
CS571
Fall 2010

Slide 1

OS Observability Tools

●“Classic” tools and their limitations
●DTrace (Solaris)
●SystemTAP (Linux)

CS571
Fall 2010

Where we're going with this...

● Know about OS observation tools
● See some examples
● how to use existing examples

– not our goal to become fluent/experts
● how to interpret results

● Future Homework:
● Stress an OS with CPU-, I/O-, Memory-, or

thread-intensive programs...
● ...use OS observation tools to discover and

describe what's happening

CS571
Fall 2010

Observing OS Activity

“All truths are easy to understand once they
are discovered; the point is to discover them.”

-- Galileo Galilei (1564 - 1642)

CS571
Fall 2010

General Approaches
• Start with existing tools common to Linux and UNIX

> vmstat/mpstat/iostat (if installed for OS)
> pmap/pstack
> top

• Understand some tools unique to Solaris:
> mpstat, top, prstat (like top), intrstat,
truss, pfiles, pldd, ptree, dtrace

> plockstat (DTrace consumer)
> pstack (for Java)
> pfiles (now shows file names)

• Understand some tools unique to Linux:
> latencytop, stap (SystemTap) (if installed)

• Can use GUI tools when/if they are available for each OS

CS571
Fall 2010

Solaris Performance and Tracing Tools

Process control

System StatsProcess Tracing/
debugging
● abitrace – trace ABI interfaces
● dtrace – trace the world
● mdb – debug/control processes
● truss – trace functions and system
calls

● pgrep – grep for processes
● pkill – kill processes list
● pstop – stop processes
● prun – start processes
● prctl – view/set process
resources

● pwait – wait for process
● preap – reap a zombie process

Process stats
● acctcom – process accounting
● busstat – Bus hardware counters
● cpustat – CPU hardware counters
● iostat – IO & NFS statistics
● kstat – display kernel statistics
● mpstat – processor statistics
● netstat – network statistics
● nfsstat – nfs server stats
● sar – kitchen sink utility
● vmstat – virtual memory stats

● cputrack - per-processor hw counters
● pargs – process arguments
● pflags – process flags
● pcred – process credentials
● pldd – process's library dependencies
● psig – process signal disposition
● pstack – process stack dump
● pmap – process memory map
● pfiles – open files and names
● prstat – process statistics
● ptree – process tree
● ptime – process microstate times
● pwdx – process working directory

Kernel Tracing/
debugging

● dtrace – trace and monitor kernel
● lockstat – monitor locking statistics
● lockstat -k – profile kernel
● mdb – debug live and kernel cores

CS571
Fall 2010

Dynamic Tracing for Solaris

• Safe; always there
> No performance hit
> No app or OS changes
> No OS halt
> No looping

• Views system as a whole
> Comprehensive
> Extensible; scriptable

• Debug, analyze, optimize
in real time

P

Kernel

A
P

I

DTrace
VM

P

A

% dtrace
> D directive
> D directive
> ...
data
%

DTrace-
aware

tool

A
P

I

P
P

Also for Apple OS X, Free BSD, ...
Designed for Production Systems

CS571
Fall 2010

DTrace – The Big Picture

dtrace
lockstat

plockstat

libdtrace

dtrace

DTrace VM

script.d

user space

kerne space

Dtrace
consumers

sysinfo vminfo fasttrap

sdtsyscall fbtproc

dtrace
providers

CS571
Fall 2010

DTrace Components
• Probes

> A point of instrumentation
> Has a name (string), and a unique probe ID (integer)

• Providers
> DTrace-specific facilities for managing probes, and the

interaction of collected data with consumers

• Consumers
> A process that interacts with dtrace
> typically dtrace(1)

• Using dtrace
> Command line – dtrace(1)
> Scripts written in the 'D' language

CS571
Fall 2010

Dtrace Components
• Probes (syscall::ioctl:entry) (empty fields are wildcards)
• Providers (syscall, fbt)
• Consumers (dtrace, lockstat)
• Action – what to do when a probe is activated
• D – scripting language similar to Perl and awk
• Predicates – conditional control for the D language
• Aggregations – helps identify patterns
• see /usr/demo/dtrace examples on Solaris systems

CS571
Fall 2010

Providers
• DTrace has quite a few providers, e.g.:

> The function boundary tracing (FBT) provider
can dynamically instrument every function entry and
return in the kernel.

> The syscall provider can dynamically instrument
the system call table

> The lockstat provider can dynamically
instrument the kernel synchronization primitives

> The profile provider can add a configurable- rate
profile interrupt to the system

CS571
Fall 2010

Providers, continued
• DTrace has quite a few providers, e.g.:

> The vminfo provider can dynamically instrument the kernel
“vm” statistics, used by commands such as vmstat

> The sysinfo provider can dynamically instrument the
kernel “sys” statistics, used by commands such as mpstat

> The pid provider can dynamically instrument application
code, such as any function entry and return point (actually
any instruction!)

> The io provider can dynamically instrument disk I/O events
(iostat)

> And more!

• some community developers are rewriting vmstat, iostat,
etc in DTrace to get more/better info.

CS571
Fall 2010

The D language

• D is a C-like language specific to DTrace, with
some constructs similar to awk(1).

• Complete access to kernel C types, complete
support for ANSI-C operators.

• Rich set of built-in variables
• Anonymous arrays
• Complete access to statics and globals.
• Support for strings as first-class citizen.

CS571
Fall 2010

D scripts, continued
• Basic structure of a D script:

probe description (provider:module:function:name)

/ predicate /

{
action statements

}

• For example, a script to trace the executable
name upon entry of each system call:

#!/usr/sbin/dtrace -s
syscall:::entry
{

trace(execname);

}

CS571
Fall 2010

Some Examples: DTrace

CS571
Fall 2010

Some Examples: DTrace

CS571
Fall 2010

Some Examples:DTrace

CS571
Fall 2010

Some Examples: DTrace

CS571
Fall 2010

Slide 11

And for our OS X brethren...
● Instruments

– installed with ADC Dev Tools (XCode)
– much of probe/monitoring based on OS X

implementation of DTrace

CS571
Fall 2010

Slide 11

And for our OS X brethren...

CS571
Fall 2010

Slide 4

Linux Observability Tools
● strace

– process-oriented observation tool
● like Solaris 'truss'

– strace progname
– strace -o outfile progname
– strace -e trace=syscallname progname
– strace -c progname
– delivered with Linux kernel
– output can (must) be post-processed
– use in addition to traditional tools

● top, vmstat, ps, /proc

CS571
Fall 2010

Slide 5

Linux Observability Tools
● KProbes

– IBM-supported open source contribution to Linux
2.6 kernel

– inserts breakpoints into running kernel at specified
address

– can modify registers and global data
– install files, patch kernel to accept printk requests
– uses C syntax
– get address of desired kernel inspection point,

write and register probe (in C), write data handler
– no safety checking, needs view of instrumented

codepath, can't see local variables, ...

CS571
Fall 2010

GNOME System Monitor (Linux AND Solaris)

CS571
Fall 2010

SystemTAP
● Modeled after DTrace!

● GPL tool developed by IBM, Intel, Red Hat, and
Oracle for Linux dynamic tracing

● Primarily for kernel development & tuning

– limited application / user space instrumentation
● Basically a safety wrapper around kprobes

– has default (safe) and “guru” mode (can change
data)

– some protection: no div by 0, no bad memory refs,
limited recursion, no infinite loops.

● /usr/bin/stap myscript.stp

– CLI/script like C, stapgui.sourceforge.net

CS571
Fall 2010

Slide 8

SystemTap for Linux
● safety wrapper around KProbes
● can probe kernel and user space

– but no specialties for PHP, Java, or other
dynamic environments

● generates C code, compiles into
kernel module, loads & runs

● designed for low/no overhead

CS571
Fall 2010

SystemTAP
● edit/create a script (myscript.stp)

● transformed to C, compiled to loadable kernel module,
runs & collects data, upon ^C sends data to sdtout

● To install & verify on RHEL5 (included with RHEL 5.4)

● yum install systemtap-testsuite
● cd /usr/share/systemtap/testsuite
● make installcheck

● http://sourceware.org/systemtap/wiki

● http://sourceware.org/systemtap/langref/

CS571
Fall 2010

Slide 9

SystemTap for Linux
● See DTrace/SystemTAP comparison
● http://sources.redhat.com/systemtap/wiki/SystemtapDtraceComparison

● C/awk probe language
– specifies a probe, and a probe handler
– when probe is 'hit', handler suspends monitored

thread, executes handler instructions
– very similar to DTrace, but...

● must be careful not to loop in handler, block, or grab & keep
 locks

● can write anywhere in kernel memory, directly call any
kernel subroutine

CS571
Fall 2010

Some Examples: Linux latencytop

CS571
Fall 2010

Some Examples: Linux systemtap

CS571
Fall 2010

Some Examples: Linux systemtap

CS571
Fall 2010

Some Examples: Linux systemtap

CS571
Fall 2010

Some Examples: Linux systemtap

CS571
Fall 2010

Some Examples: Linux systemtap

CS571
Fall 2010

Some Examples: Linux systemtap

CS571
Fall 2010

Some Examples: Linux systemtap

CS571
Fall 2010

Some Examples: Linux systemtap

CS571
Fall 2010

Some Examples: Linux systemtap

CS571
Fall 2010

OS Resources
● General

● http://bhami.com/rosetta.html

● Linux

● Linux Performance and Tuning Guidelines

– http://www.redbooks.ibm.com/abstracts/redp4285.html

– http://www.latencytop.org/

● SystemTap

– http://www.ibm.com/developerworks/linux/library/l-systemtap/index.html

– http://sourceware.org/systemtap/

● Solaris

● Solaris Performance and Tools book by McDougall, Mauro, and Gregg

● DTrace

– http://hub.opensolaris.org/bin/view/Community+Group+dtrace/WebHome

– http://blogs.sun.com/brendan

– http://www.oracle.com/technetwork/server-storage/solaris/dtrace-tutorial-142317.html

http://bhami.com/rosetta.html
http://www.redbooks.ibm.com/abstracts/redp4285.html
http://www.ibm.com/developerworks/linux/library/l-systemtap/index.html
http://sourceware.org/systemtap/
http://www.pearsonhighered.com/educator/product/Solaris-Performance-and-Tools-DTrace-and-MDB-Techniques-for-Solaris-10-and-OpenSolaris/9780131568198.page
http://hub.opensolaris.org/bin/view/Community+Group+dtrace/WebHome
http://blogs.sun.com/brendan
http://www.oracle.com/technetwork/server-storage/solaris/dtrace-tutorial-142317.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	DTrace
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

