
4.1!GMU – CS 571!

POSIX Thread Programming!

  Standard Thread Library for POSIX-compliant
systems!

  Supports thread creation and management !
  Synchronization using!
 – mutex variables!
 – condition variables!
  At the time of creation, different attributes can be

assigned to!
 – threads!
 – mutex/condition variables!

4.2!GMU – CS 571!

Using Posix Thread Library!
  To use this library, #include <pthread.h> in your!
 program.!

  In some systems, you may need to link with the
pthread library explicitly:!

 gcc hello.c -o hello –pthread!

4.3!GMU – CS 571!

Data Types in POSIX!
  special data type for threads!

  mutex variables for mutual exclusion!
•  mutex variables are like binary semaphores!
•  a mutex variable can be in either locked or unlocked

state  

  condition variables using which a thread can sleep!
 until some other thread signals the condition!

  various kind of attribute types used when initializing:!
•  threads!
•  mutex variables!
•  condition variables!

4.4!GMU – CS 571!

Functions and Data Types!
  All POSIX thread functions have the form:!
 pthread[_object] _operation!

  Most of the POSIX thread library functions return
0 in case of success and some non-zero error-
number in case of a failure.!

4.5!GMU – CS 571!

Data Types (Cont.)!
  Following are the important data types in POSIX library!

•  pthread_t Thread ID for a thread object!

•  pthread_mutex_t Mutual exclusion lock variable!

•  pthread_cond_t Condition variable!

•  pthread_attr_t Thread attribute variable!

•  pthread_mutexattr_t Mutex lock variable attribute!

•  pthread_condattr_t Condition variable attribute!

4.6!GMU – CS 571!

Setting Thread Attributes!
  Define and initialize attribute object:!
 pthread_attr_t attr;!
 pthread_attr_init (&attr);!

  For example, a thread may be created with specification
of certain attributes such stack address and stack size!

  Programmers new to multi-threading can simply use
“default attributes” when creating the thread, mutex locks
and condition variables. !
•  In that case, simply indicate NULL as the pointer to the

attribute variable. !

4.7!GMU – CS 571!

Thread Creation!
  pthread_create function is used to create a new!
 thread.!

An example: !
pthread_t producerID;!
pthread_create (&producerID, NULL, producer, NULL);!

  First argument is the ID of the new thread!
  Second argument is a pointer to pthread_attr_t!
  Third argument is thread (function) name!
  Fourth argument is a pointer to the argument of the!
 thread!

4.8!GMU – CS 571!

Thread Creation!
pthread_create (!
pthread_t * threadID, // thread!
const pthread_attr_t *attr,!
// attribute object!
void * (* FunctionName) (void *),!
// Function pointer with one pointer argument!
void * arg)!
// Pointer to the argument of the thread!

4.9!GMU – CS 571!

Thread Exit and Join!
  If any thread executes the system call exit(), the!
 process terminates.!
  If the main thread completes its execution, it

implicitly calls exit(), and this again terminates
the process.!

  A thread (the main, or another thread) can exit
by calling pthread_exit(), this does not
terminate the process.!

  A thread can wait for the completion of another
thread by using!

 pthread_join (pthread_t thread, void **status)!

4.10!GMU – CS 571!

Mutex Variables!
  Used for mutual exclusion locks.!
  A mutex variable can be either locked or unlocked!
 pthread_mutex_t lock; // lock is a mutex variable!

  Lock operation!
 pthread_mutex_lock(&lock);!

  Unlock operation!
 pthread_mutex_unlock(&lock);!

  Initialization of a mutex variable by default attributes!
 pthread_mutex_init(&lock, NULL);!

4.11!GMU – CS 571!

Mutex Variables!
pthread_mutex_t mutex;!
pthread_mutex_init(&mutex, NULL);!
pthread_mutex_lock (&mutex);!
// Blocks to acquire the lock!
......!
 critical section!
..…!
pthread_mutex_unlock (&mutex);!

  There is also pthread_mutex_trylock: If the
mutex is currently locked, returns immediately
EBUSY. Otherwise, the calling thread becomes
owner until it unlocks. !

4.12!GMU – CS 571!

Condition Variables!
  In a critical section, a thread can suspend itself

on a condition variable if the state of the
computation is not right for it to proceed.!
•  It will suspend itself by waiting on a condition

variable.!
•  It will, however, release the critical section

(mutex) lock at the same time.!
•  When that condition variable is signaled, it will no

longer be blocked because of the “condition”: 
but it will still need to attempt to reacquire that
critical section lock and only then will be able to
proceed.!

  With Posix threads, a condition variable can be
associated with only one mutex variable!!

4.13!GMU – CS 571!

Condition Variables!
  pthread_cond_t SpaceAvailable;!
  pthread_cond_init (&SpaceAvailable, NULL);!

  pthread_cond_wait!
  pthread_cond_signal!
 unblock one waiting thread on that condition variable

(that thread should still get the “lock” before
proceeding)!

  pthread_cond_broadcast!
 unblock all waiting threads on that condition variable !

•  Now all of them will compete to get the “lock”!
•  Only one at a time can succeed; others must wait for a

later opportunity !

4.14!GMU – CS 571!

Condition Variables!

Example:!
pthread_mutex_lock (&mutex);!
.!
pthread_cond_wait (&SpaceAvailable, &mutex);!
// now proceed again!
. . .!
pthread_mutex_unlock(&mutex);!

  Some other thread will execute:!
pthread_cond_signal (&SpaceAvailable);!

  The signaling thread has priority over any thread
that may be awakened!
•  – “Signal-and-continue” semantics!

4.15!GMU – CS 571!

Producer-Consumer Problem!
  Producer will produce a sequence of integers,

and deposit each integer in a bounded buffer!
 (implemented as an array).!
  All integers are positive, 1…n!
  Producer can deposit -1 when finished, and then!
 terminate.!
  Buffer is of finite size: 5 in this example.!
  Consumer will remove integers, one at a time,

and print them.!
  It will terminate when it receives -1.!

4.16!GMU – CS 571!

Definitions and Globals!
#include<pthread.h>!
#include<stdio.h>!
#include<stdlib.h> !
#include<string.h>!
const int N = 5;!
int Buffer[5];!
int in = 0;!
int out = 0;!
int count = 0;!
pthread_mutex_t lock;!
pthread_cond_t SpaceAvailable, ItemAvailable;!

4.17!GMU – CS 571!

Producer Thread!
void * producer (void *arg)!
{ int i;!
 for (i = 0; i< 1000; i++) {!
 pthread_mutex_lock (&lock); /* Enter critical section */!
 while (count == N) /* Make sure that buffer is NOT full */!
 pthread_cond_wait (&SpaceAvailable, &lock) ;!
/* Sleep using a condition variable */!
/* now count must be less than N */!
 Buffer[in] = i; /* Put item in the buffer using "in" */!
 in = (in + 1) % N;!
 count++; /* Increment the count of items in the buffer */!

4.18!GMU – CS 571!

Producer Thread (Cont.)!

pthread_mutex_unlock (&lock);!
pthread_cond_signal(&ItemAvailable);!
/* Wakeup consumer, if waiting */!
} /* End of For loop */!
/* Put -1 in the buffer to indicate completion to the consumer */!
pthread_mutex_lock (&lock);!
while (count == N)!
 pthread_cond_wait(&SpaceAvailable, &lock) ;!
Buffer[in] = -1; in = (in + 1) % N; count++;!
pthread_mutex_unlock (&lock);!
pthread_cond_signal(&ItemAvailable);!
/* Wakeup consumer, if waiting */!
} // End of producer!

4.19!GMU – CS 571!

Consumer Thread!

void * consumer (void *arg)!
{ int i = 0;!
do {!
pthread_mutex_lock (&lock); /* Enter critical section */!
while (count == 0) /* Make sure that buffer is NOT empty */!
 pthread_cond_wait(&ItemAvailable, &lock) ;!
/* Sleep using a condition variable */!
/* count must be > 0 */!
i = Buffer[out] ; /* Remove item from the buffer using "out" */!
out = (out + 1) % N;!
count--; /* Decrement the count of items in the buffer */!

4.20!GMU – CS 571!

Consumer Thread (Cont.)!
printf("Removed %d \n", i);!
pthread_mutex_unlock (&lock); /* exit critical section */!
pthread_cond_signal(&SpaceAvailable);!
/* Wakeup producer, if waiting */!
} while (i != -1); /* End of Do loop */!
} // End of consumer!

4.21!GMU – CS 571!

Main program !
main()!
{!
pthread_t prod, cons; /* thread variables */!
int n;!
pthread_mutex_init(&lock, NULL);!
pthread_cond_init (&SpaceAvailable, NULL);!
pthread_cond_init (&ItemAvailable, NULL);!
/* Create producer thread */!
if (n = pthread_create(&prod, NULL, producer ,NULL)) {!
fprintf(stderr,"pthread_create :%s\n",strerror(n));!
exit(1);!
 }!

4.22!GMU – CS 571!

Main Program (Cont.)!
/* Create consumer thread */!
if (n = pthread_create(&cons, NULL, consumer, NULL))

{!
fprintf(stderr,"pthread_create :%s\n",strerror(n));!
exit(1);!
 }!
/* Wait for the consumer thread to finish. */!
if (n = pthread_join(cons, NULL)) {!
fprintf(stderr,"pthread_join:%s\n",strerror(n));!
exit(1);!
 }!
printf("Finished execution \n");!
} // End of main!

4.23!GMU – CS 571!

Working on Your Program!

  First solve the problem with pen and paper before
starting to code!

  Writing multithreaded programs is tricky, be careful
with the use of pointers and thread functions.!

  Refer to multithreaded programming guides and
references when in doubt  
Resources link at
http://cs.gmu.edu/~aydin/cs571/resources.html!

