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Abstract

Positioning a mobile station (MS) with a wireless communication system in a non-
line-of-sight (NLOS) environment, which is sometimes called “NLOS geolocation” for
short, has become an important issue with the rapid development of mobile com-
munications in recent years. This dissertation deals with certain problems regarding
NLOS geolocation. Specifically, four topics are investigated: a unified analysis of
geolocation in an NLOS enviroment, the relationship among major distance-based
schemes, a geolocation algorithm using the sequential simplex method (SSM) and a
wavelet-based approach to channel estimation in a multipath environment.

In the unified analysis for NLOS geolocation, we answer two basic questions: what
is the best positioning accuracy; and how to achieve it? In addition, the relation-
ship between the conventional geometry-based methods and a theoretically optimal
receivers is clarified.

The relationship among the time-of-arrival (TOA), time-difference-of-arrival (TDOA)
and signal-strength (SS) based methods, is explored. The tradeoff between the ac-
curacy limits for the TOA and SS based methods leads to our proposal of a hybrid
distance estimation scheme that can take advantage of both TOA and SS information.

By combining the analytical results obtained above, a new geolocation algorithm
that can mitigate NLOS effects is devised. The geolocation problem is formulated as
a constrained optimization problem. The SSM serves as an optimization tool, which

can handle a non-differentiable objective function and complex boundary conditions

il



in a simple manner.

If multipath propagation is present, channel estimation becomes important for the
time-delay based positioning methods. A simple wavelet-based approach is developed
for channel estimation. This approach takes advantage of two properties of the scaling
function associated with an orthonormal wavelet: the bandwidth efficiency and the
orthogonality among the scaling function and its time-shift replicas. This approach
can be applied to the identification of a large class of linear systems, not just a wireless

communication channel.

v
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Chapter 1

Introduction

The term “wireless geolocation” is defined as an action to locate a mobile station
(MS) in a wireless communication system. Nowadays the demand for wireless ge-
olocation techniques goes far beyond the military use for which the techniques were
originally developed. Besides soldiers, pilots and sailors, ordinary citizens can benefit
from the geolocation capability to make their lives and work more productive and
safer. In the United States, the Federal Communications Commission (FCC) has
mandated cellular system operators to estimate the position of an emergency caller
with accuracy of less than 125 meters in Enhanced 911 (E-911) service [1]. Other
important geolocation applications, some of which are yet to be developed, include
navigational services such as Intelligent Transport System (ITS), road-side assistance,
location-sensitive billing and “mobile yellow pages”.

Conventional geolocation methods have been well deployed in earlier navigation
systems such as Decca and Loran [2] which are terrestrial-based location systems,
and in more recent Global Positioning System (GPS) which is a highly successful and
accurate system using a constellation of 24 satellites [3]. The conventional methods
usually take locations of base stations (BS) as reference points and adopt one or more

types of measurements pertaining to position information, i.e., time of arrival (TOA),
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time difference of arrivals (TDOA) and angle of arrival (AOA). The desired position
is then calculated from triangulation.

With pervasive usage of cell phones and the expanding demand of the market,
major challenges of the geolocation technology have two aspects: marketing and
technology. From the marketing aspect, cellular system operators prefer to rely on
their existing cellular communications infrastructure to provide geolocation related
services in lieu of some designated positioning system such as GPS. It is also of inter-
est to the consumers to keep modifications of cell phones at an affordable level. These
requirements prompt system designers to look into the trade-offs among three basic
geolocation architectures: mobile-based, network-based, and hybrid geolocations [4].
From the technical aspect, a main challenge is to deal with harsh mobile environ-
ments, especially non-line-of-sight (NLOS) propagation of a radio signal, which can
severely degrade the positioning accuracy. Therefore, the conventional methods often
become inadequate, since they function well only in line-of-sight (LOS) environments.
Furthermore, these conventional schemes that apply a rather heuristic geometric ar-
gument to location-bearing measurements do not explicitly take into account such
parameters as signal-to-noise ratio (SNR) and the signal bandwidth when combining
and processing the measurements from different BSs. Thus, optimal solutions cannot
be guaranteed.

Therefore, in this dissertation, we address the following two fundamental technical
questions for NLOS geolocation. What is the best achievable geolocation accuracy
in an NLOS environment? And how should the corresponding optimum receiver be

structured?



CHAPTER 1. INTRODUCTION 3

1.1 Overview of the Dissertation

Major contributions of this dissertation are in the following areas:
e Unified analysis of NLOS geolocation (Chapter 2)
e Relationship among the distance-based positioning methods (Chapter 3)
e A geolocation algorithm using the sequential simplex method (Chapter 4)
e A wavelet-based approach to channel estimation (Chapter 5)

We provide here a brief overview of each chapter.

Chapter 2 presents a unified analysis of geolocation in an NLOS environment,
where the TOA, TDOA and signal strength (SS) based positioning methods are in-
vestigated in an integrated manner. From the viewpoint of estimation theory [5], we
answer the above two basic questions of the subject, i.e., what is the best positioning
accuracy? and how to achieve it? In addition, the relationship between the conven-
tional methods and the theoretically optimal receivers is established. Specifically, the
conventional methods are reduced to special cases of the optimum solutions under
certain conditions.

In Chapter 3, we explore the connections among the three distance based meth-
ods (TOA, TDOA and SS positioning), in contrast to the treatment in the previous
chapter where these methods are separately investigated. An analytical explanation
is provided for the argument that given a set of BS locations and an MS position,
the TOA method should achieve higher positioning precision than the TDOA coun-
terpart. Moreover, it is revealed that the two positioning methods may attain the

same level of accuracy under certain conditions. On the other hand, we pursue the
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tradeoff between the accuracy limits for the TOA and SS based methods, which leads
to a hybrid geolocation scheme that combines both TOA and SS data.

The above two chapters represent the theoretical contributions of the dissertation.
We turn to some practical issues in the remaining chapters.

A geolocation algorithm using the Sequential Simplex Method (SSM) is proposed
in Chapter 4. The NLOS geolocation problem is formulated as a constrained opti-
mization problem, in which the SSM serves as an optimization tool. It involves an
iterative evaluation of an objective function itself in contrast to evaluation of deriva-
tives of the objective function performed in typical gradient methods. The movement
of an MS is often limited by geographic conditions (such as street and highway lay-
outs) and a finite speed of the MS. The SSM can incorporate such complex boundary
conditions in a simple manner.

When the signal used for geolocation is subject to multipath propagation, channel
estimation becomes an important issue for TOA positioning, since we need to pre-
cisely locate the first component of the arriving signal. As an initial attempt in this
direction, we develop a wavelet-based method for channel estimation in Chapter 5.
To estimate the channel impulse response, a training sequence is constructed using a
scaling function associated with an orthonormal wavelet. By appropriately sampling
the received signal, we are able to obtain the projection of the channel impulse re-
sponse onto the subspace spanned by the scaling functions, which then allows a simple
yet accurate reconstruction of the channel response. This scheme takes advantage of
two properties of the scaling function: orthogonality between the scaling function
and its time-shift replica, and its bandwidth efficiency. The amount of computations
required is proportional to the number of data samples used, which is much less than

other known methods. The scheme is also robust to some severe channel conditions,
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such as low SNR and long delay spread.

We begin each of the following four chapters with an introduction and a review of

the state of the art in the subject area, and then present our development of analysis

or algorithms.



Chapter 2

Unified Analysis of NLOS

(Geolocation

2.1 Introduction

Positioning using radio signals that are subject to non-line-of-sight (NLOS) propa-
gation has long been recognized as a difficult task. Many research efforts have been
devoted to finding better solutions in recent years, driven by the increasing demand
for the geolocation function in cellular communications.

While the past experiences of geolocation in a line-of-sight (LOS) environment
were successful, the common trend of the recent research is to modify the algorithms
and analysis employed in LOS geolocation by accommodating NLOS factors. The
application of estimation theory to radar systems in estimating the distance and ve-
locity of moving objects is well discussed in [9]. Its extension to the LOS geolocation
problem is rather straightforward [13]: the dimensionality is increased from one (in
radar) to two or three (in geolocation), and multiple transmitters (or receivers) are
considered due to multiple base stations (BSs). When propagation of radio signals

involve NLOS paths, a new type of parameters, i.e., additional path lengths induced
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by NLOS propagation, must be taken into account. These NLOS delays are often
treated as small variations of LOS delays [11, 12]. In such treatments, most results
obtained under the LOS assumption are adopted. However, they cannot take into
account specific characteristics of NLOS delays, e.g., NLOS delays cannot be nega-
tive. Many algorithms, e.g., [14, 23, 24, 25|, have been proposed to mitigate NLOS
effects. The rationale of these schemes often comes from some ad hoc geometric or
intuitive arguments. Thus, few of them can be verified to be optimal. We believe
that a systematic understanding based on a comprehensive framework of the NLOS
geolocation problem is called for.

This chapter presents our attempts along this direction. We pursue two fundamen-
tal questions of NLOS geolocation within a general framework that accommodates
various geolocation methods: what is the best positioning accuracy in an NLOS en-
vironment? and how to achieve it? A closely related question is concerned with
the relationship between theoretically optimum solutions and the conventional meth-
ods that are based on measurements pertaining to position information, i.e., time of
arrival (TOA), time difference of arrival (TDOA) and signal strength.

Our formulation starts with a set of received signal waveforms themselves!, instead
of such intermediate statistics as TOA and TDOA data. NLOS effects are viewed
as random variables. Depending on whether statistical information on the variables
is available or not, we separate our investigation in two stages. In the first stage,
we concentrate on a scenario where NLOS and LOS signals coexist, but with no
knowledge of NLOS delays. We show that the best geolocation accuracy, represented
by the Cramer-Rao Lower Bound (CRLB), is attained asymtotically by maximum

likelihood estimation (MLE) made on the above intermediate statistics. Thus the

!'We treat the signal strength based positioning method in a different way, which is to be discussed
in Section 2.3.2
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conventional methods can serve as an important component of the optimal receivers.
Moreover, it turns out that the best location estimate should be solely based on LOS
signals, by discarding NLOS signals entirely. This somewhat surprising result sheds
some light on how to simplify geolocation algorithms in practice.

We then in the second stage pursue a more general and realistic scenario where
a priori information of the NLOS delays is provided in terms of some parametric
distributions such as Gamma distribution. Accordingly, we need to extend our pre-
vious result by incorporating the prior information. The best geolocation accuracy,
given by what we term “Generalized CRLB (G-CRLB)”, is shown to be attained by
maximum a posterior (MAP) estimators. We further obtain tight lower and upper
bounds for the G-CRLB. The lower bound is achieved when we know exactly the
amount of NLOS delays. This is an ideal case where an NLOS signal can be treated
as a LOS signal by subtracting the fixed amount from the overall time delay. In the
other extreme, the upper bound is reached when the variances of the NLOS delays
grow to infinity. Then the result reduces to the CRLB obtained in the first stage.

To emphasize the central ideas, we start with in Section 2.2 a detailed derivation
of the above statement for TOA positioning, which outlines a typical procedure of our
analysis. We then integrate the TDOA and signal strength (SS) based positioning

into the framework developed for TOA positioning in the remaining sections.
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2.2 TOA positioning

2.2.1 Problem Formulation

Consider a synchronous communication system, where clocks at an MS and BSs are
strictly synchronized. A BS receives the radio signal transmitted from the MS®,
via a single (LOS or NLOS) propagation path. It is assumed that we have some
pre-knowledge to determine whether the signal is via a LOS path or not. Several
algorithms [16, 17, 18] have been proposed to perform such identification. Then, by
processing the received signals at all the BSs, the MS position is to be estimated. Let
B ={1,2,---, B} be the set of indices of all the base stations involved, whose locations
{pb = (zp, )", b E B} are known. Denote the set of M BSs that receive NLOS
signals by N'L = {ky, ko, -+, kar}. We can label the elements of N'.C = {1,2,---, M}
without loss of generality. The complement of N'L, denoted as £L(= B\ N L), is the
set of LOS stations, with its cardinality being L. = B — M. The unknown parameter
of our interest is the MS position p = (z,y)?, but there are M additional parameters

that need to be estimated, i.e., NLOS propagation induced path lengths,

l
2

Im
Thus, we define an (M + 2)-dimensional vector @ by concatenating the unknown p

and I:

0 —
l

'Here we only consider the geolocation using up-link signals. Yet most results based on this
assumption should hold for a positioning system that uses down-link signals.
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Let 7, be the time delay of the received signal at the b-th base station (BSp):

sz—{\/(xb—$)2+(yb—y)2+lb}, (2.1)

c

where [, = 0 if b € £, and ¢ = 3 x 10®m/s is the speed of light. Then, the baseband

representation of the received signal at BSy is
ry(t) = Aps(t — ) +ny(t), for b e B, (2.2)

where A, is the signal amplitude, s(t) is a known signal waveform, and ny(¢)’s are in-
dependent complex-valued white Gaussian noise processes with spectral density Ngy/2.
Hence, the joint probability density function (p.d.f.) of the observables {r,(t), b € B}

conditioned on 0 is

fo(r) x bliexp {—Nio [ 1) — Aus(t — m) dt} | (2.3)

This p.d.f plays a key role in casting the NLOS geolocation into a multi-parameter

estimation problem.

2.2.2 Cramer-Rao Lower Bound

It is well known that the Cramer-Rao Lower Bound (CRLB) sets a lower limit for the
variance (or covariance matrix) of any unbiased estimates of an unknown parameter
(or unknown parameters) [5, 6]. For the TOA positioning method, we will show in
the next section that the maximum likelihood (ML) estimate for the MS position can
be approximated as an unbiased estimate under certain conditions. Thus, the CRLB
is an appropriate formula to provide the best geolocation accuracy when we do not
have any prior information of the NLOS delays I. The CRLB is given as follows.

Recall fg(r) is the p.d.f. of observations = conditioned on 8. The Fisher information
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matriz (FIM) is determined by

Jg =LEg %ln fo(r) - (%lnfo(r)> ] : (2.4)

which is an (M +2) x (M + 2) matrix. FEgl-] stands for the expectation conditioned
on @ and symbol “I” is for transpose. Denote 0 as an estimate of the vector of

parameters 8. The CRLB is then expressed as

~ ~

Eg[(6-0)(6-0)"]>Jy, (2.5)

where “A > B” should be interpreted as matrix (A — B) is non-negative definite.
The CRLB of Eq. (2.5) represented in matrix form provides a lower bound on the

mean-square errors for the individual components of 8, i.e.,

B0, —0y)” > [3g'], . for 1<b<M+2, (2:6)

which is due to the property of a non-negative definite matrix that all of its diagonal
terms are non-negative.

To evaluate the CRLB, we first observe that fg(r) of Eq. (2.3) is function of 7’s
that in turn are functions of the parameters 8 as stated in Eq. (2.1). Thus we are

able to decompose Jg of Eq. (2.4) using the chain rule as

T
J0:H-J7--H, (2.7)
where
o O ., O ..., 9B
or or oz or
oy O ., O ..., 9B
0y 0y 0y 0y
H = ot dr2 .. Otm ... 9B (2 8)
oli ol al, ol
o, 9 ., 9y ,,, OB

8ZM 8ZM 8lM 8lM
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is an (M + 2) x B matrix, and J+ is the FIM conditioned on 7:

0

The matrix H summarizes information regarding the geometric configuration

among the MS and the BS’s. It can be decomposed into NLOS and LOS compo-

nents:
1 H H
H=-| " TN, (2.10)
C\ Iy O
where I, is the identity matrix of order M, Hy; and Hy, are 2 x M and 2 x (B — M)

matrices, respectively, expressed as

COS(1 COS@y --- COSPp
HNL - )
sin ¢1 sin d)g +-+ sin ¢M
and
COSPpri1 COSQprin -++ COSPp
H; =
Sin 41 SinQpyqo -+ singp
Angle ¢, is determined by
T — Ty

which is the geometric angle between the positions of the MS and BS,.
Subscript “NL” or “L” refers to NLOS or LOS stations, respectively. We shall
adopt this notation throughout this chapter. Similar to H of Eq. (2.10), we can

decompose J+ as
A 0
Ir=| " : (2.11)
0 A
where Ay and Ap are diagonal matrices of order M and (B — M), respectively, given

by
ANL :diag()\l, )\2, "',)\M), (212)
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and
AL :diag()\MH, )\M+27 "',)\B). (213)

The diagonal term is

Ny = 87°63% - Ry, (2.14)
where R, is the SNR of the received signal at BS,,

J1Aps(8)]?dt _ AR

R, = = .
’ Ny Ny

We assume the normalization condition

/|s(t)|2dt —1, (2.15)

for simplicity. Parameter (3 is the effective bandwidth of the signal waveform s(t),

defined as
I IS Paf
J1S () Pdf

where S(f) is the Fourier transform of s(t). Note that J+ contains the system pa-

5 = = [ fIS(Hd.

rameters.
By now we have calculated the two components of Jg in Eq. (2.7). It is straight-

forward to compute

ANLHTJ\}L ANL

From the above equation, we see that Jg depends on contributions from both NL
(NLOS) and L (LOS) signals. The inverse of Jg, i.e., the CRLB, gives the best
estimation accuracy of @ = (p,l). However, the accuracy of p is of our primary
interest. Thus we shall concentrate on [Jél]zxz, which is the first 2 x 2 diagonal

submatrix of J 51. An interesting characteristic of this quantity is stated as below.
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Proposition 2.1

When no prior information on 0 is available, the CRLB for the MS position is
-1 _ 2 A
7', = ¢ (HiAHE) (2.17)

which depends only on LOS signals.
Proof.
It suffices to show
-1 _ 2 AN
Ig'], =¢ [(HLELHL) ]H, (2.18)
where [A],, refers to the element at the m-th row and n-th column of matrix A. Tt

can be done in the following four steps.

1. By definition,

J
[Jél]u - ‘ i(;l)’ (2.19)

where 30(1 )y Is an (M + 1) x (M + 1) matrix obtained by removing the first

row and the first column of Jg, and |A[ is the determinant of matrix A.

2. The denominator in the above equation can be expressed in terms of Hy, Ay,

and Ayy by exploring submatrix manipulation:

1 HNLANLH%L-FHLALH{ Hy AN

\Jo\ = 25
¢ ANLHTJ\}L ANL
B 1 HLALH}j 0
= =5 . (2.20)
ANLHNL ANL
1
= 5 [HLALHT| - [Ay]. (2.21)
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The second equality is obtained by subtracting the second row left multiplied
by Hyy, from the first row. The determinant of the matrix remains unchanged

under such linear operation [33].

3. Similarly, we derive the nominator of Eq. (2.19):

— — T
‘j 1 Hyr,00 Hrao Any, O Hyrao Im
0, — 2B 2 —~T

—~ ~T —~ ~T —~
1 HNL(I,O)ANLHNL(L()) + HL(I,O)ALHL(L()) Hyra,0ANL

2B—2 —~T
¢ ANLHNL(1,0) Anr

1 = ~T
= onmr_o HL(I,O)ALHL(LU)

c2B—2

AN, (2.22)

where f—IJNL(LO) and ﬁL(l,O) are obtained by deleting the first row of Hyy and

H;, respectively.
4. Substituting ‘JG‘ and ‘30(1 1)‘ of Egs. (2.21) and (2.22) into Eq. (2.19), we reach

~ —~T
) ‘HL(I,O)ALHL(L())

Jo! = ¢
o, LA H]|
2 7\ 1
= c [(HLALHL) ] - (2.23)
11
By repeating the above steps for the other elements of [Jél]2X2, we obtain
[Jél}mn — 02 (HLALHg)l] , for m = 1, 2, and n = 1, 2. (2‘24)

From the above derivation, we are convinced that the CRLB for the MS posi-

tion estimate depends only on LOS signals, and the contributions from the NLOS
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signals are completely eliminated. This somewhat surprising and counter-intuitive
consequence results from our assumption that no prior information is available con-
cerning the NLOS delays [. It is equivalent to assuming a prior distribution with
infinite variance for . Then any possible improvement in the positioning precision
to be made by including the NLOS signals is annulled by the infinite variance (or
“total uncertainty”) of I. We shall revisit this argument from another perspective in

Section 2.2.4.

Physical Interpretation

Now we are in a position to provide a physical interpretation of the CRLB in Propo-
sition 2.1. It will be convenient for our discussion if we use the explicit expression of

the minimum mean square error of the MS position estimate p = (Z, §) instead:

[Eo (p— ﬁ)Q]min - [Eo(x N J%)Z]min T [Eo (y = g)z]min

= [3g'],, + [74'],,
62 Zbeﬁ Rb

_ . , (225
81262 3y, e Ry Ro, sin®(dy, — ) (2.25)

First, the exclusive dependency on the LOS signals of the positioning accuracy can
be exploited to simplify NLOS geolocation algorithms. When no prior information
on NLOS delays is available, an algorithm should identify and then reject all NLOS
signals, instead of actually estimating the NLOS induced path length I along with
p = (x,y). This approach usually reduces computational burden, as will be verified
in Chapter 4 where we consider concrete examples.

Second, [EG (p— 13)2] min is inversely proportional to the square of the effective
bandwidth, 42, which is consistent with the MMSE (minimum mean square error) of

a distance estimate in radar estimation (see e.g., [9]).
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Third, the positioning accuracy is controlled by the geometric configuration of the
LOS stations, only through sine functions of the angle differences (¢y, — dp,), b1, b2 €
L, seen by the MS. The estimation error grows to infinity when all the LLOS stations

and the MS are lined up on a straight line, i.e.,

[Eg(p—D)?| . — 400, as ¢, — ¢y, = 0,7, forall by, by € L. (2.26)

min
Fortunately, such a case is rare in reality.

Fourth, we investigate the contribution of an individual SNR, say Ry, to an overall

accuracy enhancement. To facilitate the investigation, we isolate Ry from the rest of

[Eo (p— ﬁ)Z]min given by Eq. (2.25) as

1 {1 AC -G }, (2.97)

=) 2 — . - -
Botp—P)"] i = s ¢\ TatcR,

where

A — Z Rb Z 0,
bk, be L
G = Z Z Rble2 Sin2(¢b1 - ¢b2) Z 07
by ,batk, be L
Cc = Z Rb Sin2(¢b - ¢k) 2 0.
bk, be L

Observing the above expression, we notice that the sign of (AC — @) is important.
We claim (AC — G) > 0, where the equality holds if and only if ¢, — ¢ = 0 or =, for
b#k, b e L. To see this, let

& = oy — ¢r, for b#k.
Then,

AC -G = Z Z Rbl Rb2 (Sin2 6172 - Sin2 (6171 - §b2))

b1,b27#k
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= Z Rg Sin2 gb +2 Z Z Rbl sz ) (Sin2 gbl Sin2 §b2 + sin gbl sin gbz cos gbl cos §b2)

b#k b1<b2, bl,bzf/ék
> Z Rf sin® & cos? &, + 2 Z Z Ry, Ry, sin &, sin &, cos &, cos &,
b#k b1 <ba, bl,b275k

+2 Z Z Rbl Rb2 SiHZ gbl SiHZ §b2
b1<b2, b1,b2#k

(using Yy Ry sin® & > Y2, R sin® &, cos? 51,)

2
1
= (5 > Ry Sin(%b)) +2)° > Ry, Ry, sin” &, sin® &,

b#k b1 <ba, bl,b275k

> 0. (2.28)

The above “if and only if” condition is not difficult to verify. Therefore, we are able to
conclude from Eq. (2.27) that when (AC' — G) > 0, an increase in Ry, should enhance
the geolocation performance; however, no such gain is expected when AC' — G = 0,
which corresponds to the case where Eq. (2.26) holds, i.e., when all the LOS stations

and the MS align on a straight line.

Numerical Examples:

Consider a cellular CDMA system with seven BSs as shown in Figure 2.1, with cell
radius of 2000m. A moving MS transmits signals. The SNR of a received signal at
a BS is tuned to be Ry = 3dB when the distance between the pair of MS and BS is
2000m. The chip rate of the CDMA signal is W = 5Mcps.

The relation between W and the effective bandwidth # can be approximated as

oW
e 7 (2.29)

It can be derived from the normalization condition of Eq. (2.15)

[ Is@E =1,



CHAPTER 2. UNIFIED ANALYSIS OF NLOS GEOLOCATION 19

Figure 2.1: A Cellular system with seven base stations.

and approximation

[S()IF = |S(0)%, for f e [-W, W],

which yields

Hence,

w
g = [ PISP df

1 W
~ 2. 1 3
= ISOF-5 £,
W2
3
Therefore, we are able to calculate the positioning accuracy (in meter) for the CDMA

system, by using the square root of [EO (p— ﬁ)Z] min in Eq. (2.25), or equivalently,

Por \/trace <[J01]2X2>. (2.30)
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Figure 2.2 depicts a contour map of the accuracy Pcg for the CDMA system with
all the seven BSs being LOS stations. The locations of the LOS stations are marked

“*7 and the numbers labeled on the contour curves represent the positioning

as
accuracy. It is observed that first, the contour pattern is symmetric due to the set
of evenly distributed BSs; second, the better accuracy values appear in the central

region that surrounds the central BS at (0,0).

Contour of CRLB for positioning accuracy with seven BSs

T
>

\/OJ\

€/
92 N,
D78V
) @ m/

—2000 —1500 -1000 —500 500 000 1500 2000
xin meter

1000

500 -

y in meter
o

Figure 2.2: The contour of the accuracy Pcr (in meter) for the CDMA system with all
the seven BSs being LOS stations.

Figures 2.3 and 2.4 show the accuracy Pcg vs. the chip rate and the SNR at a
position 2000m from the MS, respectively. As expected, a better geolocation accuracy
is achieved with a higher SNR, a higher chip rate and with more BSs involved. The
performance may not further improve, however, beyond some threshold about 5Mcps

in Figure 2.3.

At the end of this section, we briefly discuss the accuracy limit for the NLOS

delay estimate, which may be useful to some applications such as channel estimation.



CHAPTER 2. UNIFIED ANALYSIS OF NLOS GEOLOCATION 21
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CRLB at (0,0) with SNR=3dB
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Figure 2.3: The numerical curves for the CRLB: Pcg vs. the chip rate with different

numbers of BSs involved.

CRLB at (0,0) with 5Mcps

14

12

=
\vo/i

positioning accuracy in meter
©

o
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Figure 2.4: The numerical curves for the CRLB: Pcgr vs. the SNR at a position 2000m
from the MS with various numbers of BSs involved.
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Analogous to the development of the CRLB for p, we find the CRLB for estimating

an [,,, the m-th NLOS induced path length, given by

7T \2 o -1
[Ee(lm = lm) }min - [JG ](m—l—?),(m—i—?)
X T becopmy By, Ry, sin®(dy, — ¢p,)
877-252Rm E Ebl,bgeﬁ Rbl Rb2 Sin2 (¢b1 - ¢b2) ,

02

> 77
- 8m2B2R,,

for m e NL. (2.31)

We notice that only the LOS signals and the NLOS signal associated with this specific
BS,, matter, and the signals from the other (M — 1) NLOS BSs should be excluded
from the estimation procedure. We also see that [Eg(lm — fm)z}min is lower bounded
by ¢?/8m%3%R,,, which is the CRLB for estimating the overall propagation path from

the MS to BS,,, as we shall see in the next section.

2.2.3 Maximum Likelihood Estimation

So far we have investigated the CRLB for TOA positioning in an NLOS environment.
We now raise the next question: how can we achieve or asymptotically achieve the
accuracy suggested by the CRLB? In this section, we probe this question in two

stages, which are based on the following known result®.

If the time delay of the received signal of Eq. (2.2) is estimated at a matched filter

output with large Ry - B2, it can be modeled as
Ty =T+ &, forbe B, (2.32)

where &, is a Gaussian random variable N'(0,0%) with of = 1/8725%Ry,

LA more general result was proved in the context of range and velocity estimation in a radar
problem in [9].
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A direct way to see this is to apply the Taylor series expansion to the matched
filter output as shown in Appendix 2.1.
The two stages of exploring the achievability of the CRLB are represented by the

following lemma and proposition.

Lemma 2.1
The CRLB for the MS position estimate, which is based on the time delay estimates

from LOS stations, i.e., {7y, b € L}, is equivalent to [Jél] of Eq. (2.17).

2X2
Proof.
We compute the Fisher Information Matrix based on the p.d.f. of {7, b € L}

conditioned on p, i.e.,

) 1
fp (7) o< ] exp {——202 (75 — n)Z} , (2.33)
bel b
with o7 = 1/47?32 R, as
1
Jp=SHAH]. (2.34)
C

Compared the above expression with Eq. (2.17) of Proposition 2.1, it is straightfor-

ward to verify

Jil - [Jé1]2x2'

We now can answer the achievability question raised at the beginning of the sec-

tion:

Proposition 2.2
The mazimum likelihood estimator (MLE) based on the time delay estimates from
LOS stations is unbiased, and can attain the CRLB for the MS position estimate in

an NLOS environment, i.e., [Jél} as the SNR and/or 3% increase to infinity.

2x2’
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Proof.
We first show there exists an unbiased estimator p as the SNR and/or 3? increase to

infinity.

1. Recall the time delay is

szz{\/(xb—x)Q-l-(yb—y)Q}a be L.

We differentiate both sides of the above equation, and express the result in

matrix notation:

1
AT = ;Hf Ap, (2.35)
where
ATl
ATy Az
AT = , and Ap = .
: Ay
ATL

Considering the physical meaning of A7, we can interpret A7, as the error of

the TOA estimate in Eq. (2.32), i.e.,
ATb = é‘b, be L.

Note the above expression is based on the assumption that the error &, or the
variance of &, is small enough, which requires that R, - 32 be sufficiently large

(see Eq. (2.32)). Since

and
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Eq. (2.35) becomes

. 1 )
T —T= EH€ (p—p). (2.36)

2. It is convenient for our further discussion if fp(7) of Eq. (2.34) is expressed in

matrix notation:

fp(#) o exp {—%(f- )AL — T)} , (2.37)

where A, was defined in Eq. (2.11). Substituting Eq. (2.36) into Eq. (2.37), we

have
p() ox exp {5 (b~ P HLAHL (D~ p) 2:38)
Note that the term
6—12HLALH€

in the above equation is exactly the FIM, [Jglax2, in Eq. (2.17).

3. Since p is a multi-variate Gaussian variable with mean p as shown in Eq. (2.38),
ie.,

p is unbiased.

From estimation theory [5], the CRLB can be attained by the MLE, denoted as
Dy, if and only if there exists an unbiased estimator p such that the i-th component
of p satisfies

. 0 . .
Di — i = Z kij(p) - =—1In fp(7), fori=1and 2, (2.39)
jeL Ip;
where k;j(p) is a quantity that depends on p only, and the estimator p is exactly

Dy It is straightforward to verify that p in Eq. (2.38) satisfies the above sufficient
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and necessary condition, since

. -1 0 .
p-p=—c (HAH]) - op 0 fp(7), (2.40)

which is the vector version of Eq. (2.39). Thus, we can replace p by p,;;. O
As we see, no NLOS propagation related terms are involved throughout the above
proof. The reason is that the CRLB for the MS position estimate is independent of

any NLOS signals, as stated in Proposition 2.1.

In essence, the optimum geolocation receiver given in Proposition 2.2 consists
of three simple components: (1) estimating the time delays with the matched filter
method at all the BSs, (2) identifying and removing the NLOS estimates, and (3)
estimating the MS position using the MLE based on the LOS time delays.

We now can clarify the relationship between the optimal MLE and the conven-
tional method which is directly formulated from TOA estimates: for the optimal
solution, it is still necessary to extract the TOA estimates first, which has the fol-
lowing two advantages. The TOA estimates can be used not only for the geolocation
purpose but also for other applications such as channel estimation and data extrac-
tion. On the other hand, many existing techniques for time delay estimation, e.g., the
generalized cross-correlation methods [19, 20] and subspace-based estimation [21, 22],

may be adopted in a geolocation scheme.

2.2.4 Generalized-CRLB

In practice, it may be possible to predict the distribution of the NLOS delays based
on some statistical scattering models [41, 42]. With such information, a higher po-

sitioning accuracy should be expected. Accordingly, we need to extend our previous
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results by incorporating such extra information. The logical structure of the follow-
ing development parallels that of the previous two sections: first obtaining the best

accuracy limit, and then looking for a receiver that can attain the limit.

The accuracy limit now is given by the Generalized-CRLB (G-CRLB) [5]. Anal-
ogous to the relationship between the CRLB and the Fisher information matrix, the
G-CRLB is defined as

E{(6-0)(6-0T}>3". (2.41)

Here matrix J is what may be called the “generalized Fisher information matrix” and

consists of two components,

J=Jp+Jp, (2.42)
where subscripts “D” and “P” stand for “data” and “prior” information, respectively.
The first component Jp is given by

Jp=F {% log fg(r) - (% log fo(’)”)) } , (2.43)

where the expectation E[-] is taken over both 7 and 6. It pertains to the observation
r = {ry(t),b € B} as well as the prior probability of 8, pg(@). The second component
is defined as

Jp=E , (2.44)

0 0 T
50 logpg(0) - (a_e 10gp9(0)>

where the expectation is over 8. However, out of two types of components of the

unknown vector

0 — ,
l

the first type of components p are constant parameters (although unknown), for which

we have no prior information. In other words, the probabilistic information about @
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is provided only for the NLOS delay parameters I, which is equivalent to setting

pe(0) = p(1). (2.45)

Compared with the CRLB which is conditioned on specific values of the param-
eters to be estimated, the G-CRLB utilizes the priori probability density of the pa-

rameters and provides a bound that is averaged over sufficiently many trials.

A. NLOS delays of Gaussian distribution

We first assume that the random variables [ are independently Gaussian distributed

with mean u; and covariance matrix
Q = diag(w?, w3, -+, w3,). (2.46)

Although the independence assumption and the Gaussian distribution may not hold
in actual environments, this simplified model allows us gain some insight on how the
extra information on ! enhances the geolocation precision. We shall see this point
clearly when we consider some realistic distributions, such as Gamma distributions,
next.

Inserting the Gaussian p.d.f. into the expression of Jp in Eq. (2.44) yields

0 O
Ip= . (2.47)
0o Q'
To evaluate Jp, we modify its expression of Eq. (2.43) in terms of the FIM Jg of
Eq. (2.16), as

Ip=E(Jg). (2.48)
where the expectation is taken over [. Noticing that
1 ( HypAn HY, + HAH] Hyp Ay,

Jo =+
¢ ANLH%L ANL
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is actually independent of I, we reach
Jp=1Jpg. (2.49)

Hence, we have obtained both components of J in Eq. (2.42).

We shall now focus our discussion on [J ™ ']y.9, which is the first 2 x 2 diagonal
sub-matrix of J~*. The explicit expression of [J '], is rather complex (see the proof
below), thus we will instead present its lower and upper bounds, from which we can

gain a better intuitive understanding of the physical meaning on [J ']y

Proposition 2.3
The G-CRLB for the MS position estimate, [J™'|ox2, has the following upper and

lower bounds
2 7\ ! 1 2 T 7\~ !
@ (HLALHY) > [3 'owe > ¢ (Hy Ay Hy, + HLALHT) (2.50)

The lower bound is attained when w? — 0, for 1 < m < M, where w?’s are the
diagonal term of the covariance matriz € of the Gaussian variables I. The upper
bound is achieved when all w?, — +o0.

Proof.

We expand the expression of J as

J _ l HNLANLH%L—FHLALHg Hy AN (2.51)

2
¢ ANLH%L Anr +2Q7!

s 1 [ A B
wr 1 | (2.52)

\ BT C

We employ the matrix inverse formula [10]

L A"+ FWI'FT _FW!
Jl=c¢ , (2.53)
~WI'FT w!



CHAPTER 2. UNIFIED ANALYSIS OF NLOS GEOLOCATION 30

where

W=C-B"A"'B, F=A"B,
and all the inverses that occur in the above expressions exist. Then, It is clear that
[T axe = CA™ + FFW'FT, (2.54)
A further discussion on the above equation proceeds as follows.
1. We first establish the non-negative definiteness of
W=cQ '+ (Ay, - B"A'B).
It is clear that Q' > 0. We can also show

—1
Ay, —B"A™'B = Ay, - B" (Hy Ay Hy, + HAH]) B

Y

T 7 \ 7!
Ay — Ay HY, (Hyp Ay HY,)  HypAyg

> 0. (2.55)

The last inequality is obtained by applying Q = Ay and P = Ay HY, in the

known result (see pp. 49 of [10]) in matrix theory that
Q > P(P'Q 'P)'P7, (2.56)
where Q is a positive definite m x m matrix, P is an m X k matrix.

2. The previous step verifies W > 0. Thus, the lower bound stated in Eq. (2.50)
is acquired:
[T oo = A+ EFWFT
> A7

-1
= 02 (HNLANLH%L + HLALHE) . (257)

The equality holds when W = 0, which is asymptotically achieved as €2 — 0.
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3. The upper bound is obtained by using Q' > 0 as

[T one = ¢ [A—l +F (27 + Ay + —BTA—lB)*1 FT}
< & [A—l +F (Ay, - B'A7'B) FT] (2.58)
= & (HAHL) (2.59)
The last equality is derived by comparison between Jg in Eq. (2.16) and J in
Eq. (2.51) that
Tp=T|g-1_,

Note the expression in Eq. (2.58) equals [J™']gy2

0o Then, by utilizing the

previous result of Proposition 2.1,
-1
[Jé1]2><2 = (HLALH€) ;

we obtain the upper bound as in Eq. (2.59). In addition, it is not difficult to
see that the upper bound is attained when Q™' — 0, or the diagonal terms of

2 increase to infinity.

At the lower bound, zero variances of NLOS delay estimates imply that we have
acquired the exact NLOS path length, then the NLOS stations can be treated equiv-
alent to the LOS ones by subtracting the known amount of NLOS delay [/, from the
total time delay, 7,. The analytical expression of the low bound, where the roles of
LOS and NLOS quantities appear symmetric, confirms this deduction. At the other
extreme, we simply have no idea of the NLOS distribution due to the infinite vari-
ances, which is reduced to the CRLB in the previous section. For a general p; (1), the

accuracy falls between the two limits. In other words, the lower and upper bounds
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provide the range of the feasible performance improvement made by the extra NLOS
information.

The restriction of the independence among the different NLOS delays, or that €
is a diagonal matrix, is nonessential. The proposition remains unchanged if we drop

this constraint.

B. NLOS delays of Gamma distribution

Since an NLOS delay is always nonnegative in nature, [, is often assumed to be

Gamma distributed (subscript “b” will be omitted for a while):
al
I'(q)

where ¢ and « are positive constants, and I'(-) is the Gamma function. Roughly

G| a,q) = exp(—a-1) 171, forl >0, (2.60)

speaking, « in the exponential term determines the declining rate of the p.d.f as
[ — oo, while g in the polynomial is set to “balance” this trend. The “interaction”
between the two parameters then controls the decay and spread pattern of the p.d.f.
Figures 2.5 and 2.6 give two sets of density curves with fixed @ = 0.5 and ¢ = 0.5,
respectively. For the fixed «, the spreading of the p.d.f increases and the decay
becomes slower as ¢ becomes larger. An opposite tendency is observed for the density
curves with fixed ¢ = 0.5 in Figure 2.6. A well-known special case of the Gamma

distribution is the exponential distribution, for which ¢ = 1:
G(l| a,1) = a-exp(—a-1), forl>0. (2.61)

To evaluate Jp for the Gamma distribution, it is convenient for us first to obtain
‘(g —1)°
I'(q
q— ) o q—2
) exp( al) - 177 dl. (2.62)
0

2 oo
E 0 logG(l] a,q)) = o +2 / exp(—al) - 197% di
al 0

2007 . (

I'(q
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The p.d.f. of Gamma distribution with a=0.5
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Figure 2.5: The p.d.f. of Gamma distribution with fixed o = 0.5 and ¢ = 1,2, 3,4.

The p.d.f. of Gamma distribution with p=3
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Figure 2.6: The p.d.f. of Gamma distribution with fixed ¢ = 3 and a = 0.2,0.3, 0.4, 0.5.
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The above expression looks complicated. Yet, it can be simplified in the following

three cases.

e For ¢ =1, i.e., the exponential distribution,

2
E <% log G(I| «, 1)) =a? (2.63)

since the second and the third terms of Eq. (2.62) are zeros.

e For g > 2,
0 2 a?
E | =logG(l = 2.64
(510G ) =, 2:64)
where we use the definition
+o0
I'(q) = / exp(—z) - 27" dx, for ¢ >0 (2.65)
0
and the property
I(g+1)=ql(q) (2.66)

to cancel out I'(-)’s in the denominators and the nominators in the second and

the third terms of Eq. (2.62).
e For g = 2,

ol
A direct way to get this is to let ¢ — 2 in Eq. (2.64). On the other hand, it can

E (3 log G(1| a, 2))2 — +00. (2.67)

be derived from Eq. (2.62) as shown in Appendix 2.2.

For the other cases of 0 < ¢ < 1 and 1 < ¢ < 2, we may not be able to find a
closed-form expression for Eq. (2.62). Hence, the discussion for these cases would be

complex.
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For simplicity, we assume that the NLOS delay variables [,’s are independent and
Gamma distributed as

dp

Gl 0w, ) = v exp(—au ) - (2.68)
for [, > 0, a > 0 and ¢, > 2. Then,
0O O
Jp = , (2.69)
o It
where
a? a2 a?
IT ! = dia 1 2 .. M ) 2.70
g<(h—2 g2 — 2 gy — 2 (2:70)

Comparing Jp of the Gaussian distribution in Eq. (2.47) and that of the Gamma
distribution of Eq. (2.69), we recognize that (g, —2)/cj of the Gamma is comparable
with the variance w? of the Gaussian (See Eqs. (2.46) and (2.70)). In this way, the con-
clusion of Proposition 2.3 regarding the Gaussian case can be applied to the Gamma
distribution. Specifically, when ¢, = 2, for all b € AL, the quantity (g, — 2)/a; of
the Gamma corresponds to wi’s— 0 of the Gaussian. According to Proposition 2.3,
it suggests that the lower bound of the G-CRLB concerning the Gamma distribution,
ie., c? (HNLANLH%L + HLALHZE)_I, is attained when ¢, = 2, for all b € N'L.

When the NLOS delays may conform to some other distribution, we can go
through steps similar to those for the Gamma distributions. Therefore, Proposition

2.3 holds for py(l) in general.

C. Lower Bounds with Prior Information on the MS Position

Suppose that we have some prior statistics of the MS position p as well as the NLOS

variables I. For example, we may assume that p is a bi-variate Gaussian variable with
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known mean u, and covariance X,. However, it is not easy to find the corresponding
G-CRLB in a closed form, because of the difficulty in evaluating Jp which involves the
expectation over p of Jg given in Eq. (2.48). So we make a coarse approximation here:
if the diagonal terms of the lower bound for the G-CRLB without the MS information
(see Eq. (2.50)) are larger than those of 3, we take ¥, as the positioning accuracy;

if not, the extra MS information shall be ignored.

Numerical Examples

Based on the system specifications given in Section 2.2.2, we consider two numerical

results of the positioning accuracy of the G-CRLB, which is given by

Pocr ¥ Jtrace ([J_1]2><2). (2.71)

Result 1.

We assume that BS; and BS; are NLOS BSs, while the remaining five stations
receive LOS signals. The propagation loss factor is 2 for LOS (free space) and 4
for NLOS paths. The MS is located at (500,700). No prior information of the MS
position is available here. The SNR is 0dB at a position 2000m from the MS. In
Figure 2.7, the two middle curves represent Pg_cr (in meter) as a function of the
mean value of NLOS induced path length (also in meter) with the standard deviations
of the NLOS paths 5m and 15m. We also plot the upper bound (the top curve) and
the lower bound (the bottom curve), which are associated with the cases where the
deviations of the NLOS path are infinite and zero, respectively. It is observed that
the lower and upper bounds become close to each other when the NLOS delay gets
larger, because the NLOS signals are weaker and contain less “information” on the

MS position. We also see that when the deviation of the NLOS delay is smaller, or



CHAPTER 2. UNIFIED ANALYSIS OF NLOS GEOLOCATION 37

124

=
2

2]
T

°,
T
I

—©— upper bound B
—+— lower bound
—— NLOS std=5
-7 NLOS std=15

IN
T

Positioning accuracy of G-CRLB in meter

L L L L L
200 400 600 800 1000 1200 1400
Mean value of NLOS induced path length in meter

Figure 2.7: Numerical curves for the G-CRLB in a partial NLOS case: the accuracy
Pc_cr vs. the mean of the NLOS induced path length.

equivalently, when we have more knowledge on I, the corresponding curves converge
to the lower bound curve.
Result 2.

The worst situation for TOA positioning occurs when no BSs receive LOS signals.

Then, the G-CRLB of Eq. (2.50) becomes

o2 HNLANLH%L HyLAng (2.72)
AxiHYy,  Axp+Q71

Note no LOS related term is involved in the above expression. Figure 2.8 shows the
accuracy Pa_cr vs. the standard deviation of NLOS induced path length with 3, 4,
and 5 NLOS BSs. The mean of [,, for b € NL, is set to be 100m, while the other
model parameters are same as the previous example. We see that the accuracy is
higher when signals from more BSs are processed and the deviation of the NLOS

delays is smaller. The estimation error is less than 100m in most cases. Therefore,
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Figure 2.8: Numerical curves for the G-CRLB in a total NLOS case: the accuracy Pg_cr
vs. the standard deviation of NLOS induced path length.

it is possible to locate the MS with an acceptable precision in a environment where
no LOS signals present, as long as the deviation of NLOS delays is small enough and

there is sufficient number of NLOS stations.

2.2.5 Maximum a Posteriori Probability Estimator

Now we move on to discuss the achievability of the G-CRLB and the optimum receiver

that will asymptotically attain the bound.

Proposition 2.4

Given a prior p.d.f pj(l) of the NLOS delays, the G-CRLB for the MS position es-
timate, [J*I]ZXZ, is asymptotically attained by the MAP (the mazimum a posteriori
probability) estimator based on the time delay estimates from all BSs. The achiev-

ability requires that the accuracy of the time delay estimates be sufficiently high, and
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I be in the neighborhood of a local mazimum of py(l).

Proof.
Our objective is to prove the sufficient and necessary condition [5]: the G-CRLB is
achievable by the MAP estimator, denoted as 9MAP(+), if and only if there exists
estimator @(#) such that the i-th component of 0(7) satisfies

. M2 9

[0(#)); — 0; = ]Zl di;(p) - a—gjln (fo(7) -py®), fori=1,2,--- M +2, (273
where d;;(p) is a coefficient depending on p only, and @(#) is exactly @y 4p(7). The
proof of Eq. (2.73) proceeds as follows. We first show that the “if and only if”
(iff) condition holds when py(l) is a multivariate Gaussian, by employing the same
technique as in the proof of the achievability for the CRLB in Proposition 2.2. We

then show that an arbitrary p.d.f can be approximated by a Gaussian p.d.f under

13

certain conditions. Thus, the “iff” condition of Eq. (2.73) is valid for a general py(I).

1. Assume py(l) = N (u;, ), where € is not restricted to a diagonal matrix. Let

0
Uy = 0

U

We write py(l) in terms of Jp in Eq. (2.47) as
1 T
() o exp{—i(e—ue) -Jp-(0—u0)}. (2.74)

2. Recall the time delay of the received signal at BS; is

Tb:1{\/(xb_x)2+(yb_y)2+lb};bEB.

C
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Differentiating both sides of the above equation yields

AT =HT A#, (2.75)
or equivalently,
+—r=H"(6-9), (2.76)
where
Ax
ATl
Ay
AT A
Ar=| TP, ae=| Ay |=| 7,
: Al
ATB
Alpy

and H was given in Eq. (2.10). Therefore, fg(7) can be derived as

fo(T) o exp{—%(T—T) Jr(7 7')}
- exp{—%(@—@)T-HJTHT(é—G)}
_ exp{—%(é )1, (0—9)}, (2.77)

where J and Jp were defined in Egs. (2.11) and (2.49), respectively. Due to
the same argument as in Proposition 2.2, we replace 0 by éML, the MLE of 6

based on the time delay estimates from all the BSs.

3. Here comes the decisive step. It is not difficult to verify that

fo(7) - p (1)

o { GML— " Jp- (GML—G)}'eXP{—%(e_U'O)T'JP'(0_“’0)}
exp {3

wl»—kwlr—*

(Orar —0) - T (Burap — 0)} (2.78)



CHAPTER 2. UNIFIED ANALYSIS OF NLOS GEOLOCATION 41

where

9MAPZJ_1(JD'6ML—|—JP"U,9). (279)
Then, it is straightforward to show

- 0
_ 11 -
Orap—0=-J""" 20 In (fo("') Py (l)) , (2.80)
which is the vector version of Eq. (2.73). Thus we have proved that the sufficient

and necessary condition of Eq. (2.73) holds for Gaussian distributions.

4. For an arbitrary py(l), consider the Taylor series expansion of In p;(l) around a

local maximum point ,,:

0
lnpl (l) = lnpl (lm) + (l - lm)Tﬁ In P (l)‘l:lm
1 s 0 (9
Pyt () MA@t e es)

Noting
0
a In pr (l) ‘l:lm =0,

we approximate py(l) by a Gaussian distribution in the local region around

=1,

py(l) o< exp {—%(l — )" % <%> In pg (l)‘l:lm (1 — lm)} : (2.82)

The conclusion for the Gaussian therefore can be applied to a broad class of

prior distribution py(l).

It is the right time for us to review the justification of a frequent usage of Gaussian

distributions. On one hand, the Gaussian is one of our most familiar distributions.
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Its entire distribution is determined by the mean vector and the covariance matrix.
Hence, it is relatively easy for us to trace the physical implication when we assume a
variable is Gaussian distributed for a given problem. On the other hand, mathemat-
ically speaking, many density functions can be reduced to Gaussians under certain
conditions, as shown in the fourth step of the above proof. This property often

streamlines investigation of some otherwise complicated problems.

2.3 Other Positioning Methods

By now we have gone through the complete analysis of TOA positioning. In essence,
we have introduced a general framework to examine various geolocation methods.
However, to see how TDOA and signal strength based positioning methods are cast
in the framework, we need to elaborate on some technical details, which is the theme
of this section. We may reuse symbols such as H and Hy, in favor of logic consistency,

when no confusion is caused from the context.

2.3.1 TDOA Positioning

In a non-synchronous mobile system, there is an additional unknown parameter, i.e.,
the time offset between the clock at an MS and those at BSs. We denote this time
offset as ly/c, where ¢ is the speed of light and [y is in the unit of length. The time
offset may be represented by a negative value, in contrast that NLOS induced path
lengths I have to be positive. The delay in the received signal of Eq. (2.2) is then

modified to be

1
n=-{J@m -2+ -+l +b}, forbes, (2.83)
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to accommodate [y for the non-synchronous system. If we order the current unknown

parameters as

0=1|1 |, (2.84)

the only modification needed to compute the best accuracy is to replace the former

Hy;, and Hy, in Eq. (2.10) with

COS ¢y COS¢py -+ COSPu
Hyp = | sing, singy, --- singy (2.85)
1 1 e 1
and
COSQpr41 COSQPprip -+ COSPp
Hy=| singpyy singyge -+ singg |, (2.86)
1 1 e 1

respectively. By following the same analytical procedure we developed for TOA po-
sitioning, we reach the following conclusions regarding the optimum receiver for the

non-synchronous system:

e In absence of the prior knowledge concerning the NLOS delay variables, the
MLE of (z,y,ly) based on {7,, b € L} is an optimum receiver, and it achieves

the CRLB asymptotically.

e When the prior p.d.f of the NLOS delays [ is given, the MAP estimator for
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extracted from {7}, b € B} is an optimum receiver, and it asymptotically attains

the G-CRLB.

Note that we do not use any concept of the time-difference-of-arrival (TDOA) method
to draw the above conclusions. In other words, these conclusions pertain to the NLOS
positioning with a non-synchronous system, regardless of which methods are adopted.

In practice, however, the TDOA method has long been accepted as a principal
positioning approach for a non-synchronous system, since it can avoid estimation of
the time offset [y. A common argument lies in the triangulation principle that an MS
can be located at the intersection of two hyperbolic curves determined by two TDOA
data from three BSs. Thus, the following question will be inevitably prompted: what
is the relation between the theoretically best accuracy and the conventional TDOA
based estimate?

We now set forth to answer this question. Since the conventional TDOA ap-
proach is mainly designed for LOS scenarios, the best geolocation accuracy should be

represented by the CRLB for the MS position estimate, i.e., [Jél]ng, where

1
Jg = ZHo- A, -HT, (2.87)

H; and Ay are given in Egs. (2.86) and (2.13), respectively, and

o—| " |. (2.88)

lo

Compared with @ of Eq. (2.84) for the NLOS scenario, the above definition of @ for
the LOS situation does not include the NLOS delays I. The LOS BSs are relabeled

as L ={1,2,---, L} for simplicity. We first present an important result.

Proposition 2.5
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In a LOS environment, the CRLB associated with TDOA data, denoted J 10,4, 15

equivalent to [Jél]ng, where Jg is given Eq. (2.87), i.e.,
Izboa = I, (2.89)

Proof.

To facilitate further development, we separate H; and A; as

cos¢y; -+ cosdr_q | cosdy
HL _ sin d)l -++ sin d)L—l | sin ¢L
__ __ —
1 1] 1
dor [ Hooa b (2.90)
17 1
and
A 0 | 0
|
AL - 0 )\L,1 | 0
0 0o | A
Ar_; O
def - . (2.91)
ol g

The CRLB is then derived as

I, = &(HAHL)
1

_ 2 H, A, H] | +Mhph] Hp (Ap 1+ A hg
1A, HT | + \phy 1A, 11+ ),
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-1

w [ A B
B" D
A'+G'FFT —G'F
_ : (2.92)
_G—IFT G—l

where matrices A, B and D are defined as in the above equation, and

L
D = Y N,
b=1
= D—-B"A7'B,
F = A'B.

Note that D and G are scalers. Therefore,
—1 _ Al —1pT
79'],., = A" +FW'F". (2.93)
We are now ready to show the equivalence relationship of Eq. (2.89).

1. Selecting BSy, as the reference station, we construct TDOA data by taking the
difference between the TOA 7, of Eq. (2.32) and 77, the TOA obtained at the

reference station, as

Ty = 7A'b—7A'L
= (n—71)+ (&% — &)

= (Tb—TL)—F’Q/)b, fOI‘bzl,-'-,L—l, (294)

where

Uy & & — &5
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We define
(00

Y = 1/?2 : (2.95)

V-1
Then 1 is the multivariate Gaussian N (0, ¥) with

At At At
o A A+
At
At AL AL AL
= A AT (2.96)

where Ay_; is given in Eq. (2.91). Note that ¥ is not a diagonal matrix due to

the correlation among ,’s introduced by the common reference BS.

2. The FIM associated with the TDOA data is derived in our familiar form:

Jrpoa=Hrpoa ¥ 1 HIp0 4, (2.97)

where
1

Hrpoa = - (HLA —hpg - 1T) :
c
To evaluate ¥ ', we employ the Sherman-Morrison- Woodbury formula (SMW) [36],

ie.,
(D+UV") ' =D'-D'U(1+V'D'U) V'D !, (2.98)

where I is an identity matrix, and D, V and U are as defined with appropriate

dimensions. By applying D = A;',, U = A;!'1 and V = 1 to the above
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formula, we find

1

O l=A_, - —
L—-1 Zg/:l)\b

Ap_i-1-17 Ap_,. (2.99)

3. In order to compute the inverse of J;ypoa with the SMW formula, we need to

rearrange Jrpoa of Eq. (2.97) in the form of (D + UVT), the left-hand side of

Eq. (2.98), as
Jrpoa = 1 (HL—I —hyg - 1T) : (AL—I - ;AL—I 1-1". AL—1> :
c2 2521 )\b
T
(Hlﬁl —hrg - 1T) ;
_ 1 T AL 215;11 Ap T
_= gHL_lA.L_IHL_I + mthL —
1
mHL—1AL—1 11" A HY -
b=1
A
ﬁ (he-1"ApH] , +H, A; 11-h7),
b=1 ‘b
1
== g (HL—IAL—IHg_l + )\Lth{) -
1
ST (H, 1A 11+ Mphy) (H, 1 Ap_114+ Ahg)" . (2.100)
b=1 b

Then, by setting

1
- g (HL—IAL—IHg_l + )\Lth{) ;
1
= m (Hp 1AL 11+ Aphy),
b=1

and

V=H;_1Ar_11+ Arh;,

and applying the SMW of Eq. (2.98) to Eq. (2.100), we are able to show

JT_}DOA = [Jél]

2%x2 "
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Proposition 2.5 ensures that the TDOA approach does not compromise the achiev-
able accuracy while gaining the benefit of not estimating the time offset /5. Moreover,
we are able to show that the CRLB for TDOA, J11, 4, is achievable by the TDOA
based MLE, which can be proved by adopting the same technique as that for the
achievability of the CRLB for TOA positioning in Proposition 2.1.

In summary, an optimum LOS positioning procedure for a non-synchronous system
consists of three steps: (1) obtain 7, the time delay estimates, at matched filter
outputs; (2) create a set of TDOA data by selecting a reference BS; and (3) obtain
the MLE of the MS position from the TDOAs.

Several relevant issues are worth mentioning before we close this section.

e Since it is confirmed that the optimum receiver is constructed by the MLE

method, the commonly used Least Square based method is not optimal.

e The choice of the reference BS in producing TDOA data does not affect the
final estimation accuracy. We can see this point clearly if we express Jrpoa
of Eq. (2.100) in terms of outer product of vectors as shown later, in Eq. (3.3)
in Chapter 3. That expression reveals that the quantities associated with the

reference BS actually play the same role as those associated with other BSs.

e Optimum NLOS receivers are exactly similar as those for TOA positioning: if
no statistics on delays are available, we should discard the NLOS TOA mea-
surements, then utilize the optimum LOS receiver; alternatively, given some
NLOS prior information, the MAP estimator based on TDOAs can be shown

to be optimal.
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2.3.2 Signal Strength based Positioning

Information regarding a mobile’s position is contained in both the arrival times and
the amplitudes of the received waveforms. The TOA and TDOA methods exploit the
former type of information, whereas the signal-strength (SS) based method relies on
the latter type of information. Compared with the other approaches, the SS method
has two advantages. One is that some simple devices can be utilized to measure the
energy of the received signal. The other is that the formulation of SS data, as will
be discussed soon, takes into account some complex propagation effects that may be
caused by a mobile environment or an indoor environment. Consequently, the SS
based method has become a well-accepted method for indoor geolocation. However,
as we need to locate the MS within a wide region, the poor positioning precision
becomes a major limitation for the SS method. We shall postpone a full investigation
of this shortcoming until the next chapter, where we explore the relation between the
TOA and SS positioning methods.

In general, attenuation of signal strength through a mobile radio channel is caused
by three nearly independent factors: (i) path loss, (i) multipath fading and (iii) shad-
owing. Here we briefly review the three attenuation factors, which will be applied to

the formulation of the SS data that follows.

e The path loss factor, €, characterizes the rate at which the signal power decays
as the distance d from the transmitter increases. In the free space, the signal
power is proportional to d 2, hence e = 2. A path loss factor of € > 2 is observed
when signal propagation is subject to reflection and deflection from surrounding
objects, such as floors, walls and foliage. Particularly, ¢ = 4 is often used to

characterize the path loss in urban areas [34].
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e Multipath fading, also called fast fading, is the rapid fluctuation of the complex
envelope of the received signal, caused by reception of multiple copies of a
transmitted signal through multipath propagation. The amplitude distribution
is often described by a Rayleigh or Rician distribution, depending on whether
there exists a dominant component among the multiple copies. When there
is no distinguishable component, the real and imaginary components of the
complex envelope of the received signal can be viewed as a sum of numerous
small random variables. Thus, both the real (R) and the imaginary (I) parts are
modeled by Gaussian variables. Since the inphase and quadrature components
of a bandpass signal are uncorrelated, R and [ are also uncorrelated. Hence
they are independent Gaussian variables. When R and [ have zero means
and common variance, the amplitude v/R% + I2 can be shown to be a Rayleigh
variable. When R or I (or both) has non-zero mean but the common variance,

it results in what is known as Rician distribution.

e Shadowing, often referred to as slow fading, represents a slow variation in the
received signal strength, due to obstacles in the propagation paths. Experi-
mental observations reveal that log-normal shadowing widely exists in nature.

Several analytical models are proposed to explain the phenomenon [38, 39].

Here is our simple derivation of the log-normal distribution model, which can
be viewed as a special case of the general formulation presented in [39]. The
propagation path between a transmitter and a receiver can be decomposed into
a large number NN of short “path elements” concatenated in tandem. The overall

attenuation factor v (0 < v < 1) of the path should be given as the product of



CHAPTER 2. UNIFIED ANALYSIS OF NLOS GEOLOCATION 52

the attenuation factor «; of these path elements:

N
Y= H Yi-
i=1

Taking the logarithm on both sides of the above equation, we have

N
g Iny=> In~.
i=1

Let

Iny = wi + &,
where

pi = E(ln ),

and §&; is a random variable with zero mean. Then, by virtue of the central limit
theorem [35], we can show that if &’s are statistically independent, S = In~y

will attain to a normal variable as N goes to infinity, with mean

p=> pi=>y E(lny)<+oo (2.101)
i=1 i=1
and variance
N N
o> =Y o7 =) var(lnvy), (2.102)
i=1 i=1
where
o = B(&)

Thus, S = Invy is asymptotically N (u,0%) when p < 400, and v is a log-
normal variable. Note that it is not necessary to assume that &;’s are identically

distributed, as usually assumed in the central limit theorem, as long as the

2

i

See pp. 256257 and pp. 451-494 in [37]).

individual o7 are small as compared with their sum o (Lindberg’s condition.
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We now return to our main discussion. The received signal power, P,, consists of
two components:

P.=Ps+ P, (2.103)

where Pg is the signal power and P, is the noise power. In many circumstances,
the main noise component is thermal noise introduced at the receiver front. The
thermal noise is largely determined by the receiver noise temperature and is nearly
independent of the receiver’s location. Even if effects of atmospheric and other noise
are present, the overall noise level will be constant over a short period of time. Hence
it is usually assumed that P, can be detected ahead of time. Consequently, we are
able to obtain the signal power Ps in Eq. (2.103).

The signal power Ps at the receiver is given by

g2y
de

Ps=Fk P,- (2.104)

where P, is the (known) transmitted power from a BS tramsmitter, & is defined by

GG,

k
Ar

and is a known constant if the antenna gains G; and G, at the transmitter and
the receiver are specified, d is the distance between the MS and the BS, ¢ and
are variables that conform to Rayleigh' (or Rician) and log-normal distributions,
respectively.

In radio engineering, it is a common practice to represent signal power in dBw
or dBm, and gain and loss factors in dB, because the “product” equation of the

type of Eq. (2.104) will be converted into a “summation” equation. Therefore, from

Eq. (2.104) we have

Ps [dBw] = P, [dBw] + 2z + k +w' + ', (2.105)

'If ¢ is Rayleigh distributed, g2 is exponentially distributed.
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where
= —10-¢-logyd, (2.106)
k = 20logy, g, (2.107)
w' = 10logy7, (2.108)
and
C' = 10logy, k.

The transformed variable

Iny 10
In10  In10

w' =10log,,v = 10

is normally distributed with mean 10y/1In10 and variance 10002/(In10)?, where pu
and o? are the quantities defined in Eqs. (2.101) and (2.102). In Eq. (2.105), the
term

k= 20logy g
will vary in time since ¢ is the fast fading term. Then by averaging the received power
over some internal, we have the time-averaged version of Eq. (2.105)

Pg [dBw] =P, [dBw] +z+ & +w' + (', (2.109)

In practice, the transmitted power P;, the quantity C’, the mean 104/ In 10 of w’
in Eq. (2.105), and the quantity % in Eq. (2.109) are often known beforehand. Thus,

we are able to simplify Eq. (2.105) as

Model A: e=z+K+w, (2.110)
where
Py [ABW] — P, [dBW] — " — —2
e = — e
s ! 10"
10
w = w——
In 10”’



CHAPTER 2. UNIFIED ANALYSIS OF NLOS GEOLOCATION 55

and w is the Gaussian variable N'(0, n?), with

» 10002
T = 10y
Similarly, Eq. (2.109) becomes
Model B: €e=2z+w, (2.111)
where
& = Py [dBW] — P, [dBW] - C' — —2 i _ %
s ! In 10” '

Note that Model B is in a simple form of a useful “signal” plus Gaussian noise with

the zero mean as the time delay estimate of Eq. (2.32), i.e.,
’fb:’/'b—i-é‘b, fOI‘bE B.
Here we present the CRLB for the SS positioning method based on Eq. (2.111)
only, because of its practical interest. The SS data to be processed are
e, = 2z, +wy, be B,

where

2y = —10 - € - logy dp,

with

dy = (o = + (5~ 0)*,
and “noises” wj are independent Gaussian variables N (0, n?). It takes some calcula-
tions to show that

—1
Jp' = (Hss - Iz - Hiy) (2.112)
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where
10€ COS (1 COS¢py -+ COSpp
Hss In10
cin sin ¢1 sin ¢2 +-+ sin ¢B
- [diag(dy, da, - - -, dg)] "
and

' -1
JZ = [dlag(n% 77%7 Ty 77%9)] .
We derive Eq. (2.112) by following the same steps as we developed for the CRLB

regarding TOA positioning in Section 2.2.

2.4 Concluding Remarks

We have developed a unified analysis of NLOS geolocation which covers major ge-
olocation methods. For the TOA and TDOA positioning methods, the relationship
between the highest geolocation accuracy and the optimum receiver can be summa-
rized as follows. When no prior information on NLOS delays is available, the best
positioning accuracy can be derived in terms of the CRLB, which can be asymptot-
ically achieved by the MLE based on the LOS time delay estimates. For a general
case, the best accuracy is given by the G-CRLB, which is asymptotically attained
by the MAP estimator using all time delay data. The common step for both the
conventional TOA (or TDOA) method and the optimum geolocation schemes is that
their first steps are to obtain time delay estimates. The analysis for the SS method
can also be incorporated in the unified analysis as shown in Eq. (2.112).

The matrix separation technique plays an important role in the analysis. It pro-
duces the basic blocks which help us to organize the computation in a compact man-

ner, and provides clear a physical interpretation of the final results. Especially, there
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are two common types of matrices: one is H that contains the geometric relations
among the MS and the BSs, and the other is J+ that links to the relevant system
parameters. Each type of matrices is then divided into the submatrices corresponding

to LOS and NLOS signals.
Appendix 2.1: Derivation of Eq. (2.32)
We suppress subscript b for simplicity.

1. Estimating 7 from the received signal r(¢) is to find the time v = 7 when the
matched filter output
h(v) = /r(t)s*(t — ) dt (2.113)

Wk

becomes maximum, where means complex conjugate. The maximization

can be done by setting the derivative of y(v) to zero, i.e,

0
5, hw) =0, (2.114)

and solving the equation for v. Substituting the explicit expression of r(¢) into

the above equation, we write down

A%g(v) +v=0, (2.115)
where
g(v) = /s(t —r)st(t— ) dt, (2.116)
and

y = /n(t)%s*(t ) dt. (2.117)

2. Take the Taylor series expansion of g(v) around v = 7:

o) = o)+ DD o7y o TID (o)

= 1-2r8(v—1)2+0|(v—1)], (2.118)
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using
g(r) = /|s(t)|2 dt =1, (the normalization condition)
dil(:) = % /S(t —T7)s"(t —v) dt = 0, (maximization requirement)
d?g) = /s(t —1)- aa—;s*(t —o)di)

2
= /s(t+v —7)- %s*(t) dt‘ (with t «— t — v)

- /s(t) : g—;s*(t) dt

- s(t)-%s*(t)‘ —/‘%s(t)

= —47r?p% (2.119)

2
dt (Integration by parts )

3. Since v of Eq. (2.117) is defined by an integral of the Gaussian random process

n(t) multiplying a known function, 7 is a Gaussian random variable, with mean
9 .
El] = /E[n(t)]a—s (t—v) dt =0, (2.120)
v
and variance

Bl = / / E [n(t)n* (t2)] a%s(tl - v)a%s*(t? ) dtidts

- w2 :

as(t) dt
(llSiIlg E [n(tl)n*(tg)] = Ngé(tl — tg) )

= Ny-4r?p2 (2.121)

4. With Eq. (2.118), it is straightforward to solve the maximization equation of
Eq. (2.115):

7 = arg {max, h(v)} =7+ (2.122)

~
4232 A°
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Hence the delay estimate at the matched filter output can be represented by the
true delay, 7, plus a noise term. Since 7 is a Gaussian variable N'(0, 47232 Ny) as
discussed before, the noise term /47?3?A is also a Gaussian random variable

with N(0, No/4m%32A%). For the sake of clarity, we rewrite Eq. (2.122) as

Fe=T4E (2.123)
where
_ v
$= Im2pea
conforms to N (0, 0%) with
, N 1

O T urpAr T mepRR
5. Finally, we examine the region around v = 7, where the approximation Eq. (2.118)
of g(v) is valid. Utilizing Eq. (2.122), we see that the region around v = 7

means that the estimation error ¢ is small, which in turn requires the variance

0? = 1/47?B?R is small, or R - 3? is large.

Appendix 2.2: Derivation of Eq. (2.67) from Eq. (2.62)
With Eq. (2.62), we have

2 +o0 +00
E <% log G(I] a, 2)> = o’ + ozZ/ exp(—al) - 1! dl + 2a3/ exp(—al) dl
0 0

(using I'(n) = (n — 1! forn=1,2,---)
+oo
— 302 +a2/ exp(—1) - 1=" dl
0

+00
> a2/ exp(—1) - 17" di
1

+00

12 3
= a2<lnl+l+—+ﬁ+---> (2.124)

2.2

=1
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Now we need to show the lower bound of the above expression is infinite. When [ =1,

2.2 3-3! 1
= (1 PR + )
B 2 -2 3!
< [1+ ! + ! + !
- 1-2 2-3 n(n+1)
n
- (1 )
n+ 1l
= 1 (2.125)
For [ — oo, it is easy to see
( [2 3
Inl+1+—+ ) — +o00. (2.126)
2:20 0 3-31)) o

We obtain Eq. (2.67) by substituting Eqgs. (2.125) and (2.126) into Eq.(2.124). O



Chapter 3

Relationship among

Distanced-based Methods

TOA, TDOA and signal strength (SS) positioning methods are the three principal
distance-based methods. To the best of our knowledge, most studies reported in the
literature investigate these techniques in isolation from one another, and few results
on their relationships have been reported. However, a better appreciation of the
connections among the three methods is of both theoretical and practical interest.
The link between the TOA and TDOA methods is first examined. When a set of
BS locations and an MS position are given, we know in principle that the TOA method
should achieve higher positioning precision than the TDOA counterpart, because in
the latter there is an extra unknown parameter to be estimated, i.e., the time offset
between the clock at the MS and those at the BSs. Here we provide an analytical
explanation for this argument. We show that the two positioning methods may
attain the same level of accuracy under certain conditions. We then pursue the
tradeoff between the accuracy limits for TOA and SS positioning, which leads to a

new hybrid geolocation scheme that combines TOA and SS data.

61
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3.1 Relationship between TOA and TDOA Meth-
ods

We investigate the relationship between the TDOA and TOA methods by comparing
their CRLBs. According to Proposition 2.1, the CRLB for the NLOS geolocation

depends solely on LOS signals. Thus it suffices to consider a LLOS scenario only.

To facilitate our development, we first prepare the FIMs associated with the two
CRLBs in terms of outer product of vectors. For TOA positioning, we found in
Proposition 2.1 that

1

c2

Jroa = (HLALHY)

cos @1 Sin ¢

1 COS ¢ COS¢py -+ COSQPp, ) COS ¢y Sin ¢y
= d1ag<)\1 Ay o )\L> . '

2
¢ sin ¢1 sin d)g +-+ sin ¢L

cos ¢y, sin ¢p,

By defining a unit vector

cos
hy — Po |
sin glsb
we rewrite the TOA FIM as
1 T
Jroa ==Y Mhohy. (3.1)
C per

Since \y’s are all positive, we define weight coefficient w; as

where
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Thus, Eq. (3.1) becomes
A
JTOA = o) Z wbhbhz. (32)
¢ ber
As for the TDOA FIM, we have two equivalent expressions by Proposition 2.5. We

invoke the one given in Eq. (2.100) to compute

1
Jrpoa = = (HL71AL71H€,1 + )\Lth{) —
L
2\
1 1
= 5 > Mhyhy — %(Z Moh) (O Aphy)”

bel bel beLl

= % (Z wphphy — (3 wohy) (Y w,,h,,)T) : (3.3)

(Hp 1A 1+ Aphy) (Hp g Ap 1+ )\LhL)T

bel bel bel

Define random vector h that takes values of

h17h27"'7h'L
with probabilities
wy, Wy, -, Wr,
and its weighted average
L
fl déf Z ’Ujbhb.
b=1

We can express Jroa and Jrpoa in terms of the second moment and covariance of
h, respectively, i.e.,
Jroa = C—Az -E[h-h"], (3.4)
and
Jivor =3B [(h—h)- (h—h)"]. (3.5)
By utilizing Eqgs. (3.2) and (3.3), we immediately see

A -
Jroa—Jrpoa= 75 h- h" >0 (3.6)
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Hence,

Jrpoa = Jr04: (3.7)
The above inequality confirms the long-held argument that as far as we use the same
set of time delay estimates {7,, b € L}, TDOA positioning cannot perform better
than the TOA method because of the unknown time-offset [, assumed in the TDOA.
The amount of degradation is given in Eq. (3.6). Thus, we see that weighted average h
is a crucial quantity in determining the degradation amount. Moreover, the sufficient

and necessary condition for the equality to hold in Eq. (3.7) is

Jibos=I704 & h=0. (3.8)

That is, the TOA and TDOA positioning methods can attain the same accuracy if and
only if when h is exactly zero, which may be viewed as a kind of symmetry condition
among the configuration among the BSs and the MS. This symmetry can annul the
accuracy degradation of the TDOA method with respect to the TOA accuracy. Here
is a simple example for A = 0. Consider that L BSs are distributed evenly around

the circle with the center at the mobile’s location. We then have

and

S hy = 0.

beLl
Thus, h = 0.

The relation of Eq. (3.7) implies that J;.},, 4, the CRLB of the TDOA method, is
lower bounded by J}lo 4- Hence, a closely related question is raised: does there exist

an upper bound for J;5,,, determined by some TOA configuration? To be more

specific, denote Jrp4(l) the TOA FIM associated with [ BSs of (BS;, BSs, -+, BS)),
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which is the subset of £. Can we find an 0 < [ < L such that
Jrpoa < Jroa(l)™" 7

We pose this question, since it is conceivable that use of fewer BSs should reduce the

positioning accuracy. Along with the lower bound of Eq. (3.7), the plausible relation

J764(L) < I7poa < I7o40)

would possibly allow to approximate the performance of a given TDOA scheme by

two related TOA solutions. The conjectured upper bound is equivalent to requiring

L
Z wbhbh{ Z (Z wbhb) (Z wbhb)T. (39)
b=I[+1 bel bel

However, the answer depends on the specific configuration of {hy, b € L} and {wy, b €
L}. We provide two examples in Appendix 3.1, where such an [ exists in one example

and [ = 0 in the other.

3.2 Relationship between TOA and SS Methods

We pointed out in Section 2.3.2 that the main disadvantage for the SS positioning
method is its poor precision when locating an MS within a wide region. In this
section, we elaborate on this claim by examining the achievable accuracy of the SS

method along with that of the TOA method.

Consider a one-dimensional case like in a radar ranging problem. Our task is to
estimate the distance d between an MS and one BS based on the SS or TOA estimates.
For the SS method, we use the time averaged of SS data as in Eq. (2.111) to

compute the corresponding CRLB. Recall

e=z+w,
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where

z=—10-¢-logd,

w is a Gaussian variable A/(0,7?) representing log-normal shadowing, and ¢ is the

path loss factor. Thus, the p.d.f. of € conditioned on d is

fa(€) o exp { (8410 ¢-log d)2} : (3.10)

_2_772

Substituting the above p.d.f to the one-dimensional FIM

(Ja)ss = Ea {% In f4(e) - (% hlfd(?)) } : (3.11)

we can show that the CRLB is

_ In10\” n?
st = (M) L 3.12)
or
~ _Inl
Var(d)zri—oo-g-d. (3.13)

Note that the accuracy of the above expression is proportional to d. In other words,
in order to maintain the estimation error of less than dd, the MS has to be within the

range of
10 e

— R 3.14
In10 7 ( )

To

from the specific BS’s location. For typical numbers ¢ = 4 and 1? = 8 pertaining to
outdoor geolocation, the accuracy of Eq. (3.13) is roughly 0.2d. Thus, to secure the
accuracy of 100m, the maximum distance between the MS and the BS is 500m.

We should notice in Eq. (3.13) that € and n? are completely determined by the
characteristics of a communication channel. Hence there is little we can do to control

or improve these factors and the resulting positioning accuracy.
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For TOA positioning, the case is different. Recall the TOA model of Eq. (2.32) is

where ¢ is a Gaussian random variable N(0, 0?) with
1
2 __
7= 8m232R’
and R is the SNR. The associated CRLB is derived as

02

—1
(Jd)TOA = 877'232 . R, (315)

or equivalently,

= 1 1
var(d) > ¢

“5var B VR

Consider a CDMA signal with chip rate W. By using the relation between W and

(3.16)

the effective bandwidth § of Eq. (2.29)

b=

I

we obtain
rarldy = 22 (3.17)
Evidently, we are able to control the system performance by adjusting the chip rate
W and/or the SNR R. Therefore, the TOA based method can perform well for long-
range positioning. Figure 3.1 plots the lower bound of \/\m in Eq. (3.17) vs. the
SNR, for various chip rates ranging from 2Mcps (the top curve) to 8Mcps (the bottom
curve).
By now we have seen that the utility of the SS based method is limited to short-

range positioning, while the TOA based method can be used in a wider area. For a



CHAPTER 3. RELATIONSHIP AMONG DISTANCED-BASED METHODS 68

30

T T
—©— chip rate 2Mcps
—— chip rate 4Mcps
- chip rate 6Mcps
—— chip rate 8Mcps

25

n
o
T

distance estimation accuracy in meter
= =
o o
T T

SNRin dB

Figure 3.1: The distance estimation accuracy of Eq. (3.17) vs. the SNR with TOA data.

quantitative comparison of the “functioning ranges” of these two methods, we intro-
duce the concept of “critical distance” by equating the lower bounds of Eqgs. (3.16)

and (3.13):

53¢ € 1
d, = mgm (3.18)

Once the signal bandwidth W and the channel characteristics in terms of €, n and
SNR are specified, the critical distance d. can be calculated. As a numerical example,
we set W = 5Mcps, € = 4, n = 8, and R = 0dB. It follows that d. is around 25m.
Then we are able to predict that the TOA method should outperform the SS method
in the range of d > d., and vice versa. On the other hand, we may use both TOA

and SS data to improve a distance estimate. The corresponding CRLB is derived as

(Ba)rbss = !
VTOALSS (T ) roa + Tad) s

1
= 3 , (3.19)
8m2B2-R ( 10 ) e 1
c? In 10
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where we assume that the errors in the distance estimates from TOA and SS data

are independent. It is straightforward to see

(F)70asss < min{(Ja)zou, Ta)5e} (3.20)

where min{a, b} stands for the smaller value of a and b. That is to say, the distance
estimation using both TOA and SS data can achieve higher accuracy than the esti-
mation based on only one type of data. However, the improvement is not significant
when (Jg)roa << (Ji)gg and (Jg)poa >> (J4)gg, which correspond to d << d, and

d >> d., respectively.

These observations lead us to devise a hybrid distance estimation scheme, provided
both TOA and SS data are available. Denote d a rough estimate of d, e.g., based on

some prior information. The scheme consists of three modes:

e The signal-strength mode. If any prior information suggests d << d,, the SS
measurements are the principal data to be employed, because the inclusion of

TOA data will not make much improvement for the positioning accuracy.

e The hybrid mode. When d is comparable with d., both TOA and SS data

should be taken.

e The time-delay mode. The use of TOAs should be dominant for those remote

BSs, i.e., when d>>d,.

For the sake of clarity, we express the distance estimate® from each of the three modes

in a unified formula:

~

d=d+¢, (3.21)

'In contrast to the rough distance estimation d, d denotes the estimate from the ML estimator.
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where ( is a estimation error, represented by a Gaussian variable N'(0,w?) with

c? 1

32 R’ for d >> dc,

w? = (1“1%)2 : Z—z @2, for d<<d, (3.22)

. -
SZATR L (0)T s 10 for d ~ d..
L -2 mio) 32 a2

Switching among these three modes can be made automatically, depending on the
mobile’s location vis-a-vis a given BS.
We shall incorporate this hybrid scheme to a geolocation scheme and discuss

several simulation results in Chapter 4.

3.3 Concluding Remarks

We have clarified the relationships among the three distance-based positioning meth-
ods: with Eq. (3.7), we confirm that TDOA positioning (with non-synchronous
systems) cannot attain higher geolocation accuracy than TOA positioning (for syn-
chronous systems); by defining the critical distance d. in Eq. (3.18), we conclude that
when an MS and a BS are separated more than d., the TOA based range estimation
performs better than the SS based method, thus is more suitable for long-range ge-
olocation, and vice versa. A hybrid distance estimation scheme is proposed by taking

into account the tradeoff between the TOA and SS based schemes.

Appendix 3.1: Two Examples for J; o, < J754(0)

We first provide an example where such an [ exists. Consider L BSs, L > 6, include

three pair of BSs. Each pair of BSs, say (BS;, BS;,3), for i = 1,2,3, is deployed in
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such a way that the MS is located at the central point of the straight line connecting

the two BS locations, which corresponds to
w; = wit3, and h; = —h;;.
By using the relation
L L L
S wphphy > (O wphy) (O wehe)”,
b=1 b=1

b=1

which is an immediate result from
B[(h=h)- (h—h)T] >0,

we have

L L L
> wphphy > (37 wphy) (3 wyhy)"
b="7 b="7

b=7

Combining the above equation and
6 6 6
Z wbhbhbT Z (Z wbhb)(z wbhb)T = 0,
b=4 b=1 b=1

we obtain

L L L
Z ’Ujbhbhlj; 2 (Z ’Ujbhb) (Z ’Ujbhb)T.
b=1 b=1

b=4
With Eq. (3.9), it is clear that

J764(L) < Irpoa < J104(3),
i.e., [ = 3 is a choice for this case.
For the second example, consider

bZ: wpyhphy = (3" wyhy) (Y- wyhy)7,

bel bel

where

h; =h;, foralli,jc L.
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Hence, [ = 0. It corresponds to the layout where all the BSs and the MS are lined up.
Both the TOA and TDOA positioning system collapse in this circumstance, because

of the infinite estimation errors as discussed in Section 2.2.



Chapter 4

A New (eolocation Approach

4.1 Introduction

The previous two chapters represent the theoretical contributions of the dissertation.
We shall now turn to some practical issues regarding the geolocation problem. In
this chapter, we propose a new geolocation approach by incorporating the so-called

sequential simplex method (SSM) and some analytical results obtained earlier.

The least square (LS) method is adopted as a standard technique when more than
three base stations are involved in geolocation [2]. It provides an acceptable accuracy
in a LOS propagation environment. However, the performance will be considerably
degraded when an NLOS propagation exists, which is often the case in a cellular
system. Therefore, mitigation of the NLOS effects has been an important issue in
wireless geolocation. Several methods, e.g. [2, 14, 15, 25], have been proposed in
this field. In [14], the authors suggest that NLOS BSs can be distinguished from LOS
ones based on deviations of TOA measurements from their mean, since the deviations
tend to be much larger in NLOS data than in LOS data. If prior information of the

TOA error statistics is available, the errors contained in the TOA measurements due

73
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to NLOS propagation may be mitigated. However, this scheme requires prior infor-
mation about the TOA error statistics, which may not always be available. In [2],
a penalty function is proposed to modify the conventional LS cost function, by con-
sidering the fact that the NLOS induced delays [ are always positive. The modified
cost function is then minimized by a gradient search. According to our simulation
results, this algorithm exhibits a slow convergence in many situations, and even no
convergence in certain cases. In [25], we discuss our devised geolocation algorithm,
where the NLOS geolocation is formulated as a constrained optimization problem.
The objective function is based on the LS criterion, and is subject to two types of
constraint. In addition to the aforementioned constraint [ > 0, we take into account
the other constraint that an MS is either stationary or moving at a speed below
some upper limit. The SSM serves as an optimization tool, which can handle the
boundary conditions in a simple manner. Simulation results show that the accuracy
of less than 100m can be obtained in typical cases. However, a major limitation of
the algorithm is that it is not based on the ML or MAP estimator which can achieve
better positioning accuracy than the LS estimator.

In order to achieve a higher positioning accuracy, combination of an optimum
receiver and the SSM seems to be a promising solution. In this chapter, we propose a
geolocation approach that incorporates both aspects. In addition, we shall implement
the hybrid distance estimation scheme which takes advantage of the tradeoff between
SS and TOA data as discussed in Section 3.2. Besides the two types of constraint
described above and adopted in [25], the geographic conditions such as street and

highway layouts will be considered to further limit the mobile’s possible position.

The rest of the chapter is organized as follows. In Section 4.2, we introduce

the fundamentals of the SSM. Our new geolocation approach is then presented in
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Section 4.3. Section 4.4 provides the associated accuracy analysis. Simulation results

are discussed in Section 4.5. Conclusions are given in the last section.

4.2 Fundamentals of Sequential Simplex Method

(SSM)

The SSM [7] is an optimization technique that involves an iterative evaluation of a
given objective function itself in contrast to the evaluation of the derivative of the
objective function performed in typical gradient methods. We first introduce three
basic rules the SSM must comply with, and then discuss advantages and limitations

of this technique with respect to the gradient schemes.

The SSM takes a regular geometric figure (known as a simplex) as a basis. In a
two-dimensional case, the simplex is an equilateral triangle. For three dimensions,
we extend the equilateral pattern by adding one point such that there are four points
lying at the vertices of a regular tetrahedron. The generalization to an n-dimensional
case is straightforward. For the sake of simplicity, we shall illustrate the three basic
rules of this technique in examples of two-dimensional case.

The minimization of an unconstrained objective function, say f(z,y), will be
considered. Three points A, B and C' are initially chosen so that they form an
equilateral triangle as shown in Figure 4.1. This figure depicts a contour map of
f(z,y). The value of the objective function is then calculated for the coordinate
(x,y) corresponding to each of the three vertices. The value of f(z,y) at A is the
largest, thus the worst, among the three. Next, we remove the worst point (i.e., the
point A) from the triangle and to replace it with point D, which is the mirror image

of A with respect to the line connecting the other two vertices (B and C'). We thus
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Figure 4.1: Triangle ABC' is the starting simplex, and the new point D is found in the
first search.

get a new equilateral triangle C'BD, which can be used as the basis for the next move.
It then follows that the value of f(xz,y) is evaluated at D, and a comparison is made
among the values of f(z,y) at the points B, C, and D. As this procedure repeats
itself, the direction of a new round movement is always away from the worst point.
Therefore, our search for an optimum point proceeds in a desired direction. This is
Rule 1 of the SSM.

However, a closed cycle of operations may be entered if this rule is applied to the
circumstance where the triangle at an intermediate step straddles a ridge formed by
a given objective function, such as the example shown in Figure 4.2. Since the value
f(z,y) at A is the worst of the three, Rule 1 replaces A by its mirror image A;. Thus
the new triangle A; BC' is formed. However, A; is the worst among A;, B and C.
The same rule rejects A; and puts A back, recreating the original triangle ABC'. In

this way, the search simply oscillates between A and A;, and no further moves can be
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F=10

Figure 4.2: Failure of Rule 1 on a ridge. The closed cycle of operations A <+ A; is
entered.

made. This obstacle can be easily overcome, however, if we introduce Rule 2 that no
return is allowed to the point that has just been left. In the example of Figure 4.2, it
means that instead of rejecting the worst point A in the original triangle, we remove
the point at which f(x,y) has the second-worst value, i.e., the point C.

Obeying the above two rules, the search process can be carried out until the
region containing the optimum point is attained. The convergence of the SSM to an
optimal point is guaranteed by the following rule, i.e., Rule 3. When the number of
iterations with one vertex fixed at the same point exceeds some number, we reduce
the size of the working triangle, e.g., by one half, to improve the accuracy of locating
the optimum point. The same procedure as before is resumed with this reduced
triangle. The search can finally be terminated when the triangle size is small enough.
The smallest size can be set to be comparable with some required accuracy, or the

estimation accuracy of the optimum point based on certain error analysis.
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As we see, the SSM is significantly different from those widely-practiced gradient-
based optimization techniques in that it focuses on an iterative evaluation of a given
objective function itself. Accordingly, the SSM has the distinctive advantage that it
can accommodate the discontinuities of an objective function and complicated bound-
ary conditions, where the derivative of the function does not exist or is difficult to
compute. However, there is one major limitation in this technique: in each searching
move, the SSM usually cannot determine the best direction. In contrast, many gradi-
ent methods have such capabilities. The direction that the SSM takes in a given step
depends on the orientation of the simplex (or the triangle in our examples) obtained in
the previous step. Yet the overall direction of several consecutive movements should
follow closely the direction determined by the conventional gradient methods. There-
fore, for regular unconstrained optimization problems (which are typically solved by
a gradient method), the SSM will require more iterative steps to reach a convergence
than the gradient method.

In order to take advantage of its merit and limit the shortcoming, we shall adopt
the SSM to perform a “refining” estimation so that the initial point of the SSM
search is not very far from the optimum point. To be more specific, in our following
geolocation algorithm, the start point to search for the MS position will be its esti-
mate obtained in the previous measurement, which is available in the case of mobile
tracking, or a coarse estimate determined by some less accurate but fast-convergence

approach.

Another point worth mentioning is that as an iterative method the SSM may ter-
minate its searching process in a local optimum region, instead of the global optimum
as is desired. However, for the geolocation problem, especially for the case of mobile

tracking, the convergence to global optimum points are suggested by most of our
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simulation results.

4.3 Algorithm Description

Before we present our geolocation approach, it is helpful to review briefly the three

relevant results we obtained in the previous chapters:

e The ML or MAP estimator is an optimum receiver for the TOA positioning
method, depending on whether the prior information of NLOS delays is available
or not. (See Section 2.2.3 for the ML estimator and Section 2.2.5 for the MAP

estimator.)

e Once the signal bandwidth W and the channel characteristics in terms of the
path loss factor €, the log-normal shadowing index n and SNR are specified,
the critical distance d. can be calculated. Then the distance estimation based
on TOA should outperform the one based on SS in the range of d > d., and
vice versa (Recall d is the total propagation path length between the MS and a
given BS). The hybrid distance estimation scheme is to take advantage of both
SS and TOA data:

— When d << d,, the SS measurements are the principal data to employ
(Recall d is a rough estimate of d).

— When d is compatible with d., both TOA and SS data should be taken.

— The use of TOAs should be dominant for those remote BSs, i.e., when

d>>d,.

(Refer to Section 3.2.)
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e As an optimization tool, the SSM can handle a non-differentiable objective

function and irregular boundaries in a simple manner.

The new NLOS geolocation algorithm is designed to incorporate the above results.

We discuss the algorithm in the following three steps.
Step 1. Data Preparation

We first determine the critical distance (see its definition of Eq. (3.18) for details)

5v/3¢ € 1

e (vV2In10)r n WvR

for each BS, and obtain a rough estimate d of the distance between the MS and the
BS, e.g., by using the MS position estimate obtained in the previous measurement.

We then extract TOA and/or SS data by processing the received signals at each
BS. According to the hybrid distance estimation scheme, we define the following two
subsets of B (recall B is the set of all the BSs): set S of the BSs that produce SS
measurements, and set 7 of the BSs that provide TOA data. Here is another way
to interpret the two subsets: the subset & should contain the BSs within the range
d<< d. and d ~ d., while T includes the BSs at distances d>> d. and d ~ d.. It is
understood that the set SNT corresponds to those BSs with d ~ d., where both TOA
and SS data are adopted to perform a distance estimation. Note B can also be divided
into two disjoint subsets, i.e., £ for the LOS BSs and AL for the NLOS stations.
When NLOS induced error is present in some TOA estimate, we shall include the
corresponding SS data for the distance estimation in order to improve the estimation
accuracy.

Next, we estimate the distance between the MS and a BS by using TOA or SS

data. Recall the distance estimate extracted from TOAs is

db:db+lb+Cba beT, (4.1)
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where

dp = \/(l" — )+ (Y — w)?,
I, =0 for b€ L, and ¢, is a Gaussian variable N'(0, w?) with

L
b_87r2 BZ'RI,‘

The distance estimate from SS data is
dy=dy+¢, beES, (4.2)

where (; is a Gaussian variable A/(0,w?) with

In10\> n?
w,?:( o > -6—2-45. (4.3)

Step 2. Formulation of the constrained optimization problem

We first formulate an objective function by adopting the ML or MAP estimator based
on the distance estimates obtained in the previous step. For a LOS environment or
situation where no NLOS statistics are available beforehand, the objective function

is the negative of logarithm of the likelihood function associated with the MLE;, i.e.,

o) = ¥ & (d-flo-a - wk)
beTnl b

+ %wig <‘Zb B \/(x —ap)? 4 (y — yb)2>2 : (4.4)

Note the above formulation excludes the NLOS TOA estimates, due to Proposition
2.1. From Eq. (4.3), we see that w?, b € S, is a function of the distance d, which is
impossible to obtain without first locating the MS position p. Our solution is to use
the position estimate p instead of the true p in evaluating these w?’s. In addition, p

is updated together with these w?’s at each iteration in the optimization procedure
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as will be discussed in the third step. On the other hand, when the prior p.d.f of the
NLOS delays, py(l), is available, the objective function is expressed in terms of the

logarithm of the posterior probability function involving all the distance estimates:

Onin(p,l) = Owp) - lnpl(l)
bETnNﬁ w,? ( " \/ (@ = 2) + (y — 9)? — lb)
) Zf w <db \/(x —p)? + (Y — yb)2>2

+Z ( \/fﬂ—xb)+(y—yb)2>2—lnpl(l). (4.5)

We now establish three types of constraint functions. In practice, the movement
of an MS is usually confined within certain regions, such as roads and parking areas.

Hence, the first type of constraint is to address such limitation:
Constraint 1: (z,y) € C, (4.6)

where C' represents a possible region for the mobile’s position. Since the MS will be
either stationary or moving with a speed below some finite value, typically, 30m/s, the
incremental change of the MS position from its position at the previous measurement
instant is also bounded by some finite number, denoted by D(t, 6t). We thus formulate

the second type of constraint as
Constraint 2:  |p(t) — p(t — 6t)| < D(t,0t). (4.7)

Denote vy, (t, 0t) the maximum speed of MS during time interval [t — dt, t] and P,,(¢)

the maximum positioning error at time t. The explicit expression of D(t, dt) is

D(t,0t) = v (t, 0t) - 6t + Pt — 5t). (4.8)
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The third constraint takes into account that an NLOS induced path length is always
positive:

Constraint 3: 1> 0. (4.9)

If any of the above three constraints is violated at a certain location, we shall
set the corresponding value of the objective function to be infinite. The first two
constraints can be interpreted as “hard limits” on the possible region of the mobile’s
position. In case some prior p.d.f of the MS position is also available, we should
include the logarithm of such p.d.f in the objective function of Eq. (4.5) as a “soft

limit”.
Step 3. Optimization of the constrained objective function with the SSM
Estimate the MS position by
min O (p), subject to Constraint 1, 2, (4.10)
when no information of the NLOS delays is available, or otherwise
min Oy, (p, 1), subject to Constraint 1,2,5. (4.11)

The SSM serves as an optimization tool. For simplicity, we assume a mobile tracking
scenario here so that the position estimate obtained in the previous measurement
can be used as the initial point to search for the current MS position. In a general
“cold start” case, we may obtain the initial point by a coarse estimation with some
fast-converging optimization technique, e.g., a gradient method. The optimization of
O (p) in Eq. (4.10) is a two-dimensional problem. Thus, the simplex for the SSM is
an equilateral triangle. The smallest size of the triangle (see Rule 3 of the SSM) is
selected to be comparable with the CRLB based on p(t — dt). When the prior p.d.f
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of the NLOS delays, pj (1), is available, the optimization of Oz (p,1) in Eq. (4.11) is
more complicated. In addition to p, the NLOS delays I need to be estimated as well.
Since the estimation of p and I may have different precision requirements, we use two
types of simplex, an equilateral triangle for p and an M-dimensional simplex for the
M-dimensional vector [. Accordingly, there are two searching processes: the one for
p is made in a two dimensional plane, and the other for [ is in an M-dimensional
space. The two processes are carried out in turn. Optimum estimates are obtained
when both processes indicate convergence. The initial M-dimensional simplex is

constructed around the center of an arbitrary feasible point.

4.4 Accuracy Analysis

The above geolocation scheme involves both TOA and SS data. An easy way to obtain
its corresponding CRLB and G-CRLB is to modify the CRLB of Eq. (2.17) and the
G-CRLB of Eq. (2.50) derived for the TOA positioning method, by accommodating
the contribution from the SS data. The only quantities we need to modify are Ayy,

and Ay in Eq. (2.10). We replace the diagonal terms of

Anp =diag (A1, Ao, -+, Au),
and
A = diag (Aari1, Anvge, o0, AB),
by
2
MN=-—, b=1,2-,B (4.12)
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where
% . ﬁ, for b€ B/S,
n 2 2
8,,252_Rb (110 )2.£.L7 fOI‘ b E S m T,
\ g mi0) 2 2

which was given in Eq. (4.13).
Therefore, the CRLB and the G-CRLB for the new approach can be expressed
still in the forms of Eq. (2.17) and Eq. (2.50), respectively.

4.5 Simulation Results

The cellular CDMA system described in Section 2.2.2 will be used in the simulation
experiments in this section. We first introduce an illustrative picture to see how the
SSM works in our geolocation scheme. Then some simulation results are investigated.

The standard deviation of the position estimates, i.e.,

E=VE[p-pIP

is adopted as the measure of the estimation performance. One hundred simulation

runs are executed to produce the average in the above definition.
Simulation 4.1.

Figure 4.3 helps to describe the optimization steps of the SSM in our proposed scheme.
The unshaded area represents a road which confines a likely mobile’s position, corre-
sponding to Constraint 1 in Eq. (4.6). Symbol “*” denotes the initial point, which

is at the center of the initial triangle (or simplex). The curved line is determined by
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Figure 4.3: An illustrative picture of the application of the SSM in the proposed geolo-
cation method.

the maximum possible separation between the initial point and an MS estimate, i.e.
Constraint 2 of Eq. (4.7), The true MS position is marked by symbol “@”, and the
nearby reduced triangle is created at the final searching step when the SSM achieves
a convergence. The marks “®” trace the intermediate searching points during the
optimization, and are well confined within the feasible region. It is indicated that the
size of the moving triangle is reduced as the search approaches to the neighborhood
region of the optimum point, i.e., the center of the smaller triangle (see Rule 3 of the

SSM).
Simulation 4.2.

Here we consider an example in which combined use of SS and TOA may outperform
a scheme that uses TOA or SS data only. Possible application scenarios may include

indoor or semi-indoor geolocation, such as locating an individual in an office building,
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hospital, nursing home, airport lobby and railroad station. It may be also applicable
to locate a car or pedstrian in urban environments (e.g., New York City) where LOS
signals are absent or weak. In such applications the distance between BSs may be
on the order of tens of meters instead of thousand meters. In some applications, the
position information of z-coordinate (i.e., height) as well as the (z, y) coordinates may
be required. Our formulation based on the two-dimensional model is easily extended
to the three-dimensional case. No prior information of NLOS delays is assumed. Four
LOS BSs, i.e., BS;, BSy, BS; and BS, are involved in the geolocation. The distance
between two adjacent BSs is 30m. The chip rate of CDMA signals is 2Mcps. The path
loss factor € and the log-normal index 7 are 4 and 6, respectively. The MS is located
at 20(cos(m/4),sin(r/4)). We use 5(cos(m/4),sin(mw/4)) as a start point. A straight
10m-wide road serves as Constraint 1, similar to that shown in Figure 4.3. The
center line of the road is along y = tan(7/4)z. The maximum separation between the
initial point and an MS estimate is set to be 25m (Constraint 2). Figure 4.4 shows
the performance measure £ of the scheme vs. the SNR, using TOA, SS and both
types of data, respectively. The SNR is defined at a position 30m from the MS. It
is confirmed that adopting both types of data (i.e., the hybrid scheme) can achieve
better positioning accuracy than use of TOA or SS measurements only. However,
such advantage over the TOA based scheme is not significant when the difference
between the accuracy of TOA data based estimate and that of SS based estimate
is sufficiently large, e.g., when the SNR is higher than 16dB in this case, as shown
in Figure 4.4. It is also observed the performance of the SS based method dose not
improve as the SNR increases, because “noise” in the SS data (see Eq. (2.111)) comes

from the log-normal fading effects and the actual noise at receivers does not count.

Simulation 4.3.
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Figure 4.4: Comparison of the performance of the proposed scheme using SS, TOA and
combination of SS and TOA data.

By using the same set of model parameters as the previous simulation, we show in
Figure 4.5 the performance of the hybrid scheme with or without Constraints 1 and
2. The square root of the trace of the CRLB, Pcg, is drawn (the second curve from
top), which is a theoretical limit for the positioning accuracy when no prior infor-
mation of MS position is available. As expected, the scheme without the constraints
(corresponding to the top curve) cannot perform better than the CRLB limit, but can
attain the CRLB as the SNR grows sufficiently high. When the constraints are ap-
plied, the scheme yields higher positioning precision (the lower two curves) even than
the CRLB, and the lower two curves converge to the CRLB when the SNR is above
14dB. It is seen that the amount of improvement decreases as the SNR increases,
which is determined by how tight the constraints can confine an MS estimated with
respect to the CRLB. We shall explore the relationship between the “tightness” of

Constraint 1 and the performance enhancement in the next simulation.
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Figure 4.5: The performance of the hybrid scheme with and without constraints on the
MS position.

Simulation 4.4.

In the remaining two examples, we consider outdoor geolocation in a wide region.
From the discussion given in Section 3.2, geolocation now should rely mainly on
TOA data. The distance between two adjacent BSs is set to be 2000m. The SNR
is -3dB when the MS and a receiver is separated by 2000m. The chip rate of
CDMA signals is still 2Mcps. The MS is located at 600(cos(w/4),sin(m/4)). We
use 500(cos(m/4),sin(7/4)) as an initial point. The road extends along the line of
y = tan(mw/4)z as before. The maximum separation between the initial point and an
MS estimate is chosen to be 140m (Constraint 2). Since Pcp is approximately 31m
as shown in Figure 4.6, Constraint 2 is a rather loose boundary for an MS estimate.
Hence, the performance enhancement due to the constraints, if there is any, should

result from Constraint 1, or the width of the road denoted by W, 4. For convenience,
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we define the normalized size of Constraint 1 as

2 Lfrd/Q.

4.14
Pon (4.14)

Figure 4.6 shows £ vs. sz in dB. The associated CRLB data are plotted as a compar-
ison. It shows that the the performance enhancement is significant when W.q/2 is
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Figure 4.6: The performance of the proposed geolocation scheme with various road width.

less than Pcp (corresponding to sz < 0dB in the figure). However, further improve-
ment is negligible once sz becomes less than -5dB, or W4 = 10m. This is because

Constrain 2 is fixed, and is not so tight as Constraint 1.
Simulation 4.5.

In this last simulation, we assume that prior information of NLOS delays is available.
There are three LOS BSs, BS;, BSy, BS; and two NLOS stations, BS; BS;. The
path loss € is 4 for NLOS signals. The NLOS delays are assumed to be Gaussian

distributed with A'(90, 15%). Constraint 3, or that NLOS delays are always positive,
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is adopted in the simulation. The road width is 20m. Other simulation parameters
are same as those of the previous experiment. Figure 4.7 shows the deviation &
vs. the SNR when the distance between the MS and a receiver is 2000m, in three
situations: neither NLOS information or the constraints are available (the top curve),
only NLOS information is known (the second curve from the top), and both types

of knowledge can be obtained (the bottom line). As expected, the third situation

30 T T T T

—*— w/o NLOS info or constraints

—©— with NLOS info and w/o constraints
—+ with NLOS info and constraints

E

= = N N
=) o =) a

Standard deviation of the position estimate in meter
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0 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

SNR in dB when the MS and Rx is separated by 2000m

Figure 4.7: The performance of the proposed scheme with and without NLOS delay
information and constraints.

exhibits the best performance (the bottom curve). However, its improvement over
the other two approaches decreases as the SNR grows higher. It is observed that
the enhancement due to NLOS information (the gap between the top two curves)
is smaller than that resulting from the limitation on an MS estimate (the difference
between the lower two curves). This is because the SNR of NLOS signals is greatly
reduced by the extra NLOS propagation path and ¢ = 4, and the weights for these

NLOS signals in the objective function of Eq. (4.5) are much smaller than those for
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LOS signals.

4.6 Concluding Remarks

We present a new geolocation approach using the SSM, where the location estima-
tion is formulated as a constrained optimization problem. The objective function
is constructed based on the ML or MAP estimator, subjected to the three types of
constraint. The simulation results show that the SSM is an efficient optimization
tool which can accommodate the boundary conditions, and introducing appropriate

constraints can greatly improve the geolocation accuracy.



Chapter 5

A Wavelet Approach to Channel

Estimation

Up to now, we have been concerned with the geolocation in a single (LOS or NLOS)
path propagation environment. In many practical situations, however, a received
signal between a given MS and BS is inevitably subject to multipath propagation.
It has been well understood that the best reception scheme is, as far as recovery of
an information sequence is concerned, to make use of all available multipath signal
components, often referred to as fingers in the so-called rake receiver [44]. For the
geolocation problem, however, the conventional wisdom is to extract the first arriving
signal component, or a dominant component, and estimate its associated time delay,
followed by use of a single-path based algorithm. Yet it is intuitively clear that the
best possible geolocation scheme should take into account all the available signal
components, since not only the primary signal component but also the secondary,
tertiary and other components carry the information regarding the position of the
MS. Therefore, channel estimation is an important issue in geolocation.

In this chapter, we develop a simple wavelet-based approach to channel estimation.

We should note that this approach is applicable to identification of a linear system,

93
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not just estimation of a radio channel for geolocation.

5.1 Introduction

Channel estimation has been a critical problem in many communication systems, es-
pecially when the characteristics of a channel are time-varying. Besides the multipath
geolocation problem as has been discussed above, a large class of interference cancel-
lation algorithms and decoding algorithms require complete or partial knowledge of
channel characteristics. A generic strategy is to transmit (or input) a signal sequence,
which may or may not carry data information, and estimate the corresponding chan-
nel impulse response, or its related parameters, by processing the received signal.
Channel estimation schemes can be classified into (i) training-based, (ii) blind and
(iii) semi-blind approaches depending on the extent of use of a training signal [43].
In a training-based scheme, a receiver uses a known input signal (i.e., a training se-
quence) as a reference to process the output of a channel in the presence of additive
noise, and estimate the channel response. Adaptive equalization techniques [44] are
often employed in such schemes. More recently, semi-blind and blind algorithms have
been extensively studied (see [45, 46, 47] and references therein), where the observa-
tion corresponding to unknown data are utilized. Compared with those training-based
methods, the semi-blind and blind schemes may achieve higher data transmission rate
by using less or no training signals, but at the cost of lower estimation accuracy and
increased computation complexity. Although it can be viewed as a training-based
scheme, the approach in [48] is distinguished in that it emphasizes the design of an
input signal waveform particularly in favor of a simple channel reconstruction proce-

dure. A Gaussian-noise-like signal is proposed to be used as an input signal. Then
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channel estimation is conducted by a correlation receiver.

In this chapter, we propose a wavelet-based approach to channel estimation, which
is motivated by a consideration similar to that of [48]. We design a training signal
using the scaling function associated with a compactly supported orthonormal wavelet,
which takes advantage of two properties of the scaling function: the bandwidth effi-
ciency and orthogonality between the function and its time-shift replica. By sampling
the received signal in a proper manner, we can obtain the projection of the channel
impulse response onto the subspace spanned by the scaling functions, which allows a

simple yet accurate channel reconstruction.

We first in Section 5.2 review fundamentals of compactly supported orthonormal
wavelets and their applications to some communication problems. The basic idea of
our wavelet-based approach to channel estimation is described in Section 5.3. An
error analysis is presented in Section 5.4. In Section 5.5 we apply this approach to
the estimation of a time-invariant channel with additive noise and to the problem of
tracking a time-varying channel. Some simulation results are presented in Section 5.6.

Section 5.7 gives the conclusion of this study.

5.2 Fundamentals of Compactly Supported Orthonor-
mal Wavelets

We limit our discussion to compactly supported orthonormal wavelets in the real do-
main, which will facilitate the development of our wavelet approach in the remaining

sections.

Compactly supported orthonormal wavelets have been extensively explored in the
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past fifteen years [50]. In general, these wavelets and their associated scaling functions

possess the following three important properties!:

e These waveforms have an approximately compact support in the frequency do-

main, often referred to as the bandwidth efficiency.

e Orthogonality is guaranteed between a wavelet (or a scaling function) and its

time-shift replica.

e Their dilation and time-shift replicas constitute an orthonormal basis for L*(R),

which is the foundation of the well-known multi-resolution analysis.

Recall that L?(R) is a functional space that contains all “signals” with finite energy,
or
+o0
[*(R) = {f(t) ‘ [ TP < oo} .
In what follows, we shall expand the above three properties and emphasize their engi-
neering interpretations (see Chapter 6 in [8] for a rigorous mathematical discussion).
Given a compactly supported orthonormal wavelet, denoted by #(t), there exists

a unique scaling function ¢(t) associated with it, satisfying

o(t) = V2 3 e 92t —n), (5.1)

and
D) = V2 Y (=1)" - copga - (2t — ), (5.2)
where coefficients ¢,, are determined through the construction procedure of the wavelet,

and the number of these coefficients is finite. Here is an illustrative example. The

Daubechies wavelet-8', traditionally denoted by 18(¢), and its Fourier transform W8 (¢)

!These properties are more or less shared by other types of wavelets.
LAll the Daubechies wavelets, 1! (t),42(t),---,¥"™(t),- - -, are compactly supported orthonormal
wavelets. The construction of these wavelets follows a unified procedure.
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are shown in Figure 5.1 (a) and (b), respectively, together with the associated scaling
function ¢®(¢) and the Fourier transform ®3(f). The solid curves correspond to 18(t)
and U8(f), and the dotted ones are ¢®(t) and ®3(f). By referring to Figure 5.1, we can
understand easily the following claims regarding a compactly supported orthonormal

wavelet and the Daubechies wavelets:

e As the terminology “compactly supported” suggests, a compactly supported
orthonormal wavelet (), together with its associated scaling function ¢(t), has
a finite duration in the time domain. In addition, their Fourier transforms W( f)

and ®(f) have an approximately compact support in the frequency domain.

e The wavelet ¥ (t) can be viewed as a band-pass signal. In contrast, ¢(t) is a

base-band signal, whose bandwidth is roughly the same as that of ¢(t).

e The larger the index n of the Daubechies scaling function ¢™(¢) is, the more
localized its Fourier transform ®"(f) is in the frequency domain. However, a
further improvement is not significant once n > 10. (Hence we shall select ¢®(¢)

in our simulation.)
Define the dilation and time-shift versions of ¢(t) and ¢(t) as
Via(t) € 212 (2t — k), (5:3)

and
Gk(t) = 207 (27t — k), (5.4)
respectively, where j and k are integers, i.e., 5,k € Z. For fixed j, there exist

orthonormal relations:

(Viks Vin) = Ok, (5.5)
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Figure 5.1: The Daubechies wavelet-8 ¢/%(¢) and scaling function-8 ¢*(¢) (a) in the time
domain and (b) in the frequency domain.
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and
(Djes D) = O, (5.6)

where d; is the Kronecker delta, i.e.,

1, for k=1,
Okl =
0, for k #1L.

Furthermore, these 1,4 (t)’s and ¢, x(t)’s provide orthonormal bases for two types of

subspaces:

W; € span {¢h;(t), k € 2}, (5.7)

and

V; & span {¢,4(t), k € Z}. (5.8)
Roughly speaking, subspace V; consists of the base-band signals within the bandwidth
comparable with that of ¢j70(t), while W is for the band-pass signals within the same

bandwidth. The higher the layer index j is, the wider the bandwidth of V; and W;

is. The scaling function subspaces V; have the following inclusion relation:

e C VoV CVoCViCVaCorenr, (5.9)

with
lim V; = L*(R), (5.10)

and
jLiEnoovj = (), (5.11)

where () denotes the empty set. In contrast, different W;’s are disjoint to each other:

Wi (W, =0, (5.12)



CHAPTER 5. A WAVELET APPROACH TO CHANNEL ESTIMATION 100

and

U W, = L*(R). (5.13)
jEZ
Furthermore, V; and W, are connected by the relation

VW, = Vie, (5.14)

and

Vi(\W;=0. (5.15)

The last two equations imply that the bandwidth of the base-band subspace Vj,
can be “divided evenly” in the frequency domain: V; occupies the lower half of the
bandwidth, and the upper half is left for W;.
The well-known multi-resolution formula [8] is given by
v;U (U Wz) = L*(R). (5.16)
1>j

That is, any signal in L?(R) can be decomposed into a base-band component in the
subspace V; for some j, and numerous disjoint higher frequency band-pass compo-
nents. In other words, the “information” of a signal is separated into the “basic”
information (carried by the base-band component) and different levels of “detailed”
information (corresponding to those higher frequency band-pass components). The
multi-resolution formula has wide applications in signal processing and filtering tech-

niques.

We are now in a position to briefly review some prior work concerning application
of wavelets to channel estimation and signal design. Wavelets and their associated
scaling functions are good candidates for pulse shaping in the signal design, because

of their bandwidth efficiency and the orthogonality among their time-shift replicas.
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In [51, 52, 60], use of wavelets is proposed to shape pulses in such conventional signal-
ing schemes as PAM (pulse amplitude modulation) and QAM (quadrature amplitude
modulation). Significant improvements have been reported on data transmission rates
and the performance of timing recovery. The authors in [54, 55, 56] adopt wavelets
to construct signature waveforms of a CDMA system and investigate related issues
such as multiuser interference, low complexity detection and timing error effects.

Wavelet-based channel identification algorithms are investigated in [57, 58], where
wavelets serve as basis functions in expanding the response function of a time-varying
channel, because they have a good time-frequency localization property as well as
providing an orthonormal basis for L?(R). The coefficients associated with these
wavelets (i.e., the projections of a channel impulse response on these wavelets) are
then estimated by applying some conventional filtering techniques based on the least
mean square (LMS) or recursive least square (RLS) criterion.

Our wavelet-based approach to channel estimation is different from the previously
reported schemes in the following aspects. We use sufficiently separated scaling-
function-shaped pulses as a probing signal to avoid inter-symbol interference (ISI)
in the received signal. Then by appropriately sampling the received signal, we im-
mediately obtain the projections of the channel impulse response onto the subspace
spanned by the scaling functions. To our best knowledge, there is no similar scheme

reported in the literature.

5.3 Description of the Basic Scheme

To emphasize our principal idea, we focus on the estimation of a time-invariant chan-

nel in a noise-free situation in this section. We shall postpone discussions on how
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to accommodate additive noise at the receiver end and a time-varying channel until

Section 5.5.

Let h(t) be a channel impulse response with bandwidth . We assume
h(t) € L*(R).

We further assume that the bandwidth of a chosen scaling function ¢(t) is slightly
larger than W, the bandwidth of h(t). If not, we can rescale the scaling function by

an appropriate number and use

% - (at).

The projection of h(t) onto subspace Vj can be expressed as

ho(t) =D _(h, do) - ¢(t — k), (5.17)
where
(o) & [~ h(t) - ol — ) dr. (5.18)

Recall the scaling function ¢(¢) and its time shift replicas ¢(t — k) constitute an
orthonormal basis for V;. In addition, V{ roughly consists of the base-band functions
within the bandwidth of ¢(¢), which makes it appropriate to approximate h(t) by
ho(t).

Consider a communication system that transmits the time-reversed version of the
scaling function waveform, i.e., ¢(—t), as a probing signal for channel estimation. The

received signal in a noise-free situation is
r(t)= [ h(r)e(r - tdr. (5.19)
By sampling r(¢) at time instants t = 0,1,2,---, k, -- -, we have

mm:/mh@ww—mm;k:mLG. (5.20)

—o0
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One implicit assumption here is that the time offset between the transmitter and
the receiver is known. Comparing Egs. (5.20) and (5.18), we immediately see that a
sampled received signals is exactly the projection of h(t) on a basis vector of V4, or
specifically

r(k) = (h, pox)-

Therefore, the reconstruction of h(t) in the subspace V; is simply given by

holt) = Y- r(k)a(t — F), (5.21)

[
which is equivalent to Eq. (5.17). Since h(t) usually has a finite duration, the number

of these coefficients r(k) should be finite.

5.4 Error Analysis

Here we shall provide a general result on the error incurred by approximating h(t)
with subspace Vj;, for j > 0, where hy(t), the approximation in V4, in the previous

section is a special case.

The projection of h(t) onto subspace Vj, for j > 0, denoted by h;(t), is expressed

hi(t) = Y _(hy djk) - Dik(t), (5.22)
where
(hydia) = [ B(t)- 0jal) . (5.23)

See Eq. (5.8) for the definition of V;.
The approximation error of h;(t) is measured in terms of the square of the distance

square between h(t) and h;(t) in L?*(R), i.e.,

=gl & [ i) = hy(0) . (5.24)
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We can show that
|h — hil|* < kD229, (5.25)
where D is the smallest integer that is larger than the channel delay spread, and x and
« are positive constants that depend on the scaling function we select. We provide
a proof of Eq. (5.25) in Appendix 5.1, which is mainly based on the multi-resolution
formula of Eq. (5.16).
From Eq. (5.14), we see that the subspace V; with higher index j can include
more “detailed” information of a given signal. Therefore, an approximation of h(t)
in subspace V; with larger j should achieve higher accuracy, which is consistent with

the quantitative conclusion of Eq. (5.25).

5.5 Two Applications

5.5.1 Estimation of a Time-invariant Channel in the Pres-

ence of Additive Noise

When additive noise is present, we should modify the sampled received signal of

Eq. (5.20) as

(k) = /°° h(r)b(r — k)dr + n(k)

= r(k)+n(k), k=0,1,2,---, (5.26)
where n(k) is a Gaussian random variable N(0,0?). If the noise level o2 is too high
to allow estimation of h(t) with sufficient accuracy, we should adopt a sequence of
¢(—t)’s, instead of the single pulse, as a probing signal. Let L be the number of the

pulses in the probing signal and I be the smallest integer such that

¢(t) =0, for any t ¢ [0, I].
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We then design a probing signal by
L
=Y (- (I+D)-1-1), (5.27)
1=0

where the term (—1)! is to ensure

or the D.C. component of s(t) is zero. Recall D is the integer corresponding to the
channel delay spread. Separation of the pulses by the interval (I + D) guarantees
that there is no inter-symbol interference (ISI) in the received signal, which leads to
the following simple channel estimation scheme.

The sampled received signal is now given by

ym) = [ h(r)s(m = r)dr +n(m)

L (3]
= S [ h@)e(r —m+ (1 + D)) dr+n(m),  (5.28)
1=0 0
for m = 0,1,---,(I + D)L. We divide these y(m)’s into (I + D) groups, in such
a manner that the k-th group contains L noisy observations of r(k) (see Eq. (5.20)
for the definition of r(k)). The sample mean of the k-th group is then taken as an
estimate of r(k), i.e.,

L
Z y(k+ (I +D)-1), fork=0,1,---,1+ D. (5.29)
=0

t~ |

Compared with the variance of n(k), o2, in Eq. (5.28), the variance of noise in 7 (k) is
reduced to 0%/ L after the averaging operation. Finally, we can estimate the channel

response h(t) by
I+D

ho(t) = > (k) - ot — k), (5.30)

k=0

which is similar to the noise-free case of Eq. (5.21).
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Let ﬁj be the estimate of h(¢) in the presence of additive noise in subspace V; and

7;(k) be the noise reduced estimate of

ri(k) = (h, @jk)-

By combining Eq. (5.25) and

R 2 D+IT
Ellh; = hil* = Y E(#(k) —ri(k)?,
k=0
. 0’2
= @D+1+1) —, (5.31)

we find the following upper bound for the estimation error:

Elh =0l < [lh = hyll* + E|lhy; — hy|?

2D+T1+1

< kD27 4 o2, (5.32)

- L

We see from Eq. (5.32) that as j grows larger, the approximation error ||h — h;|?
exponentially decreases; on the other hand, the increase in the error incurred by
noise, E||h; — h;||* is almost proportional to 2/. The latter is because the pulse
¢;(t) becomes narrower in time for larger j and more coefficients r;(k) are needed
to present h(t). Equation (5.32) also implies that once j is fixed, increasing L (i.e.

using a longer probing sequence) will reduce the noise incurring error, as expected.

5.5.2 Tracking of a Time-varying Channel

In order to track a time-varying channel, we only need to modify Eq. (5.29) in the

previous scheme by introducing a “forgetting factor” v (0 < v < 1):

ki) = (1=7) - 29 (21 -y +1(7 + D), (5.33)
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for k =0,1,2,---,(D + I), which is the time-vary version of 7#(k) in Eq. (5.29). We

set (1 —7y) as the normalization constant by noting

1
1+7+72+...:1—, for 0 < v < 1. (5.34)

The factor v controls how fast the scheme can follow a variation in the channel: for
a fast varying channel, we use a smaller value of v, and vice versa. For real-time

processing, we rewrite Eq. (5.33) in the following recursive form:
Fk;yi+1) = - 7#(k;i) + (=1)" - y(k +i(I + D)). (5.35)

The channel reconstruction step is essentially same as Eq. (5.30):

I1+D

ho(t;d) = > #(k;d) - ¢t — k). (5.36)

k=0

5.6 Simulation Results

In our simulation experiments, we estimate a complex-valued channel impulse re-
sponse h(t) with bandwidth W. The wavelet-based schemes and error analysis pre-
sented in the previous sections are still valid except that the sampled received signals
y(m)’s in Eq. (5.28) have complex-values. Since the real and the imaginary parts of
h(t) are two independent bandlimited functions in the real domain, their convolu-
tions with the real-valued probing signal of Eq. (5.27), thus their reconstructions, are
also independent from each other. We generate the channel response h(t) by lowpass
filtering! the waveform

f: Am - exp{—qm - (t — )}, (5.37)

m=1

!The lowpass filter adopted is the FIR (finite impulse response) filter with linear-phase, designed
with least-squares error minimization (see function routine FIRLS in Matlab [61] for details).
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where M is the number of multipaths, A,, is the complex amplitude for the m-th path,
¢m and 7, are the corresponding exponential decay rate and time delay, respectively.
The Daubechies scaling function-8, ¢®(t), is used for pulse shaping. Its bandwidth is
set to be slightly larger than that of h(¢). The estimation of h(¢) with subspace Vj is
conducted in each simulation.

The normalized mean-square error (MSE), i.e.,

B | holt) — (o) |2
N P

(5.38)

is employed as the measure of the estimation performance. The SNR of the sampled
received signal is defined by

_ S [r(k) P/ + D)

o2

R

, (5.39)

where r(k) is the noise-free sampled signal given in Eq. (5.20), and o2 is the variance

of the sampled noise n(k) in Eq. (5.26).
Simulation 5.1.

As an illustrative example, we show in Figure 5.2 the estimation results of the real
and imaginary parts of a time-invariant h(¢) by using the noise reduced scheme in
Section 5.5.1. The estimated results are given by the dotted curves; for comparison,
their true values are plotted in solid curves. Two paths are used in this simulation.
The SNR of the sampled received signal R is 3dB and the number of scaling-function-
shaped pulses in the probing sequence L is 100. We see that the two set of curves are

fairly close, which suggests a good channel estimation.

Simulation 5.2.



081

0.6

CHAPTER 5. A WAVELET APPROACH TO CHANNEL ESTIMATION 109

Estimated and true values of channel impules response (real parts). Estimated and true values of channel impules response (imaginary parts).
T T T T T T T T T T T

0.2

+  estimated
— true values

+  estimated
— true values

I I I I I I I I I I I I
15 20 25 40 0 5 10 15 20 25 30 35 40
channel delay spread, unitin T channel delay spread, unitin T

(a) (b)
Figure 5.2: Estimation of (a) real and (b) imaginary parts of a time-invariant channel
impulse response with the noise reduced scheme.
We now examine the performance of the noise reduced scheme with various SNR and

L. Three paths are assumed with time delays
{Tma m = 17 27 3} = {17 47 6}

The exponential decay rate ¢, is determined in terms of the delay spread for the m-th
path, denoted by T,,, as
exp (—qm - Tpn) = 1072,
Here we set
{T,,, m=1,2,3} ={20,20,10}.

Figure 5.3 plots (a) the MSE vs. L with fixed SNR=0dB, and (b) the MSE vs. SNR
with L = 50. FEach point is averaged over 100 simulation runs. It is verified that

increasing L or SNR can improve the estimation precision as suggested by Eq. (5.32).
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L=number of symbols in a training sequence SNRin dB

(a) (b)

Figure 5.3: The performance of the noise reduced scheme: (a) the MSE vs. L, the length
of the training sequence, with fixed SNR=0dB; (b) the MSE vs. SNR with L = 50.

Simulation 5.3.

We now consider the case where a channel is time-varying. The channel model we use
in this simulation is summarized in Table 5.1. The entire time period is divided into
three sub-intervals, each of which contains 300 probing pulses. The channel is assumed
stationary within a sub-interval. As we see, during the first interval, the channel has

three paths with SNR=0dB, then it becomes a two-path channel with 3dB SNR and

Sub-interval 1 | Sub-interval 2 | Sub-interval 3
i (pulse) 1~ 300 301 ~ 600 601 ~ 900
SNR (dB) 0 3 10
M 3 2 4
[A] 1 8 .6 1 5] 1 8 5 .3
T, [20 20 10] (30 10] 20 30 10 10]
Tm 1 4 6] 1 5] 15 8 11]

Table 5.1: A summary of time-varying channel parameters used in Simulation 5.3.
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four-path channel with 10dB SNR in the second and third sub-intervals, respectively.
The forgetting factor v = 0.93 is applied. Figure 5.4 shows the performance of the
scheme for tracking a time-varying channel described in Section 5.5.2. One hundred
simulation runs are averaged to produce each point of the curve. We see the method
can efficiently trace the time-varying channel impulse response.

From the simulation experiment, we notice that the value of v needs to be carefully
chosen. Generally speaking, the smaller the « is, the faster the algorithm converges.
However, if v is too small, e.g. less than 0.90, the algorithm will be unstable in the
sense that the MSE curve will oscillate even after convergence. This is similar to the
time-invariant case with a small L.

10"

10° |

10 |

MSE

10°F

10°F

10°

1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900
L=number of symbols in training sequence

Figure 5.4: The performance of the channel tracking scheme in Section 5.5.2.



CHAPTER 5. A WAVELET APPROACH TO CHANNEL ESTIMATION 112

5.7 Concluding Remarks

In this chapter, we developed a simple wavelet-based approach to estimate a band-
limited channel impulse response. This approach takes advantage of two properties
of the scaling function associated with an orthornormal wavelet: the bandwidth effi-
ciency and the orthogonality between the scaling function and its time-shift replica.
The applications to time-invariant and time-varying channels were investigated sep-

arately. Computer simulations confirmed a good performance.
Appendix 5.1: Derivation of Eq. (5.25)

The proof can be done in the following four steps:
Step 1.
By using the multi-resolution formula of Eq. (5.16), we can express h(t) in terms of
the projections of h(t) onto one scaling-function-spanned subspace V; and multiple
wavelet-spanned subspaces W; with [ > 7:
h(t) = %:(f% Pik) Pik(t) + ; 2k2<h, D) Y (t)- (5.40)
>j

Since
hi(t) = (b, ¢ k) din(t),
K

it is straightforward to obtain

1h = hyl12 =3 [(h, i) > (5.41)

>3 k
Step 2.

In order to estimate the coefficients (h, 1; ;) in the above expression, we first consider

the following approximation for

(hy o) = / * ht)(t) dt.

—0o0
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Since the spectrum of h(t) is confined in the interval [-W, W] in the frequency domain,
we approximate W( f), the Fourier transform of the wavelet ¢ (¢), within [-W, W] with

an easy-integrated function ko f® such that
kof¢ > |W(f)], for f e [-W, W]. (5.42)

where kg and « are some suitable positive numbers that can be determined by simu-

lation trials.

Step 3.

Using the absolute value of the Fourier transform of v, (t) = 2/2¢(2% — k), i.e.,

Y

W) = 272 | (27! )

we derive the upper bound of the inner product (h, ) in Eq. (5.41) as
[(hy Vi)l = [(H, W)
w
< Hpao [ 27207 df
—w

1—-4 W -l o
S 2 2’<30]_-[m(1:1: (2 f) df
0

_ 260 W 1y
a—+1
= g2t (5.43)
where
Hmam — m]gx |H(f)|7
and
. 2K30]—Ima:cvvaJrl

& a+1

Note the upper bound of Eq. (5.43) is independent of the time-shift index & of 1 ;(¢).

Step 4.
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Since the channel delay spread is less than D, the maximum number of non-zero

coefficients (h, 1) at level [ is 2'D. Substituting Eq. (5.43) into Eq. (5.41), we have

h=hilP? < 32D |m2 )
1>]
= ;DY 277
1>]
272o¢j
1 — 22
= kD272 (5.44)

‘ 2

= KD

where

This concludes our proof.



Chapter 6

Conclusions

In this dissertation, we have presented four topics on wireless geolocation. The contri-
butions of this dissertation involve analysis of major NLOS geolocation approaches,
development of a geolocation algorithm for the mitigation of NLOS effects and a
wavelet-based approach to channel estimation. We summarize the contributions for

each of the four focused areas as follows:

e Chapter 2: In the unified analysis of the NLOS geolocation, major estimation
approaches such as the time of arrival (TOA), time difference of arrival (TDOA)
and signal strength based (SS) schemes are investigated in a coherent frame-
work. The theoretically achievable geolocation accuracy is derived in terms of
the Cramer-Rao Lower Bound (CRLB) or its generalized version depending on
whether prior information of NLOS delays is available. It is then shown that
the maximum likelihood (ML) and maximum a posteriori probability (MAP)
estimators based on measurements pertaining to the position information can
asymptotically achieve these lower bounds. In addition, the connection between
theoretically optimum receivers and the conventional geometry-based methods

is clarified.

115
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e Chapter 3: We have explored the relationship among the three distance-based
positioning schemes, i.e., the TOA, TDOA and SS based methods. We provided
an analytical explanation for the claim that given a set of BS locations and an
MS position, the TOA method should achieve a higher positioning precision
than its TDOA counterpart. However, the two positioning methods may attain
the same level of accuracy under certain conditions. We investigated the tradeoff
between the accuracy limits of the TOA and SS based methods, based on which
we devised a hybrid distance estimation scheme that combines TOA and SS

data.

e Chapter 4: Combining an optimum receiver and the sequential simplex method
(SSM), we have developed a new geolocation algorithm. This algorithm incor-
porated the aforementioned hybrid distance estimation scheme and the geo-
graphic constraint, such as street and highway layout, as boundary conditions
for a mobile’s likely position. We adopted SSM as an optimization tool, because
it can handle a non-differentiable objective function and irregular boundaries

in a simple manner.

e Chapter 5: We have proposed a wavelet-based approach to channel estima-
tion. This approach takes advantage of two properties of the scaling function
associated with an orthonormal wavelet: its bandwidth efficiency and the or-
thogonality between the scaling function and its time-shift replica. A training
sequence is constructed using the scaling function. By appropriately sampling
the received signal, we are able to obtain the projection of the channel impulse
response onto the subspace spanned by the scaling functions, which then allows

a simple yet accurate reconstruction of the channel response.
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Some directions of our future work are in order:

e The geolocation algorithm developed in Chapter 4 is suitable for a mobile track-
ing scenario, or a “refining” estimation, where the start point of an optimization
search is not very far from the optimum point. For a general “cold start” case,
it is desirable to extend this algorithm to a two-step estimation scheme, i.e.,
an initial estimation using some less accurate but fast-convergent optimization

technique, followed by the proposed “refining” estimation with the SSM.

Another useful modification of this algorithm is to incorporate some scheme that
adapts parameters depending on whether the MS of being tracked represents
a pedestrian, a vehicle on a urban street or on a highway, etc. For example,
when the MS is a pedestrian, local streets and shopping malls may provide an
appropriate guidance to be considered in inferring a likely position of the MS,
and geolocation update need not be done as frequently as that for a highway

vehicle.

e Current techniques usually adopt special “probing” signals for the geolocation
purpose. It will be of practical and theoretical interest if geolocation can be
performed in conjunction with a data extraction procedure. We plan to extend
our current results to the setting of joint estimation of a mobile’s position and
information sequences. The EM (Expectation and Maximization) algorithm is

expected to be employed.

e Reconsider the geolocation problem from a network perspective. First, a net-
work may play an active role in providing flexible and efficient geolocation solu-
tions. For example, when poor channel quality and an unfavorable MS and BS

configuration prohibit the positioning accuracy from attaining a desired level, a
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network may enhance the performance by implementing an extra BS at a spe-
cific “trouble” spot, or requesting assistance from an overlay positioning system
such as GPS. Second, it is conceivable that several types of networks, which may
adopt different geolocation methods depending on their terrestrial conditions,
need to work jointly to offer ubiquitous geolocation services in a near future.
How to coordinate these systems and handle “handoffs” in a boundary region
of two networks also prompts some interesting problems. Third, a network is
desired to provide different levels of geolocation accuracy depending on charac-
teristics of its services. Thus, some adaptive geolocation algorithms should be

investigated.

e Field testing is crucial to both pre-deployment selection of a geolocation scheme
and post-deployment demonstration of its compliance with certain accuracy re-
quirement [62]. However, what is lacking is a fair and standardized test proce-
dure. An appropriate answer may be found if we have a better understanding
of interactions among channel conditions, network parameters and geolocation
schemes. Our recent study of unified analysis of NLOS geolocation may serve as
a guideline to provide predictions to be compared with field test results. More

works are called for in this area.
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Glossary of Principal Symbols

Symbol
Ap
BS
B
subscript b
CRLB
c

d

S TS T

ol

FIM

fo(r)
G-CRLB

Definition

signal amplitude

base station

set of all BSs

b-th base station

Cramer-Rao Lower Bound

the speed of light

distance

distance estimate

critical distance

expectation

mean square error of channel estimation
instant SS estimate

time averaged SS estimate

Fisher information matrix

probability density function conditioned on @
generalized CRLB

matrix containing geometric relation among
the MS and BSs for the TOA method
submatrix related to LOS BSs in H

submatrix related to NLOS BSs in H
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(2.2)

—_



GLOSSARY

Symbol
Hss
Hrpoa
h(t)

J
Ip
Jp
o
Jr
LOS

subscript L

MS
NLOS

subscript NL

No/2
NL

n(t)
Pcr

Pa—cr

Definition

matrix H for the SS method

matrix H for the TDOA method

channel impulse response

information matrix

information matrix due to observation
information matrix due to prior knowledge
Fisher information matrix for estimation of @
Fisher information matrix for estimation of 7
line of sight

LOS base stations

set of LOS BSs

NLOS induced path length

NLOS induced path vector

maximum a postertori probability
maximum likelihood estimation

mobile station

non-line of sight

NLOS base stations

spectrum density of white noise process
set of NLOS BSs

noise in received signal ry(t)

positioning accuracy of the CRLB

positioning accuracy of the G-CRLB
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GLOSSARY

Symbol
p=(z,y)"
R.R,
ro(t)

r
SNR
SS
SSM

rd

Z,2h

B

€

2 2 2
7717,(71;, wb

AL
ANL
b

Definition

MS position

SNR

received signal

vector of received signals

signal to noise ratio

signal strength

sequential simplex method

Fourier transform of s(t)

set of BSs providing SS data

signal waveform

time difference of arrival

time of arrival

set of BSs providing TOA data

j-th scaling function subspace

chip rate of a CDMA signal, bandwidth
j-th wavelet subspace

road width

log-normal fading factor in dB
signal strength

effective bandwidth

path loss factor

variances of Gaussian variables
submatrix related to LOS BSs in J+
submatrix related to NLOS BSs in J+

diagonal term of J+

Page or

Equation Number
9

(2.14)

(2.2)

(2.3)

\]

(5.8)
18,102
(5.7)

90
(2.110)
(2.110)
13

50
55,33,46
(2.13)
(2.12)
(2.14)
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GLOSSARY

Symbol
Do

()
¢" (1)
I

1V

v(f)
»(t)
P ()

T,Th

gagb
CaCb

- = C

Definition

geometric angle determined by the positions

of an MS and BS,

scaling function

Daubechies scaling function-n

covariance matrix of I with Gamma distribution
covariance matrix of TDOA data

Fourier transform of ¢ (t)

wavelet function

Daubechies wavelet function-n

covariance matrix of I with Gaussian distribution
time delay

vector of time delays

0= (p"1")"

error in time delay estimate

error in distance estimate

intersection

union

a empty set

a column vector of all 1’s
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Equation Number

(2.70)
(2.96)
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