Schema Refinement & Normalization Theory 5

Week 13 - 1
Third Normal Form: Motivation

• There are some situations where
 – BCNF is not dependency preserving, and
 – efficient checking for FD violation on updates is important

• Solution: define a weaker normal form, called Third Normal Form (3NF)
 – Allows some redundancy (with resultant problems; we will see examples later)
 – But functional dependencies can be checked on individual relations without computing a join.
 – There is always a lossless-join, dependency-preserving decomposition into 3NF.
Third Normal Form (3NF)

- If R is in BCNF, obviously in 3NF.
- If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no “good” decomposition, or performance considerations).
 - Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.
3NF

• Relation R with FDs F is in 3NF if, for each FD $X \rightarrow A$ ($X \in R$ and $A \in R$) in F, one of the following statements is true:

 – $A \in X$ (trivial FD), or
 – X is a superkey, or
 – A is part of some key for R

\[\text{If one of these two is satisfied for ALL FDs, then}\]
\[\text{R is in BCNF}\]

\[\text{Not just superkey! (why not?)}\]
What Does 3NF Achieve?

• If 3NF is violated by $X \rightarrow A$, one of the following holds:
 – X is a subset of some key K (partial redundancy)
 • We store (X, A) pairs redundantly.
 – X is not a proper subset of any key.
 • There is a chain of FDs $K \rightarrow X \rightarrow A$, which means that we cannot associate an X value with a K value unless we also associate an A value with an X value.

• But: even if reln is in 3NF, these problems could arise.
 – e.g., Reserves SBDC (sid, bid, date, credit_card). Keys are SBD, CBD. FD = \{S → C, C → S\}. R is in 3NF, but for each reservation of sailor S, same (S, C) pair is stored.

• Thus, 3NF is indeed a compromise relative to BCNF.
Decomposition into 3NF

• Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a lossless join decomp into 3NF (typically, can stop earlier).

• To ensure dependency preservation, one idea:
 – If $X \rightarrow Y$ is not preserved, add relation XY.
 – Problem is that XY may violate 3NF!

• Refinement: Instead of the given set of FDs F, use a *minimal cover for F*.
Minimal Cover for a Set of FDs

• **Minimal cover** G for a set of FDs F:
 - Closure of $F = \text{closure of } G$.
 - Right hand side of each FD in G is a single attribute.
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.

• Intuitively, every FD in G is needed, and “as small as possible” in order to get the same closure as F.
Obtaining Minimal Cover

• Step 1: Put the FDs in a standard form (i.e. right-hand side should contain only single attribute)
• Step 2: Minimize the left side of each FD
• Step 3: Delete redundant FDs
• Find minimal cover for $F = \{ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow AD, E \rightarrow L, BH \rightarrow E\}$
• Step 1: Make RHS of each FD into a single attribute:

\[F = \{ABH \rightarrow C, ABH \rightarrow K, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow A, L \rightarrow D, E \rightarrow L, BH \rightarrow E\} \]
\[F = \{ABH \rightarrow C, ABH \rightarrow K, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow A, L \rightarrow D, E \rightarrow L, BH \rightarrow E\} \]

- **Step 2: Eliminate redundant attributes from LHS, e.g. Can an attribute be deleted from \(ABH \rightarrow C \)?**
 - Compute \((AB)^+, (BH)^+, (AH)^+\) and see if any of them contains \(C \). (Why?)
 - \((AB)^+ = ABD, (BH)^+ = ABCDEHKL, (AH)^+ = ADH\). Since \(C \in (BH)^+\), \(BH \rightarrow C \) is entailed by \(F \). So \(A \) is redundant in \(ABH \rightarrow C \). Similarly, \(A \) is also redundant in \(ABH \rightarrow K \). Check further to see if \(B \) or \(H \) is redundant as well.

 - Similarly, for \(BGH \rightarrow L \), \(G \) is redundant since \(L \in (BH)^+\).

 - \(F = \{BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, BH \rightarrow L, L \rightarrow A, L \rightarrow D, E \rightarrow L, BH \rightarrow E\} \)
• \(F = \{ \text{BH} \rightarrow \text{C}, \text{BH} \rightarrow \text{K}, \text{A} \rightarrow \text{D}, \text{C} \rightarrow \text{E}, \text{BH} \rightarrow \text{L}, \text{L} \rightarrow \text{A}, \text{L} \rightarrow \text{D}, \text{E} \rightarrow \text{L}, \text{BH} \rightarrow \text{E} \} \)

• Step 3: Delete redundant FDs from \(F \).
 - If \(F - \{ f \} \) infers \(f \), then \(f \) is redundant, i.e. if \(f \) is \(X \rightarrow \text{A} \), then check if \(X^+ \) using \(F - f \) still contains \(\text{A} \). If it does, then it means \(X \rightarrow \text{A} \) can be inferred by other FDs.
 - E.g. For \(\text{BH} \rightarrow \text{L} \), \((\text{BH})^+ \) (not using \(\text{BH} \rightarrow \text{L} \)) = \text{ACDEKL}, which contains \(\text{L} \). This means \(\text{BH} \rightarrow \text{L} \) can be inferred by other FDs, so it’s a redundant FD.
 - In fact, \(\text{BH} \rightarrow \text{L} \) can be inferred by \(\text{BH} \rightarrow \text{E}, \text{E} \rightarrow \text{L} \).
 - Check other FDs using the same algorithm.

• Note: the order of Step 2 and Step 3 should not be exchanged.
What to do with Minimal Cover?

• After obtaining the minimal cover, for each FD $X \rightarrow A$ in the minimal cover that is not preserved, create a table consisting of XA (so we can check dependency in this new table, i.e. dependency is preserved).

• Why does this new table is guaranteed to be in 3NF (whereas if we created the new table from F, it might not?)
 – Since $X \rightarrow A$ is in the minimal cover, $Y \rightarrow A$ does not hold for any Y that is a strict subset of X.
 • So X is a key for XA (satisfies condition #2)
 • If any other dependencies hold over XA, the right side can involve only attributes in X because A is a single attribute (satisfies condition #3).
Comparison of BCNF and 3NF

• It is always possible to decompose a relation into a set of relations that are in 3NF such that:
 – the decomposition is lossless
 – the dependencies are preserved

• It is always possible to decompose a relation into a set of relations that are in BCNF such that:
 – the decomposition is lossless
 – it may not be possible to preserve dependencies.
Normalization Review

- Identify all FD’s in F^+
- Identify candidate keys
- Identify (strongest, or specific) normal forms
 - BCNF, 3NF
- Schema decomposition
 - When to decompose
 - How to check if a decomposition is lossless-join and/or dependency preserving
 - Use projection of F^+ to check for dependency preservation
 - Decompose into:
 - Lossless-join
 - Dependency preserving
 - Use minimal cover
Normalization Theory - Practice Questions
Example

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FDs with A as the left side:</th>
<th>Satisfied by the relation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A→A</td>
<td>Yes (trivial FD)</td>
</tr>
<tr>
<td>A→B</td>
<td>Yes</td>
</tr>
<tr>
<td>A→C</td>
<td>No: tuples 1&2</td>
</tr>
<tr>
<td>AB →A</td>
<td>Yes (trivial FD)</td>
</tr>
<tr>
<td>AC →B</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Example

Let $F=\{ A \rightarrow BC, B \rightarrow C \}$. Is $C \rightarrow AB$ in F^+?

Answer: No. Either of the following 2 reasons is ok:

Reason 1) $C^+=C$, and does not include AB.

Reason 2) We can find a relation instance such that it satisfies F but does not satisfy $C \rightarrow AB$.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
List all the non-trivial FDs in F^+

- Given $F = \{ A \rightarrow B, B \rightarrow C \}$. Compute F^+ (with attributes A, B, C).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>AB</th>
<th>AC</th>
<th>BC</th>
<th>ABC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td></td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>AC</td>
<td>√</td>
<td></td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Attribute closure:

- $A^+ = ABC$
- $B^+ = BC$
- $C^+ = C$
- $AB^+ = ABC$
- $AC^+ = ABC$
- $BC^+ = BC$
- $ABC^+ = ABC$
Example

- Given $F=\{ A \rightarrow B, B \rightarrow C \}$. Find a relation that satisfies F:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

- Given $F=\{ A \rightarrow B, B \rightarrow C \}$. Find a relation that satisfies F but does not satisfy $B \rightarrow A$. Well, the above example suffices.

- Can you find an instance that satisfies F but not $A \rightarrow C$? No. Because $A \rightarrow C$ is in F^+
Examples

R(A, B, C, D, E),
F = {A → B, C → D}

Candidate key: ACE. How do we know?

Intuitively,
- B cannot be in a candidate key.
- A is not determined by any other attributes (like E), and A has to be in a candidate key (because a candidate key has to determine all the attributes).
- Now if A is in a candidate key, B cannot be in the same candidate key, since we can drop B from the candidate without losing the property of being a “key”.
- Same reasoning apply to others attributes.
Example

$R(A, B, C, D, E)$,
$F = \{A \rightarrow B, C \rightarrow D\}$ [Same as previous]

Which normal form?

Not in BCNF. This is the case where all attributes in the FDs appear in R. We consider A, and C to see if either is a superkey of not. Obviously, neither A nor C is a superkey, and hence R is not in BCNF. More precisely, we have $A \rightarrow B$ is in F^+ and non-trivial, but A is not a superkey of R.
Example

R(A, B, C, D, E)
F = \{A \rightarrow B, C \rightarrow D\} [Same as previous]

Which normal form?

We already know that it’s not in BCNF. Not in 3NF either. We have A \rightarrow B is in F^+ and non-trivial, but A is not a superkey of R. Furthermore, B is not in any candidate key (since the only candidate key is ACE).
Example

• $R(A,B,F)$, $F = \{AC \to E, B \to F\}$.
• Candidate key? AB
• BCNF? No, because of $B \to F$ (B is not a superkey).
• 3NF? No, because of $B \to F$ (F is not part of a candidate key).
Example

- $R(D, C, H, G)$, $F = \{ A \rightarrow I, I \rightarrow A \}$
- Candidate key? DCHG
- BCNF? Yes
- 3NF? Yes
Example

- $R(A, B, C, D, E, G, H)$
 $F = \{AB \rightarrow C, AC \rightarrow B, B \rightarrow D, BC \rightarrow A, E \rightarrow G\}$

- Candidate keys?
 - H has to be in all candidate keys
 - E has to be in all candidate keys
 - G cannot be in any candidate key (since E is in all candidate keys already).
 - Since $AB \rightarrow C, AC \rightarrow B$ and $BC \rightarrow A$, we know no candidate key can have ABC together.
 - AEH, BEH, CEH are not superkeys.
 - Try $ABEH, ACEH, BCEH$. They are all superkeys. And we know they are all candidate keys (since above properties)
 - These are the only candidate keys: (1) each candidate key either contains A, or B, or C since no attributes other than A, B, C determine A, B, C, and (2) if a candidate key contains A, then it must contain either B, or C, and so on.
Example

- Same as previous
- Not in BCNF, not in 3NF
- Decomposition:

R(A, B, C, D, E, G, H)
F={AB → C, AC → B, B → D, BC → A, E → G}
Example

• $R(A, B, C, D, E, G, H)$

 $F = \{ AB \rightarrow C, AC \rightarrow B, B \rightarrow D, BC \rightarrow A, E \rightarrow G \}$

• Decomposition: BD, ABC, EG, ABEH

• Why good decomposition?
 – They are all in BCNF
 – Lossless-join decomposition
 – All dependencies are preserved.
Example

• R(A, B, D, E) decomposed into R1(A, B, D), R2 (A, B, E)
• F={AB → DE}
• It is a dependency preserving decomposition!
 – AB → D can be checked in R1
 – AB → E can be checked in R2
 – {AB → DE} is equivalent to {AB → D, AB → E}