
4.1!GMU – CS 571!

POSIX Thread Programming!

  Standard Thread Library for POSIX-compliant
systems!

  Supports thread creation and management !
  Synchronization using!
 – mutex variables!
 – condition variables!
  At the time of creation, different attributes can be

assigned to!
 – threads!
 – mutex/condition variables!

4.2!GMU – CS 571!

Using Posix Thread Library!
  To use this library, #include <pthread.h> in your!
 program.!

  In some systems, you may need to link with the
pthread library explicitly:!

 gcc hello.c -o hello –pthread!

4.3!GMU – CS 571!

Data Types in POSIX!
  special data type for threads!

  mutex variables for mutual exclusion!
•  mutex variables are like binary semaphores!
•  a mutex variable can be in either locked or unlocked

state  

  condition variables using which a thread can sleep!
 until some other thread signals the condition!

  various kind of attribute types used when initializing:!
•  threads!
•  mutex variables!
•  condition variables!

4.4!GMU – CS 571!

Functions and Data Types!
  All POSIX thread functions have the form:!
 pthread[_object] _operation!

  Most of the POSIX thread library functions return
0 in case of success and some non-zero error-
number in case of a failure.!

4.5!GMU – CS 571!

Data Types (Cont.)!
  Following are the important data types in POSIX library!

•  pthread_t Thread ID for a thread object!

•  pthread_mutex_t Mutual exclusion lock variable!

•  pthread_cond_t Condition variable!

•  pthread_attr_t Thread attribute variable!

•  pthread_mutexattr_t Mutex lock variable attribute!

•  pthread_condattr_t Condition variable attribute!

4.6!GMU – CS 571!

Setting Thread Attributes!
  Define and initialize attribute object:!
 pthread_attr_t attr;!
 pthread_attr_init (&attr);!

  For example, a thread may be created with specification
of certain attributes such stack address and stack size!

  Programmers new to multi-threading can simply use
“default attributes” when creating the thread, mutex locks
and condition variables. !
•  In that case, simply indicate NULL as the pointer to the

attribute variable. !

4.7!GMU – CS 571!

Thread Creation!
  pthread_create function is used to create a new!
 thread.!

An example: !
pthread_t producerID;!
pthread_create (&producerID, NULL, producer, NULL);!

  First argument is the ID of the new thread!
  Second argument is a pointer to pthread_attr_t!
  Third argument is thread (function) name!
  Fourth argument is a pointer to the argument of the!
 thread!

4.8!GMU – CS 571!

Thread Creation!
pthread_create (!
pthread_t * threadID, // thread!
const pthread_attr_t *attr,!
// attribute object!
void * (* FunctionName) (void *),!
// Function pointer with one pointer argument!
void * arg)!
// Pointer to the argument of the thread!

4.9!GMU – CS 571!

Thread Exit and Join!
  If any thread executes the system call exit(), the!
 process terminates.!
  If the main thread completes its execution, it

implicitly calls exit(), and this again terminates
the process.!

  A thread (the main, or another thread) can exit
by calling pthread_exit(), this does not
terminate the process.!

  A thread can wait for the completion of another
thread by using!

 pthread_join (pthread_t thread, void **status)!

4.10!GMU – CS 571!

Mutex Variables!
  Used for mutual exclusion locks.!
  A mutex variable can be either locked or unlocked!
 pthread_mutex_t lock; // lock is a mutex variable!

  Lock operation!
 pthread_mutex_lock(&lock);!

  Unlock operation!
 pthread_mutex_unlock(&lock);!

  Initialization of a mutex variable by default attributes!
 pthread_mutex_init(&lock, NULL);!

4.11!GMU – CS 571!

Mutex Variables!
pthread_mutex_t mutex;!
pthread_mutex_init(&mutex, NULL);!
pthread_mutex_lock (&mutex);!
// Blocks to acquire the lock!
......!
 critical section!
..…!
pthread_mutex_unlock (&mutex);!

  There is also pthread_mutex_trylock: If the
mutex is currently locked, returns immediately
EBUSY. Otherwise, the calling thread becomes
owner until it unlocks. !

4.12!GMU – CS 571!

Condition Variables!
  In a critical section, a thread can suspend itself

on a condition variable if the state of the
computation is not right for it to proceed.!
•  It will suspend itself by waiting on a condition

variable.!
•  It will, however, release the critical section

(mutex) lock at the same time.!
•  When that condition variable is signaled, it will no

longer be blocked because of the “condition”: 
but it will still need to attempt to reacquire that
critical section lock and only then will be able to
proceed.!

  With Posix threads, a condition variable can be
associated with only one mutex variable!!

4.13!GMU – CS 571!

Condition Variables!
  pthread_cond_t SpaceAvailable;!
  pthread_cond_init (&SpaceAvailable, NULL);!

  pthread_cond_wait!
  pthread_cond_signal!
 unblock one waiting thread on that condition variable

(that thread should still get the “lock” before
proceeding)!

  pthread_cond_broadcast!
 unblock all waiting threads on that condition variable !

•  Now all of them will compete to get the “lock”!
•  Only one at a time can succeed; others must wait for a

later opportunity !

4.14!GMU – CS 571!

Condition Variables!

Example:!
pthread_mutex_lock (&mutex);!
.!
pthread_cond_wait (&SpaceAvailable, &mutex);!
// now proceed again!
. . .!
pthread_mutex_unlock(&mutex);!

  Some other thread will execute:!
pthread_cond_signal (&SpaceAvailable);!

  The signaling thread has priority over any thread
that may be awakened!
•  – “Signal-and-continue” semantics!

4.15!GMU – CS 571!

Producer-Consumer Problem!
  Producer will produce a sequence of integers,

and deposit each integer in a bounded buffer!
 (implemented as an array).!
  All integers are positive, 1…n!
  Producer can deposit -1 when finished, and then!
 terminate.!
  Buffer is of finite size: 5 in this example.!
  Consumer will remove integers, one at a time,

and print them.!
  It will terminate when it receives -1.!

4.16!GMU – CS 571!

Definitions and Globals!
#include<pthread.h>!
#include<stdio.h>!
#include<stdlib.h> !
#include<string.h>!
const int N = 5;!
int Buffer[5];!
int in = 0;!
int out = 0;!
int count = 0;!
pthread_mutex_t lock;!
pthread_cond_t SpaceAvailable, ItemAvailable;!

4.17!GMU – CS 571!

Producer Thread!
void * producer (void *arg)!
{ int i;!
 for (i = 0; i< 1000; i++) {!
 pthread_mutex_lock (&lock); /* Enter critical section */!
 while (count == N) /* Make sure that buffer is NOT full */!
 pthread_cond_wait (&SpaceAvailable, &lock) ;!
/* Sleep using a condition variable */!
/* now count must be less than N */!
 Buffer[in] = i; /* Put item in the buffer using "in" */!
 in = (in + 1) % N;!
 count++; /* Increment the count of items in the buffer */!

4.18!GMU – CS 571!

Producer Thread (Cont.)!

pthread_mutex_unlock (&lock);!
pthread_cond_signal(&ItemAvailable);!
/* Wakeup consumer, if waiting */!
} /* End of For loop */!
/* Put -1 in the buffer to indicate completion to the consumer */!
pthread_mutex_lock (&lock);!
while (count == N)!
 pthread_cond_wait(&SpaceAvailable, &lock) ;!
Buffer[in] = -1; in = (in + 1) % N; count++;!
pthread_mutex_unlock (&lock);!
pthread_cond_signal(&ItemAvailable);!
/* Wakeup consumer, if waiting */!
} // End of producer!

4.19!GMU – CS 571!

Consumer Thread!

void * consumer (void *arg)!
{ int i = 0;!
do {!
pthread_mutex_lock (&lock); /* Enter critical section */!
while (count == 0) /* Make sure that buffer is NOT empty */!
 pthread_cond_wait(&ItemAvailable, &lock) ;!
/* Sleep using a condition variable */!
/* count must be > 0 */!
i = Buffer[out] ; /* Remove item from the buffer using "out" */!
out = (out + 1) % N;!
count--; /* Decrement the count of items in the buffer */!

4.20!GMU – CS 571!

Consumer Thread (Cont.)!
printf("Removed %d \n", i);!
pthread_mutex_unlock (&lock); /* exit critical section */!
pthread_cond_signal(&SpaceAvailable);!
/* Wakeup producer, if waiting */!
} while (i != -1); /* End of Do loop */!
} // End of consumer!

4.21!GMU – CS 571!

Main program !
main()!
{!
pthread_t prod, cons; /* thread variables */!
int n;!
pthread_mutex_init(&lock, NULL);!
pthread_cond_init (&SpaceAvailable, NULL);!
pthread_cond_init (&ItemAvailable, NULL);!
/* Create producer thread */!
if (n = pthread_create(&prod, NULL, producer ,NULL)) {!
fprintf(stderr,"pthread_create :%s\n",strerror(n));!
exit(1);!
 }!

4.22!GMU – CS 571!

Main Program (Cont.)!
/* Create consumer thread */!
if (n = pthread_create(&cons, NULL, consumer, NULL))

{!
fprintf(stderr,"pthread_create :%s\n",strerror(n));!
exit(1);!
 }!
/* Wait for the consumer thread to finish. */!
if (n = pthread_join(cons, NULL)) {!
fprintf(stderr,"pthread_join:%s\n",strerror(n));!
exit(1);!
 }!
printf("Finished execution \n");!
} // End of main!

4.23!GMU – CS 571!

Working on Your Program!

  First solve the problem with pen and paper before
starting to code!

  Writing multithreaded programs is tricky, be careful
with the use of pointers and thread functions.!

  Refer to multithreaded programming guides and
references when in doubt  
Resources link at
http://cs.gmu.edu/~aydin/cs571/resources.html!

