Relational Algebra 1

Week 3 - 2
Relational Query Languages

• *Query languages*: Allow manipulation and retrieval of data from a database.

• Relational model supports simple, powerful QLs:
 – Strong formal foundation based on logic.
 – Allows for much optimization.

• Query Languages != programming languages!
 – QLs not expected to be “Turing complete”.
 – QLs not intended to be used for complex calculations.
 – QLs support easy, efficient access to large data sets.
Formal Relational Query Languages

Two mathematical Query Languages form the basis for “real” languages (e.g. SQL), and for implementation:

1. **Relational Algebra**: More operational, very useful for representing execution plans.

2. **Relational Calculus**: Lets users describe what they want, rather than how to compute it. (Non-operational, *declarative*.)

❗️ Understanding Algebra is key to understanding SQL, and query processing!
The Role of Relational Algebra in a DBMS

SQL Query

Parser

Relational Algebra Expression

Query Optimizer

Query Execution Plan

Code Generator

Executable Code
Algebra Preliminaries

• A query is applied to *relation instances*, and the result of a query is also a relation instance.
 – *Schemas* of input relations for a query are *fixed* (but query will run regardless of instance!)
 – The *schema for the result* of a given query is also *fixed*! Determined by definition of query language constructs.
Relational Algebra

- Procedural language
- Five basic operators
 - selection
 - projection
 - union
 - set difference
 - Cross product
- SQL is closely based on relational algebra.

- The are some other operators which are composed of the above operators. These show up so often that we give them special names.
- The operators take one or two relations as inputs and give a new relation as a result.
Select Operation – Example

• Relation r

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>α</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>β</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>12</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>23</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Intuition: The select operation allows us to retrieve some rows of a relation (by “some” I mean anywhere from none of them to all of them)

Here I have retrieved all the rows of the relation r where the value in field A equals the value in field B, and the value in field D is greater than 5.
Select Operation

• Notation: \(\sigma_p(r) \)

• \(p \) is called the selection predicate

• Defined as:

\[
\sigma_p(r) = \{ t \mid t \in r \text{ and } p(t) \}
\]

Where \(p \) is a formula in propositional calculus consisting of terms connected by: \(\land \) (and), \(\lor \) (or), \(\neg \) (not)

Each term is one of:

\(<\text{attribute}> \ op \ <\text{attribute}> \text{ or } <\text{constant}>\)

where \(op \) is one of: \(=, \neq, >, \geq, <, \leq \)

• Example of selection:

\(\sigma_{\text{name}=\text{‘Lee’}}(\text{professor}) \)
Project Operation – Example I

- Relation r:

- $\pi_{A,C}(r)$

Intuition: The **project** operation allows us to retrieve some columns of a relation (by “some” I mean anywhere from none of them to all of them)

Here I have retrieved columns A and C.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>10</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>α</td>
<td>20</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>β</td>
<td>30</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>β</td>
<td>40</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Greek lower-case pi
Project Operation – Example II

• Relation r:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>20</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>30</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>40</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Intuition: The project operation removes duplicate rows, since relations are sets.

• $\pi_{A,C}(r)$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

=

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Here there are two rows with $A = \alpha$ and $C = 1$. So one was discarded.
Project Operation

• Notation:

$$\pi_{A_1, A_2, \ldots, A_k}(r)$$

where A_1, A_2 are attribute names and r is a relation name.

• The result is defined as the relation of k columns obtained by erasing the columns that are not listed.

• Duplicate rows removed from result, since relations are sets.
Union Operation – Example

Relations r, s:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>α</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>α</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>α</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>3</td>
</tr>
</tbody>
</table>

Intuition: The union operation concatenates two relations, and removes duplicate rows (since relations are sets).

Here there are two rows with $A = \alpha$ and $B = 2$. So one was discarded.
Union Operation

- Notation: \(r \cup s \)
- Defined as:

\[
r \cup s = \{ t | t \in r \text{ or } t \in s \}\]

For \(r \cup s \) to be valid:

1. \(r, s \) must have the same arity (same number of attributes)
2. The attribute domains must be compatible (e.g., 2nd column of \(r \) deals with the same type of values as does the 2nd column of \(s \)).

Although the field types must be the same, the names can be different. For example I can union professor and lecturer where:

\[
\begin{align*}
\text{professor}(\text{PID} & : \text{string}, \text{name} : \text{string}) \\
\text{lecturer}(\text{LID} & : \text{string}, \text{first_name} : \text{string})
\end{align*}
\]
Related Operation: Intersection

Relations \(r, s:\)

\[
\begin{array}{cc}
A & B \\
\alpha & 1 \\
\alpha & 2 \\
\beta & 1 \\
\end{array}
\]

\(r \)

\[
\begin{array}{cc}
A & B \\
\alpha & 2 \\
\beta & 3 \\
\end{array}
\]

\(s \)

\[r \cap s: \]

\[
\begin{array}{cc}
A & B \\
\alpha & 2 \\
\end{array}
\]

- Similar to Union operation.
- But Intersection is NOT one of the five basic operations.
- **Intuition**: The *intersection* operation computes the common rows between two relations.
Set Difference Operation – Example

Relations r, s:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1</td>
</tr>
<tr>
<td>α</td>
<td>2</td>
</tr>
<tr>
<td>β</td>
<td>1</td>
</tr>
</tbody>
</table>

Intuition: The set difference operation returns all the rows that are in r but not in s.

$r - s$:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1</td>
</tr>
<tr>
<td>β</td>
<td>1</td>
</tr>
</tbody>
</table>
Set Difference Operation

• Notation $r - s$
• Defined as:
 $$r - s = \{ t \mid t \in r \text{ and } t \notin s \}$$
• Set differences must be taken between compatible relations.
 “Union-compatible”
 – r and s must have the same arity
 – attribute domains of r and s must be compatible
• Note that in general $r - s \neq s - r$