
1

CS471 1

Unix/Linux IPC

These slides are created by Dr. Huang of George
Mason University. Students registered in Dr.

Huang’s courses at GMU can make a single machine
readable copy and print a single copy of each slide
for their own reference as long as the slide contains
the copyright statement, and the GMU facilities are
not used to produce the paper copies. Permission for
any other use, either in machine-readable or printed
form, must be obtained form the author in writing.

CS471 2

Facilities

�Shared memory segments

�Semaphores

�Message queues

�Signals (not covered)

�Pipes (not covered)

�Sockets (not covered)

�Remote procedure calls (not covered)

2

CS471 3

Shared Memory Segments

�Mmap()-ed areas survives f or k() but not
exec() .

�Shared memory segments in the contrary can
be accessed by any process
– not limited to parent-child processes
– Permissions can be set to determine who has

what access to it
�Following programming conventions, we will

call a shared memory segment an shm.
�Each shm has a system-wide unique ID.

CS471 4

Shm Operations

� shmget()

– Creating new shm

– Obtaining the ID of an existing shm

� shmat(): attach an shm as an VM area

� shmdt(): detach an shm

� shmctl():

– Read/modify permssions, owners etc.

– Destroy shm

3

CS471 5

shmget()

i nt shmget (i nt shm_key, i nt s i ze,

i nt shm_f l ags) ;

� shm_key: a system-wide unique key for the
shm

� size: # of bytes of the segments
� shm_flags: the bit-OR of the following

– SHM_CREAT

– mode (0666=all can read and write, …)
�Returns the ID of the shm

CS471 6

shmat()

voi d* shmat (i nt shm_i d,

voi d* shmaddr ,

i nt f l ags) ;

� shmaddr: recommended address of the shm in
the virtual memory space of the calling process
– NULL means no recommendation

� flags:
– 0, read/write
– SHM_RDONLY

�Returns the starting address of the new area

4

CS471 7

shmdt()

i nt shmdt (voi d* shmaddr) ;

� shmaddr: the address of the shm (in the VM of
the calling process) to be detached.

�Returns 0 when successful

�Detachment does NOT destroy an shm.

CS471 8

Destroy Shm

shmct l (shm_i d, I PC_RMI D, NULL) ;

�This only marks the shm for destroying.

�The shm is destroyed when the last process
detaches it.

5

CS471 9

Creating A New Shm

shm_i d = shmget (4567, 4096,

I PC_CREAT | 0600) ;

shm_pt r = shmat (shm_i d, 0, 0) ;

� It is your responsibility to make sure 4567 is a
unique key on the system.

�The new area will survive f or k() but not
exec() .

CS471 10

Using An Existing Shm by A
Different Process

shm_i d = shmget (4567, 4096, 0600) ;

shm_pt r = shmat (shm_i d, 0, 0) ;

�Notice the use of the same key, 4567.

�Notice the absence of I PC_Cr eat in
shmget () . This causes the system to look for
an already-present shm, rather than creating a
new one.

6

CS471 11

Finding Shm Keys

�Ensuring a key is system-wide unique can be a
problem in multi-user environments.

�The f t ok() function helps find such a key.

– This is a library function, not a system call.
� i nt f t ok (char * pat hname, i nt i d) ;

– pat hname: the name of an arbitrary file.

– i d: for further distinction.

– Returns a key that is “very likely” unique.

CS471 12

Semaphores

�A semaphore in Unix/Linux is a special
purpose shm.

�Share the same key space with shm.

�A semaphore ID is associated with a set of
atomic semaphores.

7

CS471 13

Semget()

i nt semget (i nt sem_key, i nt nsem,

i nt semf l g)

� sem_key : system-wide semaphore key

� nsem: number of semaphores in the set

� smgf l g: the bit-OR of the following
– I PC_CREAT

– mode (0666=all can read and write, …)

�Returns the ID of the semaphore set.

CS471 14

Example

�Producer creates new semaphore with key
1234 by
sem_i d = semget (1234, 1,

I PC_CREAT | 0666) ;

�Consumer obtains that semaphore by
sem_i d = semget (1234, 1, 0) ;

8

CS471 15

Semctl()

� semct l (sem_i d, i , GETVAL) ;

– returns the value of the i-th semaphore in the
set sem_i d.

� semct l (sem_i d, 0, I PC_RMI D) ;

– destroys the semaphore set sem_i d.

�See its man page for other functions.

CS471 16

Semop()
i nt semop (sem_i d,

st r uct sembuf * sops,

i nt nops)

� sem_i d: semaphore set ID

� sops : an array of semaphore operations,
performed atomically

� nops : # of operations in sops

�Returns 0 when successful, or else -1.

9

CS471 17

Struct sembuf

�Each operation is described by a sembuf

structure, including the following membors

– sem_f l g: 0 in most situations

– sem_num: give the semaphore to which this
operation is applied. The first semaphore in
a set is numbered 0.

– sem_op: see next page

CS471 18

Sem_op
�Greater than 0

– Semaphore value += sem_op
– Calling process proceeds immediately

�Equal to 0
– Calling process waits until the value of the

semaphore becomes 0
�Less than 0

– Calling process waits until
semaphore value + sem_op >= 0

– Semaphore value += sem_op

10

CS471 19

Message Queues

i nt msgget (i nt msg_key, i nt f l ags)

� msg_key : system-wide semaphore key; the
same key space with shm.

� f l ags : the bit-OR of the following
– I PC_CREAT

– mode (0666=all can read and write, …)

�Returns the ID of the message queue.

CS471 20

Send Messages
i nt msgsnd (msg_i d, voi d* msg_pt r ,

i nt msi ze, i nt f l ags)

� msg_i d: message queue ID
� msg_pt r : a pointer to the message, which must

follow the format
struct msg_type {

long mtype; /* message type * /
Other members determined by the app.

}
� msi ze: message size in bytes, excluding mtype
� f l ags : 0 in most situations
� Returns 0 when successful, or else -1.

11

CS471 21

Receive Messages
i nt msgrcv (msg_i d, voi d* msg_pt r ,

i nt msi ze,

i nt mt ype, i nt f l ags)

� msg_i d: message queue ID

� msg_pt r : a pointer to the message.

� msi ze: message size in bytes, excluding mtype

� mt ype: retrieve from the queue the first
message with the given type

� f l ags : 0 in most situations

�Returns 0 when successful, or else -1.

CS471 22

Message Formats

struct command_msg
{

long mtype;

char cmd;

int n;

} ;

struct result_msg
{

long mtype;

int result;

} ;

12

CS471 23

Foreground
int main ()
{

/* obvious variable declarations omitted */
int cmd_q, result_q; /* message queue Ids */
struct command_msg c_msg;
struct result_msg r_msg;

c_msg.mtype = 1;
cmd_q = msgget (47103, IPC_CREAT | 0600);
result_q = msgget (47104, IPC_CREAT | 0600);

CS471 24

if (!(pid=fork()))
execl ("backg", "backg", NULL);

while (1) {
scanf (" %c", &c_msg.cmd);
if (c_msg.cmd == 'q') {

msgsnd (cmd_q, &c_msg,
sizeof c_msg - sizeof c_msg.mtype , 0);

wait(0);
msgctl (cmd_q, IPC_RMID, NULL);
msgctl (result_q, IPC_RMID, NULL);
exit(0);

} /* end of command ‘q’ */

13

CS471 25

/* Handle ‘s’ and ‘ f’ commands */

scanf ("%d", &c_msg.n);

msgsnd (cmd_q, &c_msg,

sizeof c_msg - sizeof c_msg.mtype , 0);

msgrcv (result_q, &r_msg,

sizeof r_msg.result, 1, 0);

printf ("Result = %d\n", r_msg.result);

} /* end of while (1) * /

} /* end of main() */

CS471 26

Background
int main ()
{

/* obvious variable declarations omitted * /
int cmd_q, result_q; /* message queue Ids * /
struct command_msg c_msg;
struct result_msg r_msg;

r_msg.mtype= 1;
cmd_q = msgget (47103, 0);
result_q = msgget (47104, 0);

14

CS471 27

while (1) {
msgrcv (cmd_q, &c_msg,

sizeof c_msg - sizeof c_msg.mtype, 1, 0);

switch (c_msg.cmd) {
case 's':

for (sum=i=0; i<=c_msg.n; i++) sum+=i;
r_msg.result = sum;
break;

case 'f': /* details omitted */
case 'q': exit(0);

} /* end of switch() */

msgsnd (result_q, &r_msg, sizeof r_msg.result , 0);
} /* end of while (1) */

CS471 28

Project #3

�Redo project #2 using semaphores and shm.

�Due midnight of July 23rd

15

CS471 29

Foreground Process
�Accept the same commands as project #2.

�Communicate with background through shm.

– Use f t ok() to generate shm_key

– Use your home directory as the pathname
and character ‘m’ as the ID.

�Use semaphores for synchronization.

– Use f t ok() to generate sem_key

– Use your home directory as the pathname.

– Use IDs ‘1’ , ‘2’ , ‘3’ …

�Destroy shm and semaphores when terminates

CS471 30

Foreground Logic
�Print own process ID
�Creates shm and semaphores
�Attach shm
�Execute the following in a loop

– Wait for user command
– Semaphore-signal background process for

the readiness of the command and operand
– Semaphore-wait for result
– Print result

�Destroy shm and semaphores

16

CS471 31

Background Process
�Perform the computations of summation and

factorial.

�Use shm and semaphores for communications
and synchronizations.

�Semaphore and shm keys are obtained through
command line arguments:
– backg shm_key sem_key1 sem_key2

�Terminate itself when seeing the Q/q
command.

�Detach the shm when terminates.

CS471 32

Background Logic

�Print own process ID
�Obtain shm and semaphores
�Attach shm
�Execute the following in a loop

– Semaphore-wait for user command
– Perform computations
– Semaphore-signal the foreground for the

readiness of the result.
�Detach shm

