Data Link Layer, Part 4
Bridges

These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make a single machine-readable copy and print a single copy of each slide for their own reference, so long as each slide contains the copyright statement, and GMU facilities are not used to produce paper copies. Permission for any other use, either in machine-readable or printed form, must be obtained from the author in writing.

Introduction

- A bridge is a layer-2 device that connects LANs that may or may not be based on the same technology.

- A simple configuration:
Bridge Functions

- Broadcast on LAN B everything it receives from LAN A.
- Broadcast on LAN A everything it receives from LAN B
- As a result, the network appears to all machines as a single LAN.

Reasons for Bridges

- Overcomes the distance limitations of LANs
- Connects LANs that use different technologies
- Connects LANs built by different organizations

Nowadays we use Internet technologies to achieve these goals.
Bridge Routing

- A sophisticated bridge can perform routing
 - decide whether or not to forward frame
 - if attached to more than two networks, must also decide which LAN, if any, to forward it on

- Methods:
 - fixed routing
 - self learning
 - source routing (not covered)
Self-Learning (Transparent) Bridges

- Bridges listens “promiscuously.”
- For each packet received, the bridge
 - stores the source address in a cache along with the port the packet arrives on
 - If the destination address is broadcast (all 1’s), forward the packet via all interfaces except the one from which the frame was received.

- For a regular dest address, looks for the destination in its cache
 - if not found, forward the packet via all interfaces except the one from which the frame was received
 - if found, forward the packet via the port indicated by the cache entry (if the port is the one via which the frame arrived, the frame is dropped)
Example

- Starting with empty caches at all switches, show the cache of Bridge A after Station 1 sends a frame to Station 4, Station 2 to Station 10, and Station 5 to Station 2.

Problems with Parallel Bridges

- In general, this problem arises with any topology containing loops.
- Solution?
 1. avoid loops
 2. construct a spanning tree
Switched Ethernet

- Recall that the 10/100Base-T Ethernet standards use a star topology.

- Replace the hub by a bridge and we get ourselves a switched network, with dedicated bandwidth to each station.

Discussion

- Each switch-to-station segment forms an independent collision domain.
- Moreover, one line is used in each direction.
 - As such, there will be no collisions at all.
- Is this still Ethernet?
 - Yes, in the sense that legacy Ethernet software and interface cards can still be used.
 - No, because the resultant network is based on switching, as opposed to broadcast and CSMA/CD.