Schema Refinement & Normalization Theory

Functional Dependencies

Week 14
Decomposition into BCNF

• Recall that for $X \rightarrow A$ in F over R to satisfy BCNF requirement, one of the followings must be true:
 – XA are not all in R, or
 – $X \rightarrow A$ is trivial, i.e. A is in X, or
 – X is a superkey, i.e. $X \rightarrow R$ is in F^+

• Consider relation R with FDs F. If $X \rightarrow A$ in F over R violates BCNF, i.e.,
 – XA are all in R, and
 – A is not in X, and
 – $X \rightarrow R$ is not in F^+
 $→$ non-trivial FD
 $→$ X is not a superkey
Decomposition into BCNF

• Consider relation \(R \) with FDs \(F \). If \(X \rightarrow A \) in \(F \) over \(R \) violates BCNF, i.e.,
 – \(XA \) are all in \(R \), and
 – \(A \) is not in \(X \), and
 – \(X \rightarrow R \) is not in \(F^+ \) → non-trivial FD → \(X \) is not a (super)key

• Then: decompose \(R \) into \(R - A \) and \(XA \).
• Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.
BCNF Decomposition Example

• \(R = (A, B, C) \)
 \[F = \{A \rightarrow B; B \rightarrow C\} \]
 Key = \{A\}

• \(R \) is not in BCNF (\(B \rightarrow C \) but \(B \) is not a superkey)

• Decomposition
 – \(R_1 = (B, C) \)
 – \(R_2 = (A, B) \)
BCNF Decomposition Example 2

• Assume relation schema CSJDPQV:
 Contracts(contract_id, supplier, project, dept, part, qty, value)*

 - key C, JP → C, SD → P, J → S
• To deal with SD → P, decompose into SDP, CSJDQV.
• To deal with J → S, decompose CSJDQV into JS and CJDQV
• A tree representation of the decomposition:

```
      CSJDPQV
     /    \      
    SDP    CSJDQV
  /        /      
 JS  CJDQV  
```

Using SD → P
Using J → S
BCNF Decomposition

- In general, several dependencies may cause violation of BCNF. The order in which we “deal with” them could lead to very different sets of relations!
How do we know R is in BCNF?

• If R has only two attributes, then it is in BCNF

• If F only uses attributes in R, then:
 – R is in BCNF if and only if for each $X \rightarrow Y$ in F (not F^+!), X is a superkey of R, i.e., $X \rightarrow R$ is in F^+ (not F!).
Checking for BCNF Violations

- List all non-trivial FDs
- Ensure that left hand side of each FD is a superkey
- We have to first find all the keys!
Checking for BCNF Violations

- Is Courses(course_num, dept_name, course_name, classroom, enrollment, student_name, address) in BCNF?
- FDs are:
 - course_num, dept_name → course_name
 - course_num, dept_name → classroom
 - course_num, dept_name → enrollment
- What is (course_num, dept_name)+?
 - {course_num, dept_name, course_name, classroom, enrollment}
- Therefore, the key is
 {course_num, dept_name, course_name, classroom, enrollment, student_name, address}
- The relation is not in BCNF
BCNF and Dependency Preservation

• In general, there may not be a dependency preserving decomposition into BCNF.
• Example: schema CSZ (city, street_name, zip_code) with FDs: CS → Z, Z → C

 (city, street_name) → zip_code

 zip_code → city

• Can’t decompose while *preserving* CS → Z, but CSZ is not in BCNF.
Example Regarding Dependency Preservation

- \(R = (A, B, C) \)
 \[F = \{ A \rightarrow B, B \rightarrow C \} \]
 - Can be decomposed in two different ways
- \(R_1 = (A, B), \ R_2 = (B, C) \)
 - Lossless-join decomposition:
 \[R_1 \cap R_2 = \{ B \} \text{ and } B \rightarrow BC \]
 - Dependency preserving
- \(R_1 = (A, B), \ R_2 = (A, C) \)
 - Lossless-join decomposition:
 \[R_1 \cap R_2 = \{ A \} \text{ and } A \rightarrow AB \]
 - Not dependency preserving
 (cannot check \(B \rightarrow C \) without computing \(R_1 \bowtie R_2 \))
Dependency Preserving Decomposition

- Consider CSJDPQV, C is key, JP → C and SD → P.
 - BCNF decomposition: CSJDPQV and SDP
 - Problem: Checking JP → C requires a join!

- **Dependency preserving decomposition** (Intuitive):
 - If R is decomposed into X, Y and Z, and we enforce the FDs that hold on X, on Y and on Z, then all FDs that were given to hold on R must also hold. (*Avoids Problem (3)*)
What FD on a decomposition?

• **Projection of set of FDs F**: If R is decomposed into X, ... the projection of F onto X (denoted F_X) is the set of FDs $U \rightarrow V$ in F^+ (closure of F) such that U, V are in X.
Dependency Preserving Decompositions (Contd.)

- Decomposition of R into X and Y is dependency preserving if $(F_X \cup F_Y)^+ = F^+$
 - i.e., if we consider only dependencies in the closure F^+ that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in F^+.

- Important to consider F^+, not F, in this definition:
 - ABC, $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow A$, decomposed into AB and BC.
 - Is this dependency preserving? Is $C \rightarrow A$ preserved????

- Dependency preserving does not imply lossless join:
 - ABC, $A \rightarrow B$, decomposed into AB and BC.

- And vice-versa!
Another example

• Assume CSJDPQV is decomposed into
 SDP, JS, CJDQV
 It is not dependency preserving
 w.r.t. the FDs: JP → C, SD → P and J → S.
• However, it is a lossless join decomposition.
• In this case, adding JPC to the collection of relations gives
 us a dependency preserving decomposition.
• JPC tuples stored only for checking FD!
Summary of BCNF

• If a relation is in BCNF, it is free of redundancies that can be detected using FDs. Thus, trying to ensure that all relations are in BCNF is a good heuristic.

• If a relation is not in BCNF, we can try to decompose it into a collection of BCNF relations.
 – It is always possible to decompose a relation into a set of relations that are in BCNF such that:
 • the decomposition is lossless
 • it may not be possible to preserve dependencies.
Next: Third Normal Form

• There are some situations where
 – BCNF is not dependency preserving, and
 – efficient checking for FD violation on updates is important

• Solution: define a weaker normal form, called Third Normal Form (3NF)
 – Allows some redundancy (with resultant problems; we will see examples later)
 – But functional dependencies can be checked on individual relations without computing a join.
 – There is always a lossless-join, dependency-preserving decomposition into 3NF.
Third Normal Form (3NF)

• If R is in BCNF, obviously in 3NF.
• If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no “good” decomposition, or performance considerations).
 – Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.
3NF

- Relation R with FDs F is in 3NF if, for each FD $X \rightarrow A$ ($X \in R$ and $A \in R$) in F, one of the following statements is true:
 - $A \in X$ (trivial FD), or
 - X is a superkey, or
 - A is part of some key for R

Not just superkey! (why not?)

If one of these two is satisfied for ALL FDs, then R is in BCNF
What Does 3NF Achieve?

• If 3NF is violated by $X \rightarrow A$, one of the following holds:
 - X is a subset of some key K (partial redundancy)
 • We store (X, A) pairs redundantly.
 - X is not a proper subset of any key.
 • There is a chain of FDs $K \rightarrow X \rightarrow A$, which means that we cannot associate an X value with a K value unless we also associate an A value with an X value.

• **But:** even if reln is in 3NF, these problems could arise.
 - e.g., Reserves SBDC (sid, bid, date, credit_card). Keys are SBD, CBD. FD = \{$S \rightarrow C$, $C \rightarrow S$\}. R is in 3NF, but for each reservation of sailor S, same (S, C) pair is stored.

• Thus, 3NF is indeed a compromise relative to BCNF.
Decomposition into 3NF

• Obviously, the algorithm for lossless join decom into BCNF can be used to obtain a lossless join decom into 3NF (typically, can stop earlier).

• To ensure dependency preservation, one idea:
 – If $X \rightarrow Y$ is not preserved, add relation XY.
 – Problem is that XY may violate 3NF!

• Refinement: Instead of the given set of FDs F, use a \textit{minimal cover for F}.
Minimal Cover for a Set of FDs

- **Minimal cover** G for a set of FDs F:
 - Closure of $F = \text{closure of } G$.
 - Right hand side of each FD in G is a single attribute.
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.

- Intuitively, every FD in G is needed, and “as small as possible” in order to get the same closure as F.
Obtaining Minimal Cover

• Step 1: Put the FDs in a standard form (i.e. right-hand side should contain only single attribute)
• Step 2: Minimize the left side of each FD
• Step 3: Delete redundant FDs
• Find minimal cover for $F = \{ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow AD, E \rightarrow L, BH \rightarrow E\}$
• Step 1: Make RHS of each FD into a single attribute:

\[F = \{ ABH \rightarrow C, ABH \rightarrow K, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow A, L \rightarrow D, E \rightarrow L, BH \rightarrow E \} \]
• \(F = \{ABH \rightarrow C, ABH \rightarrow K, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow A, L \rightarrow D, E \rightarrow L, BH \rightarrow E\} \)

• **Step 2: Eliminate redundant attributes from LHS, e.g. Can an attribute be deleted from \(ABH \rightarrow C \)?**
 - Compute \((AB)^+, (BH)^+, (AH)^+\) and see if any of them contains \(C \). (Why?)

 - \((AB)^+ = ABD, (BH)^+ = ABCDEHKL, (AH)^+ = ADH\). Since \(C \in (BH)^+ \), \(BH \rightarrow C \) is entailed by \(F \). So \(A \) is redundant in \(ABH \rightarrow C \). Similarly, \(A \) is also redundant in \(ABH \rightarrow K \). Check further to see if \(B \) or \(H \) is redundant as well.

 - Similarly, for \(BGH \rightarrow L \), \(G \) is redundant since \(L \in (BH)^+ \).

 - \(F = \{BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, BH \rightarrow L, L \rightarrow A, L \rightarrow D, E \rightarrow L, BH \rightarrow E\} \)
• $F = \{\text{BH} \rightarrow \text{C}, \text{BH} \rightarrow \text{K}, \text{A} \rightarrow \text{D}, \text{C} \rightarrow \text{E}, \text{BH} \rightarrow \text{L}, \text{L} \rightarrow \text{A}, \text{L} \rightarrow \text{D}, \text{E} \rightarrow \text{L}, \text{BH} \rightarrow \text{E}\}$

• **Step 3: Delete redundant FDs from F.**

 – If $F - \{f\}$ infers f, then f is redundant, i.e. if f is $X \rightarrow A$, then check if X^+ using $F - f$ still contains A. If it does, then it means $X \rightarrow A$ can be inferred by other FDs.
 – E.g. For $\text{BH} \rightarrow \text{L}$, $(\text{BH})^+$ (not using $\text{BH} \rightarrow \text{L}$) = ACDEKL, which contains L. This means $\text{BH} \rightarrow \text{L}$ can be inferred by other FDs, so it’s a redundant FD.
 – In fact, $\text{BH} \rightarrow \text{L}$ can be inferred by $\text{BH} \rightarrow \text{E}$, $\text{E} \rightarrow \text{L}$.
 – Check other FDs using the same algorithm.

• **Note:** The order of Step 2 and Step 3 should not be exchanged.
What to do with Minimal Cover?

• After obtaining the minimal cover, for each FD $X \rightarrow A$ in the minimal cover that is not preserved, create a table consisting of XA (so we can check dependency in this new table, i.e. dependency is preserved).

• Why is this new table guaranteed to be in 3NF (whereas if we created the new table from F, it might not?)
 – Since $X \rightarrow A$ is in the minimal cover, $Y \rightarrow A$ does not hold for any Y that is a strict subset of X.
 • So X is a key for XA (satisfies condition #2)
 • If any other dependencies hold over XA, the right side can involve only attributes in X because A is a single attribute (satisfies condition #3).
Comparison of BCNF and 3NF

• It is always possible to decompose a relation into a set of relations that are in 3NF such that:
 – the decomposition is lossless
 – the dependencies are preserved

• It is always possible to decompose a relation into a set of relations that are in BCNF such that:
 – the decomposition is lossless
 – it may not be possible to preserve dependencies.
Normalization Review

- Identify all FD's in F^+
- Identify candidate keys
- Identify (strongest, or specific) normal forms
 - BCNF, 3NF
- Schema decomposition
 - When to decompose
 - How to check if a decomposition is lossless-join and/or dependency preserving
 - Use projection of F^+ to check for dependency preservation
 - Decompose into:
 - Lossless-join
 - Dependency preserving
 - Use minimal cover
Normalization Theory - Practice Questions
Example

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FDs with A as the left side:</th>
<th>Satisfied by the relation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow A$</td>
<td>Yes (trivial FD)</td>
</tr>
<tr>
<td>$A \rightarrow B$</td>
<td>Yes</td>
</tr>
<tr>
<td>$A \rightarrow C$</td>
<td>No: tuples 1&2</td>
</tr>
<tr>
<td>$AB \rightarrow A$</td>
<td>Yes (trivial FD)</td>
</tr>
<tr>
<td>$AC \rightarrow B$</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Example

Let $F = \{ A \rightarrow BC, B \rightarrow C \}$. Is $C \rightarrow AB$ in F^+?

Answer: No. Either of the following 2 reasons is ok:

Reason 1) $C^+ = C$, and does not include AB.

Reason 2) We can find a relation instance such that it satisfies F but does not satisfy $C \rightarrow AB$.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
List all the **non-trivial** FDs in F^+

- Given $F=\{A \rightarrow B, B \rightarrow C\}$. Compute F^+ (with attributes A, B, C).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>AB</th>
<th>AC</th>
<th>BC</th>
<th>ABC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>B</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Attribute closure

- $A^+=ABC$
- $B^+=BC$
- $C^+=C$
- $AB^+=ABC$
- $AC^+=ABC$
- $BC^+=BC$
- $ABC^+=ABC$
Example

• Given $F=\{ A \rightarrow B, B \rightarrow C \}$. Find a relation that satisfies F:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

• Given $F=\{ A \rightarrow B, B \rightarrow C \}$. Find a relation that satisfies F but does not satisfy $B \rightarrow A$. Well, the above example suffices.

• Can you find an instance that satisfies F but not $A \rightarrow C$? No. Because $A \rightarrow C$ is in F^+.
Examples

R(A, B, C, D, E),
F = \{A \rightarrow B, C \rightarrow D\}

Candidate key: ACE. How do we know?

Intuitively,
- A is not determined by any other attributes (like E),
 and A has to be in a candidate key (because a candidate key has to determine all the attributes).
- Now if A is in a candidate key, B cannot be in the same candidate key, since we can drop B from the candidate without losing the property of being a “key”.
- So B cannot be in a candidate key
- Same reasoning apply to others attributes.
Example

R(A, B, C, D, E),
F = \{A \rightarrow B, C \rightarrow D\} [Same as previous]

Which normal form?

Not in BCNF. This is the case where all attributes in the FDs appear in R. We consider A, and C to see if either is a superkey of not. Obviously, neither A nor C is a superkey, and hence R is not in BCNF. More precisely, we have A \rightarrow B is in F^{+} and non-trivial, but A is not a superkey of R.
Example

R(A, B, C, D, E)
F = \{A \rightarrow B, C \rightarrow D\} [Same as previous]

Which normal form?

We already know that it’s not in BCNF.
Not in 3NF either. We have A \rightarrow B is in F^+ and non-trivial, but A is not a superkey of R. Furthermore, B is not in any candidate key (since the only candidate key is ACE).
Example

- $R(A,B,F)$, $F = \{AC \rightarrow E, B \rightarrow F\}$.
- Candidate key? AB
- BCNF? No, because of $B \rightarrow F$ (B is not a superkey).
- 3NF? No, because of $B \rightarrow F$ (F is not part of a candidate key).
Example

- $R(\text{D, C, H, G})$, $F = \{A \rightarrow I, I \rightarrow A\}$
- Candidate key? DCHG
- BCNF? Yes
- 3NF? Yes
Example

- \(R(A, B, C, D, E, G, H) \)
 \[F = \{AB \rightarrow C, AC \rightarrow B, B \rightarrow D, BC \rightarrow A, E \rightarrow G\} \]

- Candidate keys?
 - H has to be in all candidate keys
 - E has to be in all candidate keys
 - G cannot be in any candidate key (since E is in all candidate keys already).
 - Since \(AB \rightarrow C, AC \rightarrow B \) and \(BC \rightarrow A \), we know no candidate key can have ABC together.
 - AEH, BEH, CEH are not superkeys.
 - Try ABEH, ACEH, BCEH. They are all superkeys. And we know they are all candidate keys (since above properties)
 - These are the only candidate keys: (1) each candidate key either contains A, or B, or C since no attributes other than A, B, C determine A, B, C, and (2) if a candidate key contains A, then it must contain either B, or C, and so on.
Example

- Same as previous
- Not in BCNF, not in 3NF
- Decomposition:

R(A, B, C, D, E, G, H)
F={AB → C, AC → B, B → D, BC → A, E → G}
Example

- $R(A, B, C, D, E, G, H)$

 $F = \{AB \rightarrow C, AC \rightarrow B, B \rightarrow D, BC \rightarrow A, E \rightarrow G\}$

- Decomposition: BD, ABC, EG, ABEH

- Why good decomposition?
 - They are all in BCNF
 - Lossless-join decomposition
 - How do you know this if you don’t know how R was decomposed?
 - All dependencies are preserved.
Example

• R(A, B, D, E) decomposed into R1(A, B, D), R2(A, B, E)
• F={AB → DE}
• It is a dependency preserving decomposition!
 – AB → D can be checked in R1
 – AB → E can be checked in R2
 – {AB → DE} is equivalent to {AB → D, AB → E}