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ABSTRACT
Bloat is a common problem with Evolutionary Algorithms
(EAs) that use variable length representation. By creat-
ing unnecessarily large individuals it results in longer EA
runtimes and solutions that are difficult to interpret. The
causes of bloat are still uncertain, but one theory suggests
that it occurs when the phenotype (e.g. behaviors) of the
parents are not successfully inherited by their offspring [5].
Noting the similarity to evolvability theory [1], which mea-
sures heritability of fitness, we hypothesize that reproductive
operators with high evolvability will be less likely to cause
bloat.

We set out to design a new crossover operator for Pitts-
burgh approach classifier systems that has high phenotypic
heritability. We saw an opportunity using the nearest neigh-
bor representation to perform crossover cuts in phenotype
space rather than on the genomes. We demonstrate that our
operator tends to be less susceptible to bloat and has higher
evolvability than a standard Pittsburgh approach crossover
operator. Our hope is that this will lead to a general ap-
proach to reducing bloat for any representation.

1. INTRODUCTION
Many Evolutionary Algorithms that use variable length

representations suffer from bloat. Bloat occurs when the
average genome size tends to grow as evolution progresses.
The main side effect is that progress toward a solution slows,
which is primarily caused by larger individuals taking longer
to evaluate.
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Several theories have been posed for the causes of bloat.
McPhee and Miller demonstrate that in some cases bloat
occurs when the phenotypic semantics of a parent are not
accurately replicated in the offspring [5]. An operator that is
very destructive, such as removing large parts of the genome,
is likely to radically change the semantic behavior of the in-
dividual. Alternatively, adding a large number of genes can
often be done without significantly changing the semantic
behavior. When this is true there will be a bias towards
larger genomes.

The relationship between parents and offspring is a critical
component of evolvability theory, although it is concerned
with the fitness of the individuals [1]. This theory states that
the ability of parents to produce offspring that are more fit
is often a good indicator of ultimate EA performance. The
measure most often used to determine evolvability is either
the covariance or correlation between parent and offspring
fitness.

Two individuals that are semantically different are also
likely to have different fitnesses while individuals that are se-
mantically similar are likely to have similar fitnesses. Given
this, we hypothesize that a reproductive operator that has
a higher evolvability will also be less likely to cause bloat.
This assumes that the fitness landscape is somewhat smooth,
which is a necessary condition for any EA to make progress.

Our focus is finding methods for reducing bloat in Pitts-
burgh approach rule systems [6]. The standard Pittsburgh
approach recombination operators can be quite destructive
often deleting large numbers of genes. Since genes are posi-
tion independent (they can hold any position on the genome
with no change in meaning), the recombination operators
typically take random numbers of genes from both parents.
Therefore it is possible for a child to inherit most of its genes
from one parent with almost all of the other genes going to
its sibling.

2. METHODOLOGY
We design a crossover operator that limits the number of

deletions, which should increase evolvability and thereby de-
crease bloat. The Nearest-Neighbor rule representation [3]
provides an opportunity for achieving this since the condi-
tions of each rule can be treated as a independent points in
feature space. This allows us to define a recombination oper-
ator that performs cuts in feature space instead of along the
genome. The advantage of this approach is that two very
similar parents should produce two very similar offspring,
and so we can expect a high fitness correlation.

We compare this operator’s behavior with that of a stan-
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Figure 1: Plots of the genome length for the 2-spiral

problem.

dard Pitt recombination operator. We use a test suite con-
sisting of two fairly simple man-made concept learning prob-
lems (a 3x3 checkerboard, and a 2 intertwined spirals) as well
as a “real-life” problem predicting diabetes in the Pima In-
dian tribe [2]. We seek to find out if the evolvability of our
operator is actually higher, if it is effective at reducing bloat,
and if we must sacrifice the solution quality to achieve this.
Assuming we are successful this may demonstrate a general
approach to reducing bloat by customizing the reproductive
operators.

3. RESULTS
For all problems, experiments were performed that com-

pared the new feature space crossover with the more stan-
dard Pitt approach uniform crossover. The results showed
that the new crossover did a better job of controlling bloat
in all cases, reducing the number of rules by a statistically
significant amount. Figure 1 shows just the results for the
two-spiral problem with 70 initial rules. Similar plots for
the other problems were all qualitatively similar. In no case
was the fitness statistically different (within 95% confidence)
when compared to runs using the standard crossover.

4. CONCLUSIONS
In our experiments the feature space crossover operator

has been successful at reducing bloat, especially when com-
pared to the Pitt uniform crossover operator. Other re-
sults indicate that the Pitt 1 and 2-point crossover operators
cause even more bloat than the uniform, which is why they
we not included in this study.

With this operator we have the opportunity to test our hy-
pothesis that operators with high evolvability tend to cause
less bloat. We have chosen to measure evolvability using the
approach described by Manderick et. al. [4] called operator
fitness correlation.

Figure 2 shows the operator correlations of both crossover
operators averaged over the runs of the checkerboard prob-
lem with 9 initial rules. The Pitt uniform crossover gradu-
ally decreases to almost zero over the course of the run, while
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Figure 2: Correlation between parent and offspring

fitness for the checkers problem with 9 initial rules.

the feature space crossover is able to maintain a steady level
throughout the run. This pattern is consistent for every
experiment we have discussed here.
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