
 CS 571!
Operating Systems!

Dr. Harry J Foxwell!

George Mason University!
Fall 2010!

1.2!GMU – CS 571!

Overview!
  Textbook!

•  Required: Operating System Concepts (8th edition), by Silberschatz, Galvin
and Gagne. John Wiley & Sons, 2008.!
  equivalent versions okay (w/Java, Intʼl Ed)!

•  Modern Operating Systems (3rd Edition, 2008), by  
 A. S. Tanenbaum!

  Grading!
•  Homework problems: 30%!
•  Midterm exam: 20%!
•  Research Paper: 20%!
•  Final Exam: 30%!

  Prerequisites!
•  Computer Architecture !
•  Working knowledge of C!

  C in a Nutshell, P.Prinz, 2006!
  Programming in C, S.Kochan, 3rd Ed, 2005!
  The Art of Concurrency, Breshears, 2009!
  Multicore Application Programming: for Windows, Linux, and Oracle

Solaris, D.Gove, 2010!

1.3!GMU – CS 571!

Computer Architecture Prerequisite  

•  Must have completed an undergraduate course on
Computer Architecture/Organization  
(e.g. at GMU: CS 465, ECE 445, INFS 515) or
equivalent !

•  Should be familiar with concepts such as: !
  Instruction set architectures!
  Assembly language (but not used in this course)!
  CPU control and datapaths!
  Instruction cycle (fetch/decode/execute)!
  Register Organization !
  Memory Hierarchy !
  Basic I/O Operations!

1.4!GMU – CS 571!

Programming Background!
  Must have completed a course on Data Structures and

Program Design (e.g. CS 310, INFS 519) or equivalent!

  Have working knowledge of C!
•  any platform experience, but we will program on

Linux and on Solaris!

  It is assumed that you are comfortable (not necessarily
fluent/master/wizard) with programming; the projects
will involve some advanced concepts that will build on
the fundamentals!
•  Multi-threaded programming!
•  Distributed system programming and design!

1.5!GMU – CS 571!

Operational Information!
  CS Office: Engineering Building, Room 4300!
  Office Hours:!

•  by appointment !
  E-mail: hfoxwell@cs.gmu.edu!

•  use Subject: CS571: …your subject…!

  Teaching Assistant: Changwei Liu, cliu6@gmu.edu!
  Computer Accounts on mason.gmu.edu or zeus.ite.gmu.edu
  Class Web Pages: !

•  http://cs.gmu.edu/~hfoxwell/ cs571!
•  http://c4ilab.gmu.edu/moodle!

  E-mails with additional info on lectures and assignments will be
sent to studentsʼ GMU e-mail addresses!
•  please manage your email account so that it does not max quota!!

  Slides will be available at class web page and Moodle!

1.6!GMU – CS 571!

Distance Education!
  CS 571 Fallʼ10 session is delivered to the Internet section

(Section DL1) online by Network EducationWare (NEW),
developed by Prof. Mark Pullen and his students at GMU.!

  Students in all sections have accounts on NEW and can
play back the lectures and download the PDF slide files at
http://c4ilab.gmu.edu/disted!

  Section DL1 (distance education) students will be given
the midterm and final exam on campus, on the same day
as Section 001 students!

1.7!

OS/Programming Environments!
  CS Department Systems!

•  Computer Accounts on mason.gmu.edu, zeus.ite.gmu.edu,
hercules.ite.gmu

  Your Systems!
•  Desktop or Laptop!
•  Linux (Fedora, Ubuntu, CentOS, …)!

  http://fedoraproject.org/!
  http://www.ubuntu.com/!
  http://centos.org/!

•  Solaris/OpenSolaris!
  http://www.oracle.com/technetwork/server-storage/solaris/

downloads/index.html!
•  Direct, Multi-boot, or Virtualized!

  VirtualBox (http://www.virtualbox.org/)!
  Parallels (http://www.parallels.com/products/)!
  VMware (http://www.vmware.com/products/workstation/)!

•  GNU C Compiler (gcc, IDE, vi, emacs, …)!
  assignments must compile and run on zeus!

GMU – CS 571!

1.8!GMU – CS 571!

Course Objectives!
  Why study operating systems?!

•  VMware says “operating systems are dead”. Agree?!
•  Is anyone innovating in operating systems? !

  Understanding the principles behind the design of server
and distributed operating systems!

  Observing how these principles are put into practice in real
operating systems!

  Discussing both “solved” and “open” problems and issues
in OS design, recent trends!

  Gaining hands-on experience in!
•  Multithreaded programming!
•  Distributed system programming and design!

1.9!GMU – CS 571!

Topics!
  Introduction!
  Threads and Processes !
  Inter-process Communication, Synchronization !
  CPU Scheduling !
  OS Observability!
  Memory Management & Virtual Memory!
  File and I/O Systems !
  Cache Concepts!
  Virtualization!
  Distributed Systems!

1.10!GMU – CS 571!

Lecture 1!

  Introduction!
•  What is an Operating System?!

  yesterday? today? future?!
– where do OSʼs run?!

•  Co-evolution of Computer Systems (processors)
and Operating System Concepts &Features!

  Computer System Structures!

  Operating System Structures!

1.11!GMU – CS 571!

What is an Operating System?!

  A program that acts as an intermediary between the
user of a computer and the computer hardware.!
•  generally is in charge of all device access!

  Operating system goals!
•  Convenience: Make the computer system convenient

to use.!
•  Efficiency: Manage the computer system resources in

an efficient manner!
•  Which one has priority? !

1.12!GMU – CS 571!

Computer System Components!

1. !Hardware – provides basic computing resources
(CPU, memory, I/O devices).!

2. !Operating system – controls and coordinates the use
of the hardware among the various application
programs for the various users.!

3. !Application programs – define the ways in which the
system resources are used to solve the computing
problems of the users (compilers, database systems,
video games, business programs).!

4. !Users, interfaces (CLI, GUI)!

1.13!GMU – CS 571!

Computer System Components!

User 1! User 2! User 3! User n!. . . !

System and Application Programs!

compiler! assembler! Text editor! Database system!

Operating System!

Hardware!

Virtualization
(Type 1) !

Virtualization!

(Type 2) !

1.14!GMU – CS 571!

Operating System Definitions: 
System View!

  Resource allocator – manages and allocates
resources. !

  Control program – controls and schedules the
execution of user programs and operations of I/O
devices.!

  Kernel – the one program running at all times (all else
being application programs).!

1.15!GMU – CS 571!

Co-evolution of Computer Systems and
Operating System Concepts !

  Mainframe Systems!
  Batch Systems !
  Multi-programmed Systems !
  Time-sharing Systems !
  Desktop Systems !
  Modern Variants!

•  Parallel Systems !
•  Distributed Systems !
•  Real-time and Embedded Systems !
•  Handheld Systems !

1.16!GMU – CS 571!

Mainframe Systems!
  First computers to tackle many commercial and scientific

applications!

  Mainframes evolved through batch, multiprogrammed and time-
shared systems!

  Early systems were afforded only by major government agencies
or universities:!
•  physically enormous machines run from a console.!
•  the user submitted the job to the human operator in the form of

punched cards. !
•  The operator collects the output and returns it to the user.!

  Batch systems: To speed up processing, operators batched
together jobs with similar needs and ran them through the
computer as a group. !

1.17!GMU – CS 571!

Multiprogrammed Systems!

Several (and not necessarily similar) jobs are kept in the main
memory at the same time, and the CPU is switched to another
job when I/O takes place. !

1.18!GMU – CS 571!

OS Features Needed  
for Multiprogramming!

  Job Scheduling – must choose the processes that
will be brought to memory!
•  problem: how are these choices made?!

  CPU Scheduling – must choose among several jobs
ready to run!
•  problem: how are these choices made?!

  Memory Management – must allocate the memory to
several jobs!
  problem: how are these choices made?!

  OS/360, developed by IBM to run on its System/360
series, was the first multiprogrammed operating
system.!

1.19!GMU – CS 571!

Time-Sharing Systems: 
Interactive Computing !

  Extension of multiprogrammed systems to allow  
on-line interaction with users. !

  Each user is provided with an on-line session. !
  Response time for each user should be short.!

  A single CPU is multiplexed among several jobs that
are kept in memory and on disk…!
•  …but what is a CPU today?!

  A job swapped in and out of memory to the disk.!
  CPU is allocated to another job when I/O takes place.!
  All active users must have a fair share of the CPU

time (e.g. 10 ms for each user). But what is “fair”?!

1.20!GMU – CS 571!

Desktop Systems!
  Personal computers – computer system originally

dedicated to a single user!
•  consequences of this approach?!

  I/O devices – keyboard, mouse, printers, USB
Memory stick, disks, …!

  Objective: User convenience and responsiveness.!
•  Individuals have sole use of computers !
•  A single user may not need advanced features of

mainframe OS (maximize utilization, protection).!
  whatʼs the assumption here?!

  Today, may run several different types of operating
systems (Windows, UNIX, BSD, MacOS, Linux)!
•  per system, multi-boot, or use V12N!

1.21!GMU – CS 571!

Parallel Systems!

  Multiprocessor systems with more than one CPU in
close communication.!

  Tightly coupled system – processors share memory
and a clock; communication usually takes place
through the shared memory.!

  Advantages of parallel system!
•  Increased throughput!
•  Economy of scale!
•  Increased reliability!

  graceful degradation!
  fault-tolerant systems!

  What are the challenges of parallelism?!

1.22!GMU – CS 571!

Parallel Systems (Cont.)!
  Symmetric multiprocessing (SMP)!

•  All processors are peers!
•  Kernel routines can execute on any different CPUs,

in parallel!

  Asymmetric multiprocessing!
•  Master/slave structure!
•  The kernel runs on a particular processor!
•  Other CPUs can execute user programs and OS

utilities.!
  Which is easier to design?!

1.23!GMU – CS 571!

Parallel Systems (Cont.)!
  Multi-core architectures!

•  Include multiple computing cores on a single chip!
  examples?!

•  Faster (really?) and more energy-efficient than multiple
chips with single cores !

1.24!GMU – CS 571!

Distributed Systems!
  Distribute the computation among several physical

processors.!

  Loosely coupled system – each processor has its
own local memory; processors communicate with
one another through various communications lines!

  Advantages of distributed systems!
•  Resource and Load Sharing !
•  Reliability, failover!
•  Communications!

1.25!GMU – CS 571!

Clustered Systems!

  A set of computers that share storage (but not main
memory) and that are closely linked via a fast local-
area network!

  Typically used to provide high availability services
through proper middleware!
•  Asymmetric versus symmetric modes !

  May be also used to support high performance
computing (HPC), or “grid computing”!
•  for massive scaling!

1.26!GMU – CS 571!

Real-Time and Embedded Systems!
  A real-time system is used when rigid time

requirements have been placed on the operation of a
processor or the flow of data. !

  An embedded system is a component of a more
complex system!
•  Control of a nuclear plant!
•  Missile guidance!
•  Control of home and car appliances (microwave oven,

DVD players, car engines, …)!

  Real-time systems !
•  have well-defined time constraints!

  “predictable latency”!
•  may be either hard or soft real-time.!

1.27!GMU – CS 571!

Real-Time Systems (Cont.)!

  Hard real-time!
•  Critical tasks must be completed on time!
•  Secondary storage limited or absent, data stored in

short term memory, or read-only memory (ROM)!

  Soft real-time!
•  No absolute timing guarantees (e.g. “best-effort

scheduling”)!
•  Limited utility in industrial control of robotics!
•  Useful in applications (multimedia, virtual reality)

requiring advanced operating-system features.!

1.28!GMU – CS 571!

Handheld Systems!

  Personal Digital Assistants (PDAs)!
•  iPhone, Droid, BlackBerry, …!

  really, computers that can make phone calls!
•  iPad, “tablet computers”, netbooks!

  Cellular telephones!
  Issues!

•  Limited memory!
•  Limited battery power!
•  Slow processors!
•  Small display screens!
•  but all these are getting better!

1.29!GMU – CS 571!

 Computer-System Structures!

  Computer System Organization!
  Instruction Execution !
  Computer System Operation!
  Interrupt Processing !
  Storage Structure!
  Storage Hierarchy!

1.30!GMU – CS 571!

Computer-System Organization!

System Bus!

1.31!GMU – CS 571!

Instruction Execution!

  While executing a program, the CPU:!
•  fetches the next instruction from memory!
•  decodes it to determine its type and operands!
•  executes it!

  May take multiple clock cycles to execute an instruction!
  Examples:!

•  LOAD R1, #3!
•  LOAD R2, M2!
•  STORE M3, R4!
•  ADD R1, R2, R3!

  Each type of CPU has a specific set of instructions that it
can execute (instruction-set architecture)!
•  x86, x64, SPARC, Power, MIPS, …!

1.32!GMU – CS 571!

Instruction Execution!

  Registers!
•  General registers!
•  Program Counter (PC): contains the memory address of

the next instruction to be fetched. !
•  Stack Pointer (SP): points to the top of the current stack

in memory. The stack contains one frame for each
procedure that has been entered but not yet exited.!

•  Program Status Word (PSW): contains the condition
code bits and various other control bits. !

  When time multiplexing the CPU, the operating
system will often stop the running program to (re)
start another one. In these cases, it must save the
“state information” (e.g. values of the registers).!
•  this is a “context switch”, and has performance impact !

1.33!GMU – CS 571!

Computer-System Operation!

  I/O devices and CPU can execute concurrently.!
  Each device controller has local buffer(s).!
  CPU moves data from/to main memory to/from local

buffers!
•  need to understand how OS handles caching!

  I/O is from/to the device to/from local buffer of
controller.!

  The device driver is a special operating system
software that interacts with the device controller.!

  Typically, the device controller informs CPU that it
has finished its operation by causing an interrupt.!

1.34!GMU – CS 571!

Interrupts!

  Important events are signaled to the CPU by an
interrupt!

  Hardware (e.g. a device controller) may raise an
interrupt by way of the system bus!

  Software may trigger an interrupt by executing a
special instruction called a system call (or, monitor
call)!

  Once the interrupt is detected (typically at the end of
each instruction), it must be dealt with through
interrupt processing sequence!

1.35!GMU – CS 571!

Classes of Interrupts!
  I/O Interrupts: Generated by an I/O controller, to signal

normal completion of an operation or to signal a variety of
error conditions.!

  Timer Interrupts: Generated by a timer within the
processor. This allows the operating system to perform
certain functions on a regular basis.!

  Hardware Failure Interrupts: Generated by a failure (e.g.
power failure or memory parity error). !

  Traps (Software Interrupts): Generated by some condition
that occurs as a result of an instruction execution!
•  Errors!
•  User request for an operating system service!

1.36!GMU – CS 571!

Interrupt Mechanism!

  Interrupt transfers control to the interrupt service routine
generally through the interrupt vector which contains
the addresses of all the service routines.!

  Interrupt Service Routines (ISRs): Separate segments of
code determine what action should be taken for each
type of interrupt.!

  Once the interrupt has been serviced by the ISR, the
control is returned to the interrupted program.!

  Need to save the “process state” before ISR takes over.!

  Modern operating systems are interrupt-driven.!
•  too many interrupts can affect performance!

1.37!GMU – CS 571!

Basic Interrupt Processing !
1.  The interrupt is issued !
2.  Processor finishes execution of current instruction!
3.  Processor signals acknowledgement of interrupt!
4.  Processor pushes PSW and PC onto control stack!
5.  Processor loads new PC value through the interrupt vector!
6.  ISR saves remainder of the process state information!
7.  ISR executes!
8.  ISR restores process state information!
9.  Old PSW and PC values are restored from the control stack!

  What if another interrupt occurs during interrupt processing?!
  How can we observe interrupts?!

1.38!GMU – CS 571!

Direct Memory Access Structure!

  Used for high-speed I/O devices able to transmit
information at (close to) memory speeds.!

  Device controller transfers blocks of data from buffer
storage directly to main memory without CPU
intervention.!

  Only one interrupt is generated per block, rather than
one interrupt per byte/word.!

1.39!GMU – CS 571!

Dual-Mode Operation!

  Operating System must protect itself and all other
programs (and their data) from any malfunctioning
program.!

  Provide hardware support to differentiate between at
least two modes of operations.!
1. !User mode – execution done on behalf of a user.!
2. Monitor mode (also kernel mode or system mode) –

execution done on behalf of operating system. !
3.  system constantly switches between user & kernel mode!

2.  how can we observe this?!

1.40!GMU – CS 571!

Dual-Mode Operation (Cont.)!

  Mode bit added to computer hardware to indicate the
current mode: monitor (0) or user (1).!

  When an interrupt occurs hardware switches to
monitor mode.!

Privileged instructions can be issued only in monitor
mode. !

monitor! user!

Interrupt!

set user mode!

1.41!GMU – CS 571!

Transition From User to Kernel Mode!

The system call can be executed by a generic trap (or,
syscall instruction). !

1.42!GMU – CS 571!

Storage Structure!

  Main memory – only large storage media that the CPU
can access directly…but S...L...O...W...!

  Secondary storage – extension of main memory that
provides large nonvolatile storage capacity.!

  Magnetic disks – rigid metal or glass platters covered
with magnetic recording material !
•  Disk surface is logically divided into tracks, which are

subdivided into sectors.!
•  The disk controller determines the logical interaction

between the device and the computer. !
  Flash (Solid State) “Disks” becoming more widely

used and cost-competitive with spinning disks!

1.43!

Size Matters!

(But note inverse relationship to latency)

MB!

GB!

TB!

PB!

PB!

TB!

1.44!

Latency Matters!!

Level Latency

NH L3 Cache 52 Clocks

Local Memory 150 ns

32 Core NUMA 3 Hops

SSD 125 us

Gb Ethernet 1 ms

Disk 3.6 ms

Time To Insight

Seconds Hours Days

1

9.23

31

7,692 2.14

61,538 17 .71

221,538 62 2.56

•  In 30 seconds, you can stop someone at the border!
•  In 2 hours, you can intercept someone!

•  In 2 days, actionable intelligence is forfeited!

Seconds

 1.62 x 10-8

1.5 X 10-7

5.19 x 10-7

1.25 x 10-4

1 x 10-3

3.6 x 10-3

1.45!GMU – CS 571!

Moving-Head Disk Mechanism!

1.46!GMU – CS 571!

Storage Hierarchy!

  Storage systems organized in hierarchy!
•  Speed!
•  Cost!
•  Volatility!

  Faster access time, greater cost per bit!
  Greater capacity, lower cost per bit!
  Greater capacity, slower access speed!

1.47!GMU – CS 571!

Storage-Device Hierarchy!

1.48!GMU – CS 571!

Cache Memory!

  Use of high-speed memory to hold recently-accessed
data.!

  Requires a cache management policy.!
  Caching is a rather general mechanism!

•  copying information into faster storage system !
•  e.g. main memory as a cache for secondary storage,

proxy server as a cache for remote web server,… !
•  introduces the consistency problem.!

1.49!GMU – CS 571!

Operating-System Structures!
  System Components!

•  Process Management !
•  Main Memory Management!
•  File System Management!
•  Mass Storage Management!
•  I/O System Management!
•  Protection and Security!

  User Operating-System Interface!
  System Calls!
  System Programs!

1.50!GMU – CS 571!

Process Management!

  A process is a program in execution!

  A process needs certain resources, including CPU
time, memory, files, and I/O devices to accomplish its
task!

  The operating system is responsible for!
•  Process creation and deletion!
•  Process suspension and resumption!
•  Provision of mechanisms for!

  Process synchronization!
  Process communication!
  Deadlock handling!

1.51!GMU – CS 571!

Main Memory Management!
  The main memory is !

•  a large array of words/bytes, each with its own address !
•  a volatile storage device!

  The operating system will!
•  Keep track of which parts of memory are currently

being used and by whom!
•  Decide which processes to load when memory space

becomes available!
•  Allocate and deallocate memory space as needed!

1.52!GMU – CS 571!

File System Management!

  A file is a collection of related information defined by
its creator !

  Commonly, files represent programs (both source
and object forms) and data!

  The operating system responsibilities!
•  File creation and deletion!
•  Directory creation and deletion!
•  Support of primitives for manipulating files and

directories!
•  Mapping files onto secondary storage!
•  File backup on stable (non-volatile) storage media!

1.53!GMU – CS 571!

Mass-Storage Management!

  The secondary storage backs up main memory and
provides additional storage.!

  Most common secondary storage type: disks !
  The operating system is responsible for !

•  Free space management!
•  Storage allocation!
•  Disk scheduling!

  For long-term archival storage, tertiary storage
devices may be used!
•  Magnetic tape, CD, DVD !

1.54!GMU – CS 571!

I/O System Management!

  The Operating System will hide the peculiarities of
specific hardware from the user.!

  In Unix, the I/O subsystem consists of:!
•  A buffering, caching and spooling system !
•  A general device-driver interface!
•  Drivers for specific hardware devices!

  Interrupt handlers and device drivers are crucial in
the design of efficient I/O subsystems.!

1.55!GMU – CS 571!

Protection and Security!

  Protection refers to a mechanism for controlling
access of processes, or users to the resources
defined by a computer system.!
•  authentication!
•  authorization!
•  Data CIA!

  Confidentiality, Integrity, Availability!
  Security system must provide defense against both

internal and external attacks!
•  Worms and viruses!
•  Denial of service attacks!
•  Buffer overflow attacks!
•  Lots of other horrible stuff (See Comp Sec Course!)!

1.56!GMU – CS 571!

User Operating-System Interface!

  Two main approaches!
•  Command-line interpreter (a.k.a command interpreter,

or shell)!
•  Graphical User Interfaces (GUI)!

  The shell !
•  allows users to directly enter commands that are to be

performed by the operating system!
•  is usually a system program (not part of the kernel)!

  GUI allows a mouse-based window-and-menu system!
•  WIMP: Windows, Icons, Menus, Pointer !

  Most general purpose systems allow both!

1.57!GMU – CS 571!

System Calls!
  System calls provide the interface between a running

program and the operating system.!
  Typically, application programmers design programs

using an application programming interface (API).!

  The run-time support system (run-time libraries)
provides a system-call interface, that intercepts
function calls in the API and invokes the necessary
system call within the operating system.!

  The library routines check the arguments given by
the application, build a data structure to convey the
arguments to the kernel, and then execute a
privileged instruction (trap or syscall), which
triggers the interrupt processing sequence. !

1.58!GMU – CS 571!

Example System-Call Processing!

1.59!GMU – CS 571!

Major System Calls in Unix : 
Process Management !

  pid = fork() !
•  Create a child process identical to the parent!

  pid = waitpid(pid, &statloc, options)!
•  Wait for a child to terminate!

  s = execve(name, argv, environp) !
•  Replace a processʼ core image!

  exit(status)!
•  Terminate process execution and return status!

  s = kill (pid, signal)!
•  Send a signal to a process!

1.60!GMU – CS 571!

Major System Calls in Unix : 
File Management !

  fd = open (file, how, …) !
•  Open a file for reading, writing or both!

  s = close (fd)!
•  Close an open file!

  n = read (fd, buffer, nbytes)!
•  Read data from a file into a buffer!

  n = write (fd, buffer, nbytes) !
•  Write data from a buffer into a file!

  position = lseek(fd, offset, whence)!
•  Move the file pointer!

  s = stat(name, &buf)!
•  Get a fileʼs status information!

1.61!GMU – CS 571!

Major System Calls in Unix : 
Directory and File System Management!
  s = mkdir(name, mode) !

•  Create a new directory!
  s = rmdir (name)!

•  Remove an empty directory !
  s = link (name1, name2) !

•  Create a new directory, name2, pointing to name1!
  s = unlink (name) !

•  Remove a directory entry!
  s = mount (special, name, flag)!

•  Mount a file system !
  s = umount(special) !

•  Unmount a file system!

1.62!GMU – CS 571!

System Programs!
  System programs provide a convenient environment

for program development. !
  They can provide various services!

•  Status information!
•  File modification!
•  Programming language support!
•  Program loading and execution!
•  Communications!

  Most usersʼ view of the operating system is defined
by system programs, not by the actual system calls. !

1.63!

Major Questions!

  How can we know that an operating system is doing
what it is designed to do? correctly? efficiently? !

  What tools are available to observe operating system
actions? are they “safe” to use?!

GMU – CS 571!

