Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

New Results On Routing Via Matchings

Indranil Banerjee with Dana Richards

George Mason University

richards@gmu.edu

December 1, 2017

イロト 不得下 イヨト イヨト

3

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

- G(V, E) is an undirected graph. $V = \{1, 2, 3, \dots, n\}$.
- A pebble at vertex *i* is labeled π(*i*) if it is to be routed to vertex π(*i*), for a given permutation π.

Definitions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

• Permutations written using cycle notation.

Indranil Banerjee

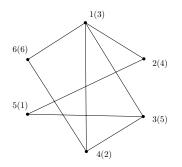
The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP



 $\pi = (135)(24)(6)$

Figure: G with 6 nodes

イロト イロト イヨト イヨト

E 990

Indranil Banerjee

The Routing Model

- Previous and Related Work
- Computational Results
- Structural Results
- CCPP

- A matching is a vertex disjoint subset of the edges.
- Swapping pebbles across the matched edges advances to a new permutation (stop at the identity permutation).

Definitions

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - つくで

- Routing time, $rt(G, \pi)$, # of matchings necessary for π
- The maximum routing time over all permutations is called the *routing number* of *G*, *rt*(*G*).
- If G is not connected, $rt(G) = \infty$

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

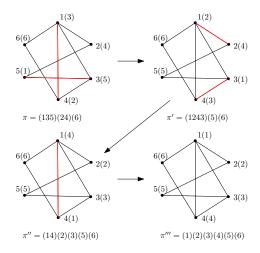


Figure: A 3-step routing scheme for (G, π)

An Example

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

- This routing model was first introduced by Alon et. al.(*)
- Which is a special case of the minimum generator sequence (MGS) problem for permutation groups (G).
- Given a set of generators *S*, the MGS problem asks one to determine the minimum number of generators required to generate every element of *G* (from the identity element).
- This problem was shown to be PSPACE-complete (even with only generators of order 2).

(*) Alon, N., Chung, F. R., & Graham, R. L. (1994). Routing permutations on graphs via matchings. SIAM J Disc Math, 7(3), 513-530.

The General Model

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

Routing Numbers of Familiar Graphs

イロト イポト イヨト イヨト

3

- Every connected graph, has a spanning tree.
- Trivially, we can pick a pebble whose destination is some leaf vertex.
- Move it to its destination sequentially, then solve for the rest of the tree independently. Takes $O(n^2)$ steps.
- However we can do it faster (O(n)).

Tree Routing

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

First partition the spanning tree around its centroid.

- Route between the subtrees through the centroid using a matching chosen based on a simple odd-even greedy strategy.
- **2** Then route within the subtrees recursively (in parallel).

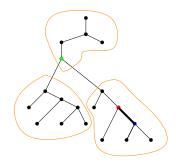


Figure: This strategy gives a $\leq 3n$ routing scheme

イロト 不得下 イヨト イヨト

3

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

• Current best upper bound for any tree is $3n/2 + O(\log n)$.

• The best lower bound of $\lceil 3n/2 \rceil + 1$ is for the start graph.

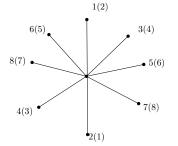


Figure: A matching is just a singleton edge, the permutation $\pi = (12)(34) \dots (2m-1, 2m)$, n = 2m takes $\lceil 3n/2 \rceil + 1$ steps.

Tree Routing

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

- $rt(P_n) = 2\lfloor n/2 \rfloor$ (path graph).
- $rt(K_n) = 2$ (complete graph)
- $rt(K_{n,n}) = 4$ (complete bipartite graph)
- $rt(Q_n) \leq 2n 3$ (the *n*-cube with 2^n vertices)
- $rt(M_{n,n}) = O(n) (n \times n \text{ mesh})$
- If G is a bounded degree expander then $rt(G) = O(\log^2 n)$

Routing Numbers of Familiar Graphs

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - つくで

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

• It is known that:

 $rt(G\Box H) \leq 2\min(rt(G), rt(H)) + \max(rt(G), rt(H))$

• Since
$$Q_n = K_2 \Box Q_{n-1}$$

- The upper bound rt(Q_n) ≤ 2n − 3 follows. (the *n*-cube with 2ⁿ vertices)
- It is also the best known.
- Lower bound $\geq n+1$
- It has been conjectured that $rt(Q_n) \le n + 1 + o(n)$.

Hypercube

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - つくで

> Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

Figure: A bad permutation. The cycle crosses many non-adjacent vertices.

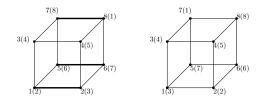


Figure: Step - 1 $\langle \Box \rangle \langle B \rangle \langle B \rangle \langle E \rangle$

3(4) 4(5) 5(6) 6(7) 1(2) 2(3)

Hypercube

Э

Indranil Banerjee

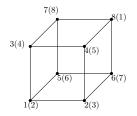
The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP



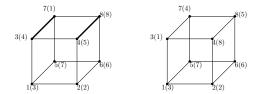


Figure: Step - 2

Hypercube

Indranil Banerjee

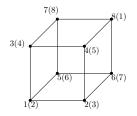
The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP



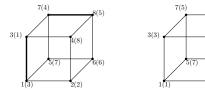


Figure: Step - 3

Hypercube

◆□ > ◆□ > ◆三 > ◆三 > ◆□ > ◆□ >

8(4)

6(6)

4(8)

2(2)

Indranil Banerjee

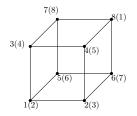
The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP



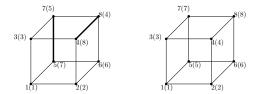


Figure: Step - 4

Hypercube

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

ССРР

Our results:

- Deciding if $rt(G, \pi) \leq 2$ can be done in polynomial time
- Determining $rt(G, \pi)$ is NP-complete
- It remains so when G is 2-connected and π is an involution

Later we show

- Decision version of MaxRoute is also NP-complete
- Connected colored partition problem (CCPP) is NP-complete
- An $O(n \log \log n / \log n)$ -approximation algorithm for MaxRoute on a degree bounded graph.

Computational Results

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

 $G[V_c] =$ induced subgraph over the vertices in cycle c"Self-routing" a cycle c of π uses only using $G[V_c]$ in two steps.

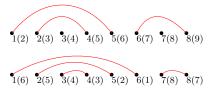


Figure: One way to route a simple cycle c = (12345678) in two steps. There are 8 possible ways on a complete graph

For a sparser graph there may not be 8 options. Can determine if there is at least one way in linear time.

Is $rt(G,\pi) \leq 2?$

Indranil Banerjee

The Routing Model

Previous and Related Work

Structural Results

CCPP

"Mutual routing" of a pair of cycles c_1, c_2 in π uses only edges of the induced bipartite subgraph $G[V_{c_1}, V_{c_2}]$, in two steps.

Is $rt(G,\pi) \leq 2$? Contd.

イロト イポト イヨト イヨト

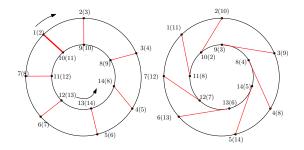


Figure: One way to route two cycles $c_1 = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7)$ and $c_2 = (8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14)$ in two steps.

Can determine if there is at least one way in linear time.

> Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

ССРР

Is $rt(G, \pi) \leq 2$? Contd.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - つくで

- For each cycle we can determine if it can be self-routed
- 2 For each pair we can determine their mutual-routability
- **3** Create a graph G_{cycle} with:
 - a vertex for each cycle of π
 - edges and self-loops for mutual- and self-routability
- **4** Then $rt(G, \pi) = 2$ iff G_{cycle} has a perfect matching.
- G All this can be carried out in the time it takes compute a maximum matching.

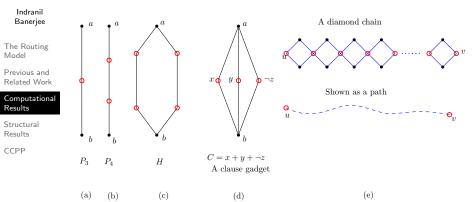


Figure: The involution (ab) takes at least three steps to route for the graphs in figures (a)-(d)

Hardness Proof: Reduction from 3-SAT

A clause can be routed in 3 steps iff a vertex from $\{x, y, z\}$ is available, i.e. not used to route any other pebbles.

GMU December 1, 2017 20 / 40

Indranil Banerjee

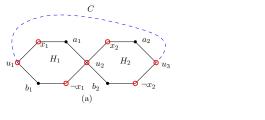
The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP



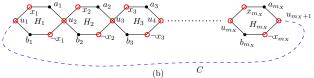


Figure: Variable gadget.

Where the variable X is in $m_X =$ clauses.

Hardness Proof Contd.

イロト イポト イヨト イヨト

э

GMU December 1, 2017 21 / 40

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

C_1 C_2 C_m X_1 X_2 X_3 X_n

Figure: The entire G_{ϕ} that is built.

Hardness Proof Contd.

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

Hardness Proof: Observations

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - つくで

- $rt(G_{\phi}, \pi) = 3$ iff ϕ is satisfiable.
- The graph G_{ϕ} built in the reduction is 2-connected.
- The permutation π in the reduction is an involution.

The other hardness proof in this work extend this reduction.

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

Approximate/Partial Routing

Define the MaxRoute problem (partial routing) as follows:

- Given a graph G, a permutation π and number of steps k route the most pebbles to their destination within k steps.
- $mr(G, \pi, k)$ is the max number of pebbles routed.
- The decision version of this problem is to determine if mr(G, π, k) ≥ t.

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

We give an approximation algorithm for the restricted case where $\Delta^k = O(\log^2 n)$, $\Delta = \max$ degree of *G*.

- Our approximation algorithm is based on a reduction to the MaxClique problem.
- The best known approximation factor for MaxClique is $O(n \log \log n / (\log n)^3)$

Approximating MaxRoute

<ロト 4 回 ト 4 三 ト 4 三 ト 三 三 つ 0 0</p>

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

1 We enumerate all walks of length k for each pebble on G.

- A pair of walks is "compatible" if:
 - a. The walks belong to different pebbles.
 - b. They do not intersect (same place at the same time).
 - c. The pebbles reach their destinations at the end.
- Build graph G' with a vertex for each walk and edges for compatible pairs

A clique in G' gives a set of mutually compatible walks.

Approximating Contd.

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

Three structural results

- If G is a h-connected graph and H is any h-vertex induced subgraph of G then rt(G) = O((n/h)rt(H)).
- If G has a clique of size at least κ then $rt(G) = O(n \kappa)$.
- Routing number of the pyramid graph $\triangle_{m,d}$ is $O(dN^{1/d})$

$$N=\frac{2^{md}-1}{2^d-1}$$

Structural Results

イロト 不得下 イヨト イヨト

3

h-Connectivity

New Results On Routing Via Matchings

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

- Let A, B be a bi-partition of V for some min-cut of size h.
- Then it takes at least Ω(min(|A|, |B|)/h) to move all pebbles between A and B.
- For some graphs this is $\Omega(n/h)$.

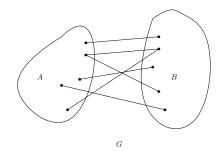


Figure: Lower bound.

イロト イポト イヨト イヨト

3

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

The Gyori-Lovasz theorem: for all h-connected graphs and for any set of h vertices there is a partition:

- Where each of the *h* vertices is in a distinct block,
- We can insist the size of the blocks are nearly equal,
- Each block induces a connected subgraph.

This set of h vertices will induce a subgraph H of G. We can assume H is a subgraph which minimizes rt(H).

h-Connectivity, Contd

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

G_5 G_{3} U_3 U_2 U_2 G_2 G_1 G_1

Figure: A partition of G, with h = 5. Since each induced subgraph G_i is connected, there is a spanning tree T_i of G_i rooted at u_i .

h-Connectivity, Contd

a Matching Indranil

Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

Let each G_i have a distinct "color".

• Each pebble knows the color of its destination block.

h-Connectivity

イロト 不得 トイヨト イヨト 二日

- By Hall's theorem there is a set of permutations $\pi_1, \pi_2, \ldots, \pi_h$, one for each subgraph, such that each $(\pi_1(i), \pi_2(i), \ldots, \pi_h(i))$ contains *h* distinct colors.
- Hence each (π₁(i), π₂(i), ..., π_h(i)) is a permutation which we can route using only H in rt(H) steps.

> Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

h-Connectivity: Routing Algorithm

Routing proceeds in three stages

- During the first stage we move pebbles within each T_i according to π_i . (This takes O(n/h) steps in parallel)
- 2 We use *H* to route pebbles between the connected blocks using colors, n/h times. (O((n/h)rt(H)) steps)
- Finally we move pebbles within each T_i to their final position. (O(n/h) steps)

Conjecture

If G is h-connected then there is a H (as above) having g(h) vertices with rt(H)/g(h) = o(1).

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

Routing and Clique Number

イロト イポト イヨト イヨト

- Recall that $rt(K_n) = 2$.
- Intuitively having a large clique should results in a smaller routing number
- However this dependency is not multiplicative:

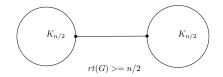


Figure: The barbell graph, although it has two large cliques, its routing number is still $\Omega(n)$

So there is a $\Omega(n-\kappa)$ bound for such graph families.

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

Routing and Clique Number, Contd

- Let H be a clique of size κ
- $G_{\setminus H}$ is the minor of G after contracting H to the vertex v
- T is a spanning tree of $G_{\setminus H}$

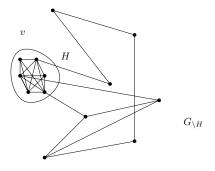


Figure: The (super) vertex v acts as any other vertex in $G_{\backslash H}$, with the exception that pebbles exchanges takes three time steps.

> Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

Routing and Clique Number, Contd

<ロト 4 回 ト 4 三 ト 4 三 ト 三 三 つ 0 0</p>

- In the first stage we route all pebbles that belong in the super vertex v into v. (Takes at most 3(n κ) + O(1) steps).
- 2 Next we route the pebbles within T, treating v as any other vertex, using any optimal tree routing algorithm. $(Takes \le 3(3/2)(n-\kappa) + o(n))$
- 3 Finish up within v in two steps.

Hence it takes $O(n - \kappa)$ steps to route any permutation on G.

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

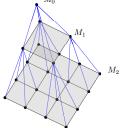
M_0 M_1 M_2

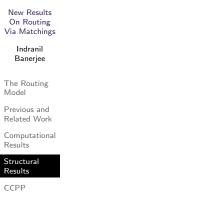
Figure: A pyramid $\triangle_{3,2}$ with 3 layers.

Routing Number of \triangle

イロト イポト イヨト イヨト

э





Routing Number of rianglepsilon

イロト イポト イヨト イヨト

э

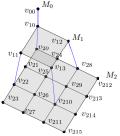


Figure: A multi-grid formed after stripping way some edges from $\triangle_{3,2}$

Use vertical paths of length k to move pebbles up to level k (from the base).

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

Connected Colored Partition Problem

This arises in the analysis of some approximation algorithms.

Given a graph G and a vertex coloring with at most k colors, the problem asks whether there is a partition of the vertices such the following holds:

• Each block of the partition induces a connected subgraph.

イロト 不得 トイヨト イヨト 二日

- No color spans two blocks.
- Each block is of size $\leq p$

CCPP, Contd

Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

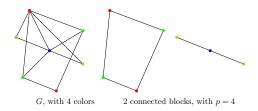


Figure: An example using two blocks.

- We reduce from 3-SAT.
- The reduction is similar to the routing time proof.
- If (ab) is a 2-cycle of π then the vertices corresponding to a, b are assigned the same color.
- Vertices with fixed pebbles are assigned a unique color.

> Indranil Banerjee

The Routing Model

Previous and Related Work

Computational Results

Structural Results

CCPP

Questions?

イロト イヨト イヨト イヨト

э

GMU December 1, 2017 40 / 40