Homework #3

- (10pt) Prove that \(\sum_{i=1}^{L} ix^i = \frac{x + (Lx - L - 1)x^{L+1}}{(1-x)^2} \)

- (10pt) Find the \(E[X^2] \) of the exponential distribution with parameter \(\lambda \).

- (5pt) Using the result of the previous question to find the average queuing time \(W \) of a M/G/1 with exponentially distributed service times. (Hint: your result should be identical to the \(W \) of M/M/1.)

- (10pt) Verify that the solution of \(\beta \) in G/M/1 systems is \(\sigma = \frac{\lambda}{\mu} \) when G is an exponential distribution with rate \(\mu \).

TCP uses the equation \(RTT = RTT^* w + New^*(1-w) \) to compute the moving exponential average of round trip times, where New is a new sample of round trip time and \(w \) is a constant between 0 and 1. Suppose initially \(RTT = R \) and all the subsequent samples are 2R (probably due to newly developed heavy traffic).

- (8pt) Show that \(RTT_k \), the value of RTT after receiving \(k \) samples, is \(2R - Rw^k \).

- (7pt) Show that it takes \(k = -1/\ln(w) \) packets for \(RTT_k \) to be \(\geq (1-1/e)R + R \), that is, the gap between the real round trip time and the average round trip time to be less than around one third of \(R \).
(10pt) Create an algorithm that generates a random variable having density function

\[f(x) = 20x(1-x)^3, \quad 0 < x < 1 \]

Hint: Use the rejection method. An easy auxiliary random variable (the \(Y\)) is the uniform random variable from 0 to 1. Write \(g(x)\), pdf of \(Y\), and find an upper bound of \(f(x)/g(x)\). You must show the steps to derive the upper bound \(c\).