification

– Defines the standard APIs

● Reference Implementation and SDK

– Implements the complete specification as an operational definition
of J2EE

● Compatability Test Suite

– Tests compliance with the standard, guarantees portability

● Blueprints

– Architecture and design guidelines

J2EE Platform Architecture

J2EE Core Concepts

● Open, published Specification

● Distributed Applications

● Component-Based

● Containers

● Packaging / Assembly

● Deployment

● Roles

J2EE Core Concepts (1)

● J2EE is an open, formal Specification
– What must be supported, but not how

– Agree on standard and compete on implementation

– Sun Microsystems participates but does not control
the standard

● Applications are distributed
– Application components can run on different devices

connected by a network

J2EE Core Concepts (2)
● Applications are based on components

– A component is an application-level unit of code

– Supported components:
● JavaBeans (from J2SE)

● Java Applets (client side)

● Java Application Clients (client side)

● Enterprise Java Beans (server side)
● Web Components (server side)

● Resource Adapter Components (server side)

– A component is responsible for:
● Presentation logic

● Business logic

J2EE Core Concepts (3)
● Applications run in containers providing:

– Services to components (transaction management,
object distribution, concurrent access, security,
persistence, resource management, life-cycle
management)

– Standardized access methods to Enterprise
Information Systems (EIS), such as SAP

– Control over application behaviour at assembly and
deployment time, as well as at run time (in the code)

Components and Containers
Responsibilities

● Containers handle:
– Concurrency

– Security

– Availability

– Scaleability

– Persistence

– Transactions

– Life-cycle
Management

● Components
handle:
– Presentation logic

– Business logic

A Typical J2EE Environment

J2EE Core Concepts (4)
Packaging / Assembly

EJB

App lication
C lient

M odule

WEB

WEB

Web
C lient

M odule

EJB
M odule

Deployment
Tool

APP

D DDD
1

2

3

1

2

3

J2EE APP

DD

DD

DD

DD

DD

EJB

EJB

J2EE Core Concepts (5)

● Deployment
– Applications are configurable at packaging/assemby

AND deployment time via deployment descriptors

– Changes can be made without programming:
● Transactional behaviour

● Security characteristics (user/group, role assignments)

● External resource references (databases, EIS)

● Container-specific features (load-balancing, clustering)

Creation Assembly Deployment

Created by
Component
Developer

Assembled
and Augmented
by Application

Assembler

Processed
by Deployer

Deploy

Enterprise
Components

J2EE Container

J2EE APPJ2EE Modules

J2EE Core Concepts (6)
Roles

● Platform/Container provider
● Tools provider
● Component provider
● Application assembler
● Deployer
● System administrator

Administration

J2EE Application Architecture
● The J2EE Application Architecture defines - but

does not require - these tiers:

– Client tier (the user interface)

● Browser-based clients

● Standalone application clients, including J2ME clients

● Non-Java clients; eg, VB making HTTP requests

● Standards on the client tier - HTTP, HTML, XML

– Middle tier (one or more, client services and business logic)

● Web containers for Servlets and JSPs

● EJB containers for Enterprise Java Beans

– Back-end tier (data management)

● Oracle Database or EIS such as SAP

J2EE Application Architecture
Full Multi-Tier Example

J2EE End-to-End Architecture

DBMS

ERP

CMS

EJB

EJB

Servlet

JSP

Web Container EJB Container

Server-Side
Presentation

Server-Side
Business Logic EIS

Client-Side
Presentation

XHTML/WML

MIDP Devices

HTML/XML

RMI/IIOP

Rich Clients

Browsers

J2CA

CORBA

JDBC

JMS

J2EE Application Server

XML/HTTP

SOAP/HTTP
B2B Application

SOAP/HTTP

SOAP

Best Practices/Design Patterns

● Java BluePrint for J2EE
– Guidelines, patterns and code examples

– http://java.sun.com/blueprints/enterprise

● J2EE Patterns
– Best practices and design strategies (common

solutions to common problems)

– J2EE Pattern Catalog from the Sun Java Center

Benefits for Developers

● Containers provide common services

● Freedom on choice for servers, tools and
components

● Comprehensive resources available

● Integration methods for existing
information systems

● Configurable security model

Benefits for IT Managers

● Applications are portable

● No vendor lock-in

● Large marketplace, many vendors to
choose from

J2EE APIs and Technologies
● JDBC (Java Database Connectivity)

● Java IDL (Interface Definition Language for CORBA)

● EJB (Enterprise Java Beans)

● Java Servlets

● JSP (Java Server Pages)

● JMS (Java Message Service)

● JNDI (Java Naming and Directory Interface)

● XML APIs (JAXP, JAXR, JAX-RPC)

● JavaMail

● J2EE Connector Architecture (JCA)

● Transactions (JTA / JTS)

J2EE/EIS Integration APIs

● J2EE Technologies used in EIS integration:

– J2EE Connector Architecture (JCA)
● For Enterprise Information Systems (EIS); for example, SAP

– JDBC

● For Databases; for example, ORACLE

– Java Message Service (JMS)
● For Message-Oriented-Middleware; for example, SunONE Message Queue or

IBM MQ Series

– Java Naming and Directory Interface (JNDI)
● For Directory Services; for example, LDAP Directories

– JavaMail
● For E-Mail Systems

J2EE Integration Architecture

JCA Overview
● Process

– EIS provides a JCA-compliant adapter

– J2EE Application Server supports JCA

– EIS Adapter plugs into Application Server

– J2EE Applications running in Application Server access EIS via the
Adapter

● EIS Vendors provide only one Adapter for all
Application Servers

● EIS accessed in a standard way in all Application
Servers

JCA Components

J2EE/SAP Integration Methods
● SAP Web Application Server (mySAP)

– "Fully J2EE Compatible"

– Java and/or ABAP Application runs in server

– Application --> Integration Engine --> SAP

– Adapters allow SAP Exchange Infrastructure to use Java to talk to external
systems

● SAP Java Connector (JCo)

– SAP-specific Java adapter (deprecated in favour of JCA Adapter)

● SAP J2EE Connector Architecture (JCA) Adapter

– J2EE Application Server supports JCA

– SAP JCA Adapter supports JCA

– J2EE Application Server application calls SAP via the SAP Adapter

J2EE Releases
● J2EE 1.4:

– New APIs for core Web Services protocols

– New management and deployment APIs

– New versions of JSPs, EJBs, Connector APIs

● J2EE 1.5

– Simplification of J2EE Application Development

– Enhance the influence of J2EE in the entire Java Development
Community

– XML Standards (XMLdsig, XML Encryption, WS-Security

– APIs (Portlets, Java Server Faces, JAXB)

Resources

● Starter Kit
– J2SE, J2EE and J2ME JDK software

– Java training and code samples

– Development tools, including Studio 5 IDE

– Web Services Tutorial and Building Services on the
J2EE Platform

– J2EE Middleware

Resources continued
● http://java.sun.com/blueprints/enterprise/

• Blueprint - "Designing Enterprise Applications with the J2EE
Platform, 2nd Edition"

● http://java.sun.com/j2ee

– Software, tutorials and documentation

● http://java.net

– Java Developer Portal

● http://wwws.sun.com/software/products/appsrvr/home_appsrv

– Sun Application Server product web site

● http://wwws.sun.com/software/sundev/index.html

– Sun Studio product web site

J2EE APIs and Technologies
● JDBC (Java Database Connectivity)

● Java IDL (Interface Definition Language for CORBA)

● EJB (Enterprise Java Beans)

● Java Servlets

● JSP (Java Server Pages)

● JMS (Java Message Service)

● JNDI (Java Naming and Directory Interface)

● XML APIs (JAXP, JAXR, JAX-RPC)

● JavaMail

● J2EE Connector Architecture (JCA)

● Transactions (JTA / JTS)

JDBC

● Standard API for accessing tabular data
– Connect to a database or tabular data source

(including spreadsheets and flat files)

– Send SQL statements

– Process the results

● Packages:
– java.sql

– javax.sql

● http://java.sun.com/products/jdbc/index.html

Java IDL

● Adds CORBA capability

● Enables invocation of remote network
services using OMG IDL and IIOP

● Includes an ORB for distributed computing
using IIOP

● J2SE 1.3 includes the IDL-to-Java compiler
● http://java.sun.com/products/jdk/idl/index.html

Enterprise Java Beans
● Standard server-side component

● Session Beans
– Process and task management

● Entity Beans
– Persistent objects in a database

● Message-Driven Beans
– Send/receive asynchronous JMS messages

● http://java.sun.com/products/ejb/index.html

Java Servlets

● Component-based, platform-independent
method for building web-based
applications

● An applet that runs on the server side

● Generates dynamic content

● Packages:
– javax.servlet

– javax.servlet.http

● http://java.sun.com/products/servlet

Java Servlets vs. CGI

Request CGI2

Request Servlet1

Request Servlet2

CGI
Based

Webserver
Child for CGI2

Servlet Based Webserver

JVM

Servlet1

Servlet2

Request CGI1
Child for CGI1

Java Server Pages
● Extension of Java Servlets

● Separates the user interface from content
generation

– Presentation in HTML or XML/XSLT

– Business logic in JavaBeans or Custom Tags

– Easier to maintain

● Packages:

– javax.servlet.jsp

– javax.servlet.jsp.tagext

● http://java.sun.com/products/jsp

Java Message Service

● Access to Enterprise Messaging, or
Message Oriented Middleware, via
standard API

● Requires a Message Provider (Sun Message
Queue is built into Sun Application Server)

● Package javax.jms
● http://java.sun.com/products/jms

Java Naming and Directory
Interface
● Standard extension to the Java Platform

● Unified interface to naming and directory
services

● Class libraries and service providers for:
– LDAP, DNS, NIS/NIS+, CORBA COS Naming, RMI

Registry, file system

● http://java.sun.com/products/jndi

XML APIs

● JAXP (Java API for XML Processing)
– Processing of XML documents using DOM, SAX and

XSLT

● JAXR (Java API for XML Registries)
– Bindings for Web Services Registries - ebXML Registry

and UDDI Registry v2.0

● JAX-RPC (Java API for XML-Based RPC)
– Core API for web services development/deployment

– Builds SOAP-based web services

JavaMail

● Platform-independent and protocol-
independent API to build mail and
messaging applications

● Requires JavaBeans Activation Framework
extension (javax.activation package)

● http://java.sun.com/products/javamail/index.html

J2EE Connector Architecture
● Standard architecture for connecting the

J2EE platform to heterogenous Enterprise
Information Systems (EIS) - such as SAP

● EIS vendor provides a standard resource
adapter for its EIS

● Adapter plugs into the Application Server,
providing connectivity between the EIS and
the enterprise application

● http://java.sun.com/j2ee/connector

Transactions
● Supports distributed transaction

management

● JTA (Java Transaction API)
– high-level, implementation-independent, protocol-

independent API allowing access to transactions

● JTS (Java Transaction Service)
– Implementation of a Transaction Manager supporting

JTA

– Implementation of Java mapping to OMG Object
Transaction Service (OTS) 1.1

● http://java.sun.com/j2ee/transactions.html

J2EE Flexibility

● J2EE specifies, but does not require, multi-
tier architectures

● Both the Web and EJB Containers are
optional

● There is no bias or preference for one
architecture over another; however, there
can be preferred ways of doing things

Possible Architectures

● Following are just three possibilities:

– Web-Oriented application

– Standalone-Client application

– Multi-Tier application

Web-Oriented

● Cases where EJB Container components would be overkill and deliver
poor performance

● Web Container hosts presentation logic (JSP) and business logic (Java
Servlets)

● Web Container components use JDBC, JMS and JCA to access EIS
Resources

Standalone-Client

● Client accesses EJB Container components directly

– EJB Container components access EIS Resources via JDBC, JMS and JCA

● Client accesses content provided by Web Container components

– Client handles display logic

– Web container components handle business logic, may use EJB Container
components for EIS access, or may access directly

● Client access EIS directly using JDBC, JMS and JCA

– Client handles all logic

Multi-Tier

● Client is a Web Browser

● Presentation and business logic provided by Web Container
components

– Java Servlets recommended for request processing and application control

– JSPs recommended for user interface/display logic

● EJB Container components manage access to EIS resources using JDBC,
JMS and JCA

Logical View

● Tries to use existing security services

● Role-based Security Implementation
– Role - Application Developer

● Declarative Security (deployment descriptors)

● Programmatic Security (Java code)

– Role - Application Deployer
● Configures Security Policy

– Role - Application Container (J2EE Container)
● Enforces Security Policy

Mechanisms
● Authentication

– Web-Tier Authentication

– EJB-Tier Authentication

– EIS-Tier Authentication

● Authorisation

– Declarative and Programmatic

– Provider and User of component

● Signing

● Encryption

– Integrity and Confidentiality

● Auditing

Why Use EJBs

● Takes advantages of the server-side
component model; that is, container
services

● Separates business logic from system code

● Enables component portability across J2EE
Servers and Operating Systems

● Enables configuration at deployment time
as well as at development time

EJB Architecture

EJB Component Types
● Session Bean

– Implementation of Workflows or Services
– Stateless (no session state from request to request)
– Statefull (session state persists across requests)

● Entity Bean
– Represents state and behaviour of an actual Object
– State is persistent across requests and clients
– Container-Managed Persistence

● EJB Container manages database interaction
– Bean-Managed Persistence

● Programmer codes SQL statements to manage database interaction

● Message Driven Bean
– Allows the sending and receiving of JMS Messages within an EJB

Container

J2EE and .NET Development

● J2EE
– One language (Java)

– Many platforms (Solaris, Windows, Linux...)

● .NET
– One platform (Windows)

● Mono effort in progress (Linux and UNIX)

– Many languages (C#, Managed C++, VB.NET...)

