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OS Observability Tools

●“Classic” tools and their limitations
●DTrace (Solaris)
●SystemTAP (Linux)
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Where we're going with this...

● Know about OS observation tools
● See some examples
● how to use existing examples

– not our goal to become fluent/experts
● how to interpret results

● Future Homework:
● Stress an OS with CPU-, I/O-, Memory-, or 

thread-intensive programs...
● ...use OS observation tools to discover and 

describe what's happening
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Observing OS Activity

“All truths are easy to understand once they 
are discovered; the point is to discover them.”

-- Galileo Galilei (1564 - 1642)
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General Approaches
• Start with existing tools common to Linux and UNIX

> vmstat/mpstat/iostat (if installed for OS)
>  pmap/pstack
> top

• Understand some tools unique to Solaris:
> mpstat, top, prstat (like top), intrstat, 
truss, pfiles, pldd, ptree, dtrace

> plockstat (DTrace consumer)
> pstack (for Java)
> pfiles (now shows file names)

• Understand some tools unique to Linux:
> latencytop, stap (SystemTap) (if installed)

• Can use GUI tools when/if they are available for each OS
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Solaris Performance and Tracing Tools

Process control

System StatsProcess Tracing/
debugging
● abitrace – trace ABI interfaces
● dtrace – trace the world
● mdb – debug/control processes
● truss – trace functions and system 
calls

● pgrep – grep for processes
● pkill – kill processes list
● pstop – stop processes
● prun – start processes
● prctl – view/set process 
resources

● pwait – wait for process
● preap – reap a zombie process

Process stats
● acctcom – process accounting
● busstat – Bus hardware counters
● cpustat – CPU hardware counters
● iostat – IO & NFS statistics
● kstat – display kernel statistics
● mpstat – processor statistics
● netstat – network statistics
● nfsstat – nfs server stats
● sar – kitchen sink utility
● vmstat – virtual memory stats

● cputrack  - per-processor hw counters
● pargs – process arguments
● pflags – process flags
● pcred – process credentials
● pldd – process's library dependencies
● psig – process signal disposition
● pstack – process stack dump
● pmap – process memory map
● pfiles – open files and names
● prstat – process statistics
● ptree – process tree
● ptime – process microstate times
● pwdx – process working directory

Kernel Tracing/
debugging

● dtrace – trace and monitor kernel 
● lockstat – monitor locking statistics
● lockstat -k – profile kernel
● mdb – debug live and kernel cores
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Dynamic Tracing for Solaris

• Safe; always there
> No performance hit
> No app or OS changes
> No OS halt
> No looping

• Views system as a whole
> Comprehensive
> Extensible; scriptable

• Debug, analyze, optimize 
in real time
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Also for Apple OS X, Free BSD, ...
Designed for Production Systems
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DTrace – The Big Picture

dtrace
lockstat

plockstat

libdtrace

dtrace

DTrace VM

script.d

user space

kerne space

Dtrace
consumers
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sdtsyscall fbtproc

dtrace
providers



CS571
Fall 2010

DTrace Components
• Probes

> A point of instrumentation
> Has a name (string), and a unique probe ID (integer)

• Providers
> DTrace-specific facilities for managing probes, and the 

interaction of collected data with consumers

• Consumers
> A process that interacts with dtrace
> typically dtrace(1)

• Using dtrace
> Command line – dtrace(1)
> Scripts written in the 'D' language
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Dtrace Components
• Probes (syscall::ioctl:entry) (empty fields are wildcards)
• Providers (syscall, fbt)
• Consumers (dtrace, lockstat)
• Action – what to do when a probe is activated             
• D – scripting language similar to Perl and awk
• Predicates – conditional control for the D language
• Aggregations – helps identify patterns
• see /usr/demo/dtrace examples on Solaris systems
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Providers
• DTrace has quite a few providers, e.g.:

> The function boundary tracing (FBT) provider  
can dynamically instrument every function  entry and 
return in the kernel.

> The syscall provider can dynamically instrument  
the system call table

> The lockstat provider can dynamically  
instrument the kernel synchronization  primitives

> The profile provider can add a configurable- rate 
profile interrupt to the system
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Providers, continued
• DTrace has quite a few providers, e.g.:

> The vminfo provider can dynamically instrument the kernel 
“vm” statistics, used by commands such as vmstat

> The sysinfo provider can dynamically instrument the 
kernel “sys” statistics, used by commands such as mpstat

> The pid provider can dynamically instrument application 
code, such as any function entry and return point (actually 
any instruction!)

> The io provider can dynamically instrument disk I/O events 
(iostat)

> And more!

• some community developers are rewriting vmstat, iostat, 
etc in DTrace to get more/better info.
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The D language

• D is a C-like language specific to DTrace,  with 
some constructs similar to awk(1).

• Complete access to kernel C types, complete 
support for ANSI-C operators.

• Rich set of built-in variables
• Anonymous arrays
• Complete access to statics and globals.
• Support for strings as first-class citizen.
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D scripts, continued
• Basic structure of a D script:

probe description (provider:module:function:name)

/ predicate /

{
action statements

}

• For example, a script to trace the  executable 
name upon entry of each system call:

#!/usr/sbin/dtrace -s
syscall:::entry
{

trace(execname);

}
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Some Examples: DTrace
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And for our OS X brethren...
● Instruments

– installed with ADC Dev Tools (XCode)
– much of probe/monitoring based on OS X 

implementation of DTrace
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And for our OS X brethren...
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Linux Observability Tools
● strace

– process-oriented observation tool
● like Solaris 'truss'

– strace progname
– strace -o outfile progname
– strace -e trace=syscallname progname
– strace -c progname
– delivered with Linux kernel
– output can (must) be post-processed
– use in addition to traditional tools

● top, vmstat, ps, /proc
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Linux Observability Tools
● KProbes

– IBM-supported open source contribution to Linux 
2.6 kernel

– inserts breakpoints into running kernel at specified 
address

– can modify registers and global data
– install files, patch kernel to accept printk requests
– uses C syntax
– get address of desired kernel inspection point, 

write and register probe (in C), write data handler
– no safety checking, needs view of instrumented 

codepath, can't see local variables, ...
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GNOME System Monitor (Linux AND Solaris)
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SystemTAP
● Modeled after DTrace!

● GPL tool developed by IBM, Intel, Red Hat, and 
Oracle for Linux dynamic tracing

● Primarily for kernel development & tuning

– limited application / user space instrumentation
● Basically a safety wrapper around kprobes

– has default (safe) and “guru” mode (can change 
data)

– some protection: no div by 0, no bad memory refs, 
limited recursion, no infinite loops.

● /usr/bin/stap myscript.stp

– CLI/script like C, stapgui.sourceforge.net
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SystemTap for Linux
● safety wrapper around KProbes
● can probe kernel and user space

– but no specialties for PHP, Java, or other 
dynamic environments

● generates C code, compiles into 
kernel module, loads & runs

● designed for low/no overhead
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SystemTAP
● edit/create a script (myscript.stp)

● transformed to C, compiled to loadable kernel module, 
runs & collects data, upon ^C sends data to sdtout

● To install & verify on RHEL5 (included with RHEL 5.4)

● yum install systemtap-testsuite
● cd /usr/share/systemtap/testsuite
● make installcheck

● http://sourceware.org/systemtap/wiki

● http://sourceware.org/systemtap/langref/
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SystemTap for Linux
● See DTrace/SystemTAP comparison
● http://sources.redhat.com/systemtap/wiki/SystemtapDtraceComparison

● C/awk probe language
– specifies a probe, and a probe handler
– when probe is 'hit', handler suspends monitored 

thread, executes handler instructions
– very similar to DTrace, but...

● must be careful not to loop in handler, block, or grab & keep 
 locks

● can write anywhere in kernel memory, directly call any 
kernel subroutine
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Some Examples: Linux latencytop
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Some Examples: Linux systemtap
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OS Resources
● General

● http://bhami.com/rosetta.html

● Linux

● Linux Performance and Tuning Guidelines

– http://www.redbooks.ibm.com/abstracts/redp4285.html

– http://www.latencytop.org/

● SystemTap

– http://www.ibm.com/developerworks/linux/library/l-systemtap/index.html

– http://sourceware.org/systemtap/

● Solaris

● Solaris Performance and Tools book by McDougall, Mauro, and Gregg

● DTrace

– http://hub.opensolaris.org/bin/view/Community+Group+dtrace/WebHome

– http://blogs.sun.com/brendan

– http://www.oracle.com/technetwork/server-storage/solaris/dtrace-tutorial-142317.html

http://bhami.com/rosetta.html
http://www.redbooks.ibm.com/abstracts/redp4285.html
http://www.ibm.com/developerworks/linux/library/l-systemtap/index.html
http://sourceware.org/systemtap/
http://www.pearsonhighered.com/educator/product/Solaris-Performance-and-Tools-DTrace-and-MDB-Techniques-for-Solaris-10-and-OpenSolaris/9780131568198.page
http://hub.opensolaris.org/bin/view/Community+Group+dtrace/WebHome
http://blogs.sun.com/brendan
http://www.oracle.com/technetwork/server-storage/solaris/dtrace-tutorial-142317.html
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