
Client/Server
and

Distributed Computing

Dave Bremer
Otago Polytechnic, N.Z.

©2008, Prentice Hall

Adapted from:Operating Systems:
Internals and Design Principles, 6/E

William Stallings
CS571
Fall 2010

Traditional
Data Processing

•  Traditionally, data processing was
centralised (much still is!)

•  Typically involving centralised
– Computers
– Processing and management
– Data

•  When did this change?
•  …and change again? …and again?

Distributed
Data Processing

•  Distributed Data Processing (DDP) departs from
the centralised model in multiple ways.

•  Usually smaller computers, dispersed throughout
an organization
–  is this “better”? why or why not?

•  May involve many central node(s) with satellites,
or be a dispersed peer to peer architecture
–  Interconnection(s) required

•  Private and “public”
– Dedicated, intranet, internet

Advantages of DDP (?)

•  Responsiveness
•  Availability
•  Resource Sharing
•  Incremental growth
•  Increased user involvement and control
•  End-user productivity
•  Any disadvantages?

Client/Server
Computing

•  Client machines are generally single-user
workstations providing a user-friendly (?)
interface to the end user

•  Each server provides a set of shared
services to the clients
– enables many clients to share access to the

same database
– enables the use of a high-performance

computer system to manage a database

Generic Client/Server
Environment

Client/Server Applications

•  The key feature of a client/server
architecture is the allocation of application-
level tasks between clients and servers.

•  Hardware and the operating systems of
client and server may differ
– These lower-level differences are irrelevant as

long as a client and server share the same
communications protocols and support the
same applications

Generic Client/Server
Architecture

Client/Server
Applications

•  Bulk of applications software executes on
the server

•  Application logic may be located at the
client and/or the server

•  Presentation services almost always in the
client

•  Recall the MVC design pattern
•  This is the Web model

Database Applications

•  The server(s) can be database server(s)
– Most common family of client/server

applications
•  Interaction is in the form of transactions

–  the client makes a database request and
receives a database response from server(s)

•  Server(s) responsible for maintaining the
database state (NOT THE CLIENT!!)

Architecture
for Database Applications

Three-tier (Web)
Client/Server Architecture

•  Application software distributed among
three types of machines
– User machine (VIEW)

•  Thin client, browser

– Middle-tier server (CONTROLLER)
•  Gateway
•  Convert protocols
•  Merge/integrate results from different data sources

– Data server (MODEL)

Three-tier
Client/Server Architecture

File Cache Consistency !

•  File caches hold recently accessed file
records

•  Caches are consistent when they contain
exact copies of remote data

•  File-locking prevents simultaneous
access to a file
– However…

•  remember cache consistency problem!
– and its performance impact

Is Caching Scalable?
•  As # of systems, users, processes grows, file & cache locking

become bottlenecks
•  Brewer’s CAP Theorem:

–  Consistency, Availability, Partitionability…
–  …choose any TWO, can’t do the third !!…
–  …leads to idea of eventual consistency

•  Given a “sufficiently long period of time”, over which no
updates are sent, we expect that during this period, all
updates will, eventually, propagate through the system and
all the replicas will be consistent

•  In database terminology, this is known as BASE (Basically
Available, Soft state, Eventual consistency), as opposed to
the database concept of ACID (Atomicity, Consistency,
Isolation, Durability)

Interprocess
Communication (IPC)

•  Usually computers involved in DDP do not
share a main memory
– They are isolated computers
– But some database and other applications do

use shared memory services
•  IPC relies on message passing

Distributed
Message Passing

Basic Message-Passing
Primitives

Reliability vs..
Unreliability

•  Reliable message-passing guarantees
delivery if possible
– But acknowledgement is a performance

issue
•  “Unreliable”: Send the message out into

the communication network without
reporting success or failure
– Reduces complexity and overhead
– Like the UDP protocol

Blocking vs..
Nonblocking

•  Nonblocking
– Process is not suspended as a result of

issuing a Send or Receive
– Efficient and flexible
– Difficult to debug!

Blocking vs..
Nonblocking

•  Blocking
– Send does not return control to the sending

process until the message has been
transmitted

– OR does not return control until an
acknowledgment is received

– Receive does not return until a message has
been placed in the allocated buffer

•  Blocking and NonBlocking protocols used many
places in computer architectures

Remote Procedure Calls

•  Allow programs on different machines to
interact using simple procedure call/return
semantics

•  Widely accepted
•  Standardized

– Client and server modules can be moved
among computers and operating systems
easily

RPC Architecture

Remote Procedure Call
Mechanism

Synchronous versus
Asynchronous

•  Synchronous RPC
– Behaves much like a subroutine call

•  Asynchronous RPC
– Does not block the caller
– Enable a client execution to proceed locally in

parallel with server invocation

Clusters
•  Alternative to symmetric multiprocessing

(SMP)
•  Group of interconnected, whole computers

working together as a unified computing
resource
–  Illusion of one machine
– Each system can run on its own

•  Digital’s early VAX/VMS Cluster is archetype
–  took many years for UNIX/Linux to catch up

Benefits of Clusters

•  Absolute Scalability (?)
– Larger than any single device is possible

•  Incremental scalability
– System can grow by adding new nodes

•  High availability
– Failure of one node is not critical to system

•  Superior price/performance
– Using commodity equipment

Cluster Classification

•  Numerous approaches to classification.
– Simplest is based on shared disk access

Clustering Methods:
Benefits and Limitations

Clustering Methods:
Benefits and Limitations

Beowulf and
Linux Clusters

•  Initiated in 1994 by NASA’s High
Performance Computing and
Communications project

•  To investigate the potential for clustered
PC’s to perform computational tasks
beyond the capacity of typical workstations
at minimal cost

•  The project was a success!

Beowulf and Linux Clusters

•  Key features
– Mass market commodity components
– Dedicated processors (rather than scavenging

cycles from idle workstations)
– A dedicated, private network (LAN or WAN or

internetted combination)
– No custom components
– Easy replication from multiple vendors

Beowulf Features
•  Dedicated processors and network
•  Scalable I/O (Lustre file system)
•  A freely available software base

– Beowulf, Sun Grid Engine, IBM Globus, …
•  Use freely available distribution computing

tools with minimal changes
•  Open Source (Community Developed):

– Return of the design and improvements to the
community

Generic Beowulf
Configuration

The Fallacies of
Distributed Computing

(In other words, don’t make these mistaken assumptions!)

•  The Network is Reliable
•  Latency is Zero
•  Bandwidth is Infinite
•  The Network is Secure
•  Topology doesn’t change
•  There is One administrator
•  Transport cost is Zero
•  The Network is Homogeneous (Gosling)
•  Location is Irrelevant (Foxwell)
•  All system clocks are synchronized (Unknown)

The Fallacies of
Distributed Computing

(In other words, don’t make these mistaken assumptions!)

•  The Network is Reliable: things break (HW &SW); design for failure
•  Latency is Zero: Speed of Light limit! 30+ ms RT US to Europe
•  Bandwidth is Infinite: No, due to packet loss (Shannon 1948!)
•  The Network is Secure: 50% enterprises secure only their perimeter
•  Topology doesn’t change: changes constantly! new devices, routes
•  There is One administrator: multiservice apps (mashups)
•  Transport cost is Zero: someone is paying for all this!
•  The Network is Homogeneous (Gosling): multiple OS, apps, browsers..
•  Location is Irrelevant (Foxwell): Jurisdiction is important!
•  All system clocks are synchronized (Unknown): what time is it really?

