Quality of Service (QoS) Routing

These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make a single machine-readable copy and print a single copy of each slide for their own reference, so long as each slide contains the copyright statement, and GMU facilities are not used to produce paper copies. Permission for any other use, either in machine-readable or printed form, must be obtained from the author in writing.

A Quick Review of NP-Completeness

- A problem is in Class P if it can be solved in polynomial time with a deterministic Turing machine.
 - Turing machine is a math modeling of stored-instruction computers.
- A problem is in Class NP if it can be solved in polynomial time with a non-deterministic Turing machine.
 - A non-deterministic Turing machine can simultaneously pursue an infinite number of computational paths.
 - It is an unrealistic but useful math model.
P and NP Problems

- A Class P problem can be solved in polynomial time on real machines and is considered tractable.
 - Sorting, accounting, shortest path problems, spanning tree problems, and many other problems you use computers to solve daily
- A Class NP problem can be solved in exponential time on real machines.
 - You may be able to solve it in polynomial time.
 - All Class P problems are also NP.

- A problem in NP-P, if exists, cannot be solved in polynomial time on real machines and is considered intractable in practice.
- A good way to find a NP-P problem is to consider problems that do not have known polynomial solutions (algorithms).
 - map coloring problem, traveling salesman problem, automatic theorem proving, and some QoS routing problems
- However, no one can prove any of the above problems actually in NP-P.
P=NP?

- This one of the most fundamental, unsolved, problem in computer science.
- Most people believe it is too good to be true.
 - It would imply that all problems solvable by a non-deterministic Turing machine can be solved in polynomial time in real world.
- Still we have not mathematically proven it wrong.
- However, all most all computer scientists assume that NP-P is not empty.

NP-Complete Problems

- A problem X is **NP-Complete** if the following statement is true:
 - If we can solve X in polynomial time, then we can solve *all* NP problems in polynomial times.
- That is, if you come up with a polynomial-time algorithm for *any* NP-Complete problem, then you have proven P=NP.
- Since, we don’t believe P=NP, we solve NP-Complete problems by devising
 - workarounds, or
 - approximation algorithms (heuristics).
The Routing Problem

- Traditional routing protocols (RIP, OSPF, etc.) mainly use hop counts to select paths.
- This does not meet the requirements of many emerging communication applications.
- For example, live multimedia applications must make sure that
 - Packet delays are bounded.
 - Jitters (changes in packet delays) are well controlled.

Shortest Path Algorithms

- Given a graph G=(V,E), a shortest path algorithm finds a path with minimal distance, according to the given link costs, between a pair of source and destination.
- Shortest path algorithms are the foundation of network routing.
- Every real-world network routing protocol is either a centralized, distributed, or hybrid implementation of such algorithms.
Dijkstra Algorithm:
- $O(V^2)$, where V is the number of nodes in the graph (or, routers in the network)
- Used by OSPF
- Works for non-negative link costs.

Bellman-Ford Algorithm:
- $O(EV)$, where E is the number of links in the network
- Suitable for distributed implementations
- Used by RIP
- Works for arbitrary link cost values (however, negative costs cannot form cycles)

QoS Routing
- Find the path for a given source and destination that best satisfies a given set of criteria.
- Performance metrics include
 - Hop count
 - Delay
 - Jitter (the variance in consecutive packet separations at receivers)
 - Data loss rate
 - Available (residual) bandwidth
 - Queue length (available buffer space)
Taxonomy

- For some metrics (e.g. bandwidth, buffer space), the state of a path is determined by the state of its bottleneck link.

- **Link-optimization routing** finds the path that “optimizes” the performance of its bottleneck link according to a given criteria.
 - Ex: bandwidth-optimization routing finds the path with the largest bandwidth in the bottleneck link

- **Link-constrained routing** finds a path whose bottleneck “satisfies” a given criteria.
 - Ex: bandwidth-constrained routing finds a path whose bottleneck supports the given bandwidth.
For other QoS metrics, such as delay and jitters, the state of a path is determined by the combined state over all links of the path.

- **Path-optimization routing** finds the path that optimizes the given metric.
 - Example: delay-optimization routing finds a path with the minimum (accumulated) delay.

- **Path-constrained routing** finds a path that satisfies the requirement of the given metric.
 - Example: delay-constrained routing finds a path whose delay is bounded by the given value.

Tractability

- Optimization problems can be solved by the traditional type of shortest path algorithms
 - Just use the given metric as the link cost.

- Constraint problems can be solved by their optimization counterparts.
 - To solve the delay-constrained routing problem, simply run the delay-optimization routing algorithm and see whether the best path meets the given delay bound.
However …

- Using one metric is not enough for QoS applications.
- Focusing on one metric could results in waste of network resources.
 - Consider an application that needs 5 Mbps.
 - We run a link-optimization algorithm to find a path.

- Given the above network and link bandwidth, the algorithm will select the red path (whose bottleneck bandwidth is 20), rather than the blue path (whose bottleneck bandwidth is 10).
- However, the red path uses 5×4 Mbps of bandwidth, while the blue one uses only 5×2 Mbps.
- We need to consider a second metric, hop count.
Composite Routing Problems

- Finding a path (between a source and destination) using more than one performance metric.
- Such problems can be derived from the above four basic routing problems.
- For example, the
 - bandwidth-constrained least-delay routing problem belongs to the
 - link-constrained path-optimization problem class.

Polynomial Routing Problems

- Link-constrained, path-optimization routing
- Link-constrained, link-optimization routing
- Multi-link-constrained routing
- Link-constrained, path-constrained routing
- Path-constrained, link-optimization routing

- In the following, we will discuss important cases of the above problems and their solutions.
Bandwidth-Delay Constrained Routing

- This is a case of link-constrained, path-constrained routing.
- It lends itself to multimedia applications that demand bandwidth availability and delay bound.

Algorithm

1. Eliminate all links that do not meet the bandwidth requirements.
2. Run a traditional shortest path algorithm to find the minimum delay path.
3. The path is accepted if it meets the delay constraint; otherwise report failure.
Discussion

- We can always get rid of the “link-constrained” part by eliminating unsatisfactory links.
- The trick gives rise to the solutions for all the polynomial cases, except the last one, path-constrained, link-optimization routing.
 - We will not cover the case in this talk.
 - You are encouraged to figure it out on your own.

NP-Complete Routing Problems

- Path-constrained, path-optimization (PCPO) routing
 - Example: delay-constrained, minimum-cost
- Multi-path-constrained routing (MPC)
 - Example: delay, delay jitter constrained routing
Notice: There are two sufficient conditions for the NP-completeness of PCPO and MPC.

– The two metrics are independent, and
– they both use real numbers or unbounded integers as values

A Precise Description of MPC

A metric d is said to be additive if, given a path $P=L_1,L_2,...L_n$, $d(P) = d(L_1)+d(L_2)+...+d(L_n)$.

– The delay metric is additive.

A metric d is said to be multiplicative if, given a path $P=L_1,L_2,...L_n$, $d(P) = d(L_1)*d(L_2)*...*d(L_n)$.

– The transmission rate is multiplicative

Theorem: Given any N additive/multiplicative metrics and their respective constraints, the problem of finding a path satisfying the N constraints is NP-complete.
Shortest Path, Bounded Delay Routing

- The hop-count metric (where \(d(L) = 1 \), for every link \(L \) in the network) is additive.
- The delay metric is also additive.
- Thus, the problem is NP-complete.
- In general, finding the shortest path (in terms of hop counts) that satisfies an additive/multiplicative constraint is NP-complete.
- How depressing!

Handling Delay and Jitter Constraints

- We’ve seen that delay and jitter constraints are difficult to deal with. They are, however, important to many multimedia applications.
- Fortunately, in networks that do provide QoS guarantees, additional help is available.
- Specifically, a network that guarantees QoS must use an advanced packet scheduling algorithm, such as WFQ.
With many scheduling algorithms, delays and jitters of a traffic flow are functions of its allocated bandwidth.

In general, the more bandwidth, the shorter the delay and the lesser the jitter.

To solve a routing problem involving delay and jitter constraints, we first translate these constraints to a bandwidth requirement.

We then face a bandwidth constrained problem, which is easy to deal with.

Discussion

The delay derived from bandwidth refers to the queueing and transmission delay at a router.

It does not include signal propagation delays.

Thus some distortions are introduced in using bandwidth to guarantee delays.

For many communication links, this is ok.

One important exception is satellite links, which cause extraordinary propagation delays.

A practical solution is to simply exclude satellite links in delay-constrained routing.
Present Incarnation

- Integrated Services, the service model that provides QoS guarantees to individual users and applications, do not have much momentum.
- Why do we bother with QoS routing at all?
- QoS routing is emerging in a new form, termed Constraint-Based Routing, to route MPLS tunnels with performance criteria.

QoS Routing in The Internet

- QOSPF: QoS Extension to OSPF
- OSPF LSAs are extended with bandwidth and link propagation delay.
- QOSPF uses a modified Bellman-Ford algorithm to perform shortest-path, bandwidth-constrained routing
 - this is an instance of link-constrained, path-optimization routing
- For a delay-sensitive flow, all satellite links are excluded in routing.