POSIX Thread Programming

" Standard Thread Library for POSIX-compliant
systems

" Supports thread creation and management
" Synchronization using

— mutex variables

— condition variables

® At the time of creation, different attributes can be
assigned to

— threads
— mutex/condition variables

GMU - CS 571 4.1

Using Posix Thread Library

" To use this library, #include <pthread.h> in your
program.

" In some systems, you may need to link with the
pthread library explicitly:

gcc hello.c -o hello —pthread

GMU - CS 571 4.2

Data Types in POSIX

" sgpecial data type for threads

" mutex variables for mutual exclusion
* mutex variables are like binary semaphores

* a mutex variable can be in either locked or unlocked
state

" condition variables using which a thread can sleep
until some other thread signals the condition

® various kind of attribute types used when initializing:
* threads
* mutex variables
* condition variables

GMU - CS 571 4.3

Functions and Data Types

= All POSIX thread functions have the form:
pthread[_object | _operation

" Most of the POSIX thread library functions return
0 in case of success and some non-zero error-
number in case of a failure.

GMU - CS 571 4.4

Data Types (Cont.)

" Following are the important data types in POSIX library

* pthread_t Thread ID for a thread object

* pthread_mutex_t Mutual exclusion lock variable
* pthread cond_t Condition variable

* pthread_attr t Thread attribute variable

* pthread _mutexattr_t Mutex lock variable attribute

* pthread_condattr_t Condition variable attribute

GMU - CS 571 4.5

Setting Thread Attributes

" Define and initialize attribute object:
pthread_attr t attr;
pthread_attr_init (&attr);

" For example, a thread may be created with specification
of certain attributes such stack address and stack size

" Programmers new to multi-threading can simply use
“default attributes” when creating the thread, mutex locks
and condition variables.

* In that case, simply indicate NULL as the pointer to the
attribute variable.

GMU - CS 571 4.6

Thread Creation

" pthread_create function is used to create a new
thread.

An example:
pthread_t produceriD;
pthread create (&produceriD, NULL, producer, NULL),

" First argument is the ID of the new thread
® Second argument is a pointer to pthread_attr_t
" Third argument is thread (function) name

" Fourth argument is a pointer to the argument of the
thread

GMU - CS 571 4.7

Thread Creation

pthread_create (

pthread_t * threadID, // thread

const pthread_attr_t *attr,

// attribute object

void * (* FunctionName) (void *),

// Function pointer with one pointer argument
void * arg)

// Pointer to the argument of the thread

GMU - CS 571 4.8

Thread Exit and Join

If any thread executes the system call exit(), the
process terminates.

If the main thread completes its execution, it
implicitly calls exit(), and this again terminates
the process.

A thread (the main, or another thread) can exit
by calling pthread_exit(), this does not
terminate the process.

A thread can wait for the completion of another
thread by using

pthread_join (pthread_t thread, void **status)

GMU - CS 571 4.9

Mutex Variables
® Used for mutual exclusion locks.
" A mutex variable can be either locked or unlocked
pthread _mutex_t lock; // lock is a mutex variable

" Lock operation
pthread_mutex_lock(&lock);

" Unlock operation
pthread_mutex_unlock(&lock);

" Initialization of a mutex variable by default attributes
pthread _mutex_init(&lock, NULL);

GMU - CS 571 4.10

Mutex Variables

pthread_mutex_t mutex;
pthread_mutex_init(&mutex, NULL);
pthread _mutex_lock (&mutex);

// Blocks to acquire the lock

pthread_mutex_unlock (&mutex);

" There is also pthread_mutex_trylock: If the
mutex is currently locked, returns immediately
EBUSY. Otherwise, the calling thread becomes
owner until it unlocks.

GMU - CS 571 4.11

Condition Variables

" In a critical section, a thread can suspend itself
on a condition variable if the state of the
computation is not right for it to proceed.

* It will suspend itself by waiting on a condition
variable.

* [t will, however, release the critical section
(mutex) lock at the same time.

* When that condition variable is signaled, it will no
longer be blocked because of the “condition”:
but it will still need to attempt to reacquire that
critical section lock and only then will be able to
proceed.

® With Posix threads, a condition variable can be
associated with only one mutex variable!

GMU - CS 571 412

Condition Variables

" pthread cond_t SpaceAvailable;
" pthread _cond_init (&SpaceAvailable, NULL);

" pthread cond_wait
" pthread cond_signal

unblock one waiting thread on that condition variable
(that thread should still get the “lock” before
proceeding)

" pthread_cond_broadcast

unblock all waiting threads on that condition variable

* Now all of them will compete to get the “lock”

* Only one at a time can succeed; others must wait for a
later opportunity

GMU - CS 571 413

Condition Variables

Example:

pthread_mutex_lock (&mutex);

pthread cond_wait (&SpaceAvailable, &mutex),;
// now proceed again

pthread_mutex_unlock(&mutex);

" Some other thread will execute:
pthread_cond_signal (&SpaceAvailable);

" The signaling thread has priority over any thread
that may be awakened

* - “Signal-and-continue” semantics

GMU - CS 571 414

Producer-Consumer Problem

" Producer will produce a sequence of integers,
and deposit each integer in a bounded buffer

(implemented as an array).

® All integers are positive, 1...n

" Producer can deposit -1 when finished, and then
terminate.

" Buffer is of finite size: 5 in this example.

" Consumer will remove integers, one at a time,
and print them.

" |t will terminate when it receives -1.

GMU - CS 571 4.15

Definitions and Globals

#include<pthread.h>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
constint N =5;

int Buffer[5];

intin =0;

int out = 0;

int count = 0;
pthread_mutex_t lock;
pthread_cond_t SpaceAvailable, ltemAvailable;

GMU - CS 571 4.16

Producer Thread

void * producer (void *arg)
{inti;
for (i=0;i<1000; i++) {
pthread_mutex_lock (&lock); /* Enter critical section */
while (count == N) /* Make sure that buffer is NOT full */
pthread_cond_wait (&SpaceAvailable, &lock) ;
/* Sleep using a condition variable */
/* now count must be less than N */
Buffer[in] =1i; /* Put item in the buffer using "in" */
in=(in+1) % N;
count++; /* Increment the count of items in the buffer */

GMU - CS 571 417

Producer Thread (Cont.)

pthread_mutex_unlock (&lock);
pthread_cond_signal(<emAvailable);
/* Wakeup consumer, if waiting */
} /* End of For loop */
/* Put -1 in the buffer to indicate completion to the consumer */
pthread_mutex_lock (&lock);
while (count==N)

pthread_cond_wait(&SpaceAvailable, &lock) ;
Buffer[in] =-1; in = (in + 1) % N; count++;
pthread_mutex_unlock (&lock);
pthread_cond_signal(<emAvailable);
/* Wakeup consumer, if waiting */
} // End of producer

GMU - CS 571 4.18

Consumer Thread

void * consumer (void *arg)

{inti=0;

do {

pthread_mutex_lock (&lock); /* Enter critical section */

while (count == 0) /* Make sure that buffer is NOT empty */
pthread_cond_wait(<emAvailable, &lock) ;

/* Sleep using a condition variable */

/* count must be >0 */

i = Buffer[out] ; /* Remove item from the buffer using "out" */

out = (out+1) % N;

count--; /* Decrement the count of items in the buffer */

GMU - CS 571 4.19

Consumer Thread (Cont.)

printf("Removed %d \n", i);

pthread_mutex_unlock (&lock); /* exit critical section */
pthread_cond_signal(&SpaceAvailable);

/* Wakeup producer, if waiting */

} while (i!=-1); /* End of Do loop */

} // End of consumer

GMU - CS 571 4.20

Main program

main()

{

pthread_t prod, cons; /* thread variables */

int n;

pthread_mutex_init(&lock, NULL);
pthread_cond_init (&SpaceAvailable, NULL);
pthread_cond_init (<emAvailable, NULL);

/* Create producer thread */

if (n = pthread_create(&prod, NULL, producer ,NULL)) {
fprintf(stderr," pthread_create :%s\n" ,strerror(n));
exit(1);

}

GMU - CS 571 4.21

Main Program (Cont.)

/* Create consumer thread */

if (n = pthread_create(&cons, NULL, consumer, NULL))
{

fprintf(stderr," pthread_create :%s\n",strerror(n));
exit(1);

}
/* Wait for the consumer thread to finish. */
if (n = pthread_join(cons, NULL)) {
fprintf(stderr," pthread_join:%s\n" ,strerror(n));
exit(1);

}

printf(" Finished execution \n");
} // End of main

GMU - CS 571 4.22

Working on Your Program

" First solve the problem with pen and paper before
starting to code

® Writing multithreaded programs is tricky, be careful
with the use of pointers and thread functions.

" Refer to multithreaded programming guides and
references when in doubt
Resources link at

GMU - CS 571 4.23

