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1. Introduction

Artificia intelligence has provided a rich set of concepts for design researchers to
work with. It has extended and considerably elaborated ideasfrom the design meth-
ods movement and from systems theory. There are three views that can be taken
about artificia intelligence in design. The first is that it provides a framework in
whichto exploreideas about design; the secondisthat it providesaschemato model
human designing; and the third isthat it has the means to allow the development of
tools for human designers. An extension of the third view isthat these tools point
to waysto automate certain processesin design.

Oneof thefundamental conceptsof artificial intelligencewhichfindsfavour with
designresearchersisthe externalisation of knowledge. Thishasled to thetwo major
research concerns:

representation of design knowledge; and
processes for designing

2. Representation of design knowledge

The three main symbolic knowledge representation approaches of rules, semantic
networks and frames were soon augmented by a sub-symbolic approach based on
neural networks. Thesefour still remai n thebase knowl edge representati on approaches.
However, meta-symbolic or conceptual approacheswhich could beimplementedin
these base approaches soon began to be devel oped. These approaches aimed to rep-
resent important conceptual rel ationshipswhich made up design knowledge (Coyne
et a., 1990).

Orthogonal to these issuesisthat of compiled or generalised design knowledge
versus case or episodic design knowledge. In compiled knowledge a set of design
cases is generalised so that an abstraction of their characteristicsis produced. The
generalised knowledge can be instantiated for use in producing designswhich are
similar to the original set of designs. Episodic design knowledge keeps individual
design cases separately without generalising them.

* This chapter is based in part on a presentation made to Europl A'91.
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3. Processesfor designing

Artificial intelligencebrought with it alarge number of processesapplicableto prob-
lem solving tasks. If design could be cast as some sort of problem solving task then
it could use the array of available processes. Most prominent amongst these pro-
cesses are rule chaining, constraint-based processing and planning. Each has been
used by design researchers to model design processes (Coyne et al., 1990).

Rule chaining formsthe basis of many expert systems. The expert systemstech-
nology readily lendsitself to avariety of design related tasks and continuesto be ex-
plored. However, there is arecognition that the synthesisactivity in designis more
akinto abductioninlogicthanitisto deductionwhereas rule chaining is more akin
to deduction. Backward chaining, it is suggested, matches abduction. Thisislikely
to be so only if the knowledge encoded in the rulesis represented abductively.

Constraint-based processes lend themselves readily as design processes since
designing involves formulating regquirements. These requirements may be treated
aseither objectivesor goal swhich point to the directionsof improving performance
or behaviour or as constraints which restrict the values of the variables. However,
the underlying assumptions behind most of the processes are not necessarily in ac-
cord with those in design. For example, constraint-based systems assume a fixed
world in which to operate whereas part of designing involves changing the world.

Planning isan attractive concept drawn from artificial intelligenceand isrelated
to constraint propagation. Its success relies on the existence of fixed but divisible
goals. Although each of these processes may be used within designing, noneof them
characterises design itself as a process. Design is seen as being more complex than
any or al of these.

4. Routine and non-routine design

It is convenient to characterise design as routine or non-routine. Routinedesign, in
computational terms, can be defined as that design activity which occurs when all
thenecessary knowledgeisavailable. It may be expressed asbeing that design activ-
ity which occurs when al the knowledge about the variables, objectives expressed
interms of those variabl es, constraintsexpressed in terms of those variablesand the
processes needed to find values for those variables, are all known a priori. In addi-
tion, routine design operates within a context which constrainsthe available ranges
of thevaluesfor thevariablesthrough good design practice. Noneof thisisto imply
that routine designis not complex or is even easy.

Non-routinedesign can be subdividedintotwo further groups: innovativedesign
and creative design. Innovative design, in computationa terms, can be defined as
that design activity which occurs when the context which constrains the available
ranges of thevaluesfor thevariabl esisjettisoned so that unexpected values become
possible. This produces two effects, onefor the design process and the other for the
product or artefact. In terms of the design process, variabl e values outside the usual
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ranges have the potential to introduce unexpected as well as unintended behaviours
which can only be brought into formal existence if additional knowledge capable
of describing them can be introduced. For example, in designing a structural beam
to carry aload across agap there are standard depth-to-span ratiosfor different ma-
terials. If the depth of the beam is made much larger than these then there is the
likelihood that the beam will buckle. However, if no buckling knowledgeis applied
to itsdesign (and buckling is not normally considered in the design of such beams)
then no buckling will befound. In terms of theartefact, innovativedesign processes
produce designs which recognisably belong to the same class as their routine pro-
genitorsbut are also ‘new’.

Creative design, in computational terms, can be defined as that design activity
which occurs when a new variable is introduced into the design. Processes which
carry out thisintroductionare called ‘ creative design processes . Such processes do
not guarantee that the artefact is judged to be crestive, rather these processes have
the potential to aid in the design of creative artefacts.

Theremainder of this chapter is concerned with creative design processes. Sec-
tion5 addressesaschemafor therepresentation of design knowledgewhich provides
aframework for what follows. Section 6 describes four creative design processes.
Section 7 concludes the chapter with a brief discussion on theimplicationsof these
Processes.

5. Design prototypes: A schema for design knowledge representation
5.1. OUTLINE

A design prototype (Gero, 1990) is a conceptua schemafor representing a class of
ageneralized grouping of elements, derived from like design cases, which provides
the basisfor the commencement and continuation of adesign. Design prototypesdo
this by bringing together in one schema all the requisite knowledge appropriate to
that design situation.

A designed artefact may be broadly interpreted in terms of the three variable
groups of function, structure and behaviour. Thelevel of specificity in each of these
depends on the granularity and level of abstraction being represented. Thus, a an
early stageof designingan appropriatedesign prototypemay contain primarily func-
tion and behaviour with littleinformation on structure. Whilst at alater time an ap-
propriate design prototypewill contain considerabledetail in the structuregroup. A
design prototype brings together these three groups and the rel ations between them
which includes processes for selecting and obtaining values for variables. Design
prototypesdraw from such sources as prototypetheory (Osherson and Smith, 1981)
and scripts (Schank and Abel son, 1975). Prototypetheory construes membership of
aconcept to be determined by its similarity to that concept’ s best exemplar. Design
prototypesusethenotionsof generalizationto producethe prototype. Althoughclosely
related to scripts, design prototypes include semantics and are not time sequence
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bound.

Although it is well recognized that there is no function in structure and vice-
versathat thereisno structurein function, human desi gn ex perience producesacon-
nection between function and structure. Once that connection is learned it is very
difficult to unlearn. Once the connection between behaviour and structure is made
and the connection between behaviour and function is made it forms the basis of
much of a designer’s knowledge. It is function, structure, behaviour and the rela-
tionships between them which form the foundation of the knowledge which must
be represented in order for specific design processes to be able to operate on them.
In natural discourse the distinction between function and structure sometimes be-
comes blurred to the extent that thelabel of the structure takeson the meaning of the
function. For example, the label of a particular copier ‘ Xerox’ is slowly taking on
the meaning of itsfunction, i.e. to copy. However, if reasoning isto occur in trans-
forming function to structure then a clear separation must be made between them
and between function, structure and behaviour.

5.2. STRUCTURE OF DESIGN PROTOTY PES

A design prototype separates function (£7), structure (.5, expected behaviour (B.)
andthestructure’ sactual behaviour ( B;). It also storesrel ational knowledgebetween
them (K, ) aswell as qualitative knowledge (K,), computational knowledge (/)
and context knowledge (K ).

Relational knowl edge providesand makes explicit the dependenciesbetween the
variablesin the function, structure, behaviour categories and can take theform of a
dependency network. Relational knowledge identifies the relevant variablesin go-
ing from function to behaviour, from behaviour to structure and in the inverse dir-
ection. Relational knowledge allows for the specialization of the information in a
design prototype to a specific design situation.

Qualitative knowledge (a subset of qualitative reasoning) is an adjunct to rela-
tiona knowledge and provides information on the effects of modifying values of
structure variables on behaviour and function. Included here are the normal ranges
of values of variables found in the generalization. Qualitative knowledge can be
used to guide any decision making process.

Computational knowledge is the quantitative counterpart of qualitative know-
ledge and specifies symbolic or mathematical relationships amongst the variables.
Computational knowledgeis used to determine values of variables.

Constraints appear in both the qualitative knowledge and computational know-
ledge. Constraints on function appear as expected behaviours, constraintson struc-
ture reduce the range of possibilities.

Context knowl edge i dentifies the exogenous variables for a design situation and
specifies that values for these variables must come from outside the design proto-
type, i.e. from the context (C').

In addition there isknowledge concerning the design prototypeitself (/). This
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comprises the typology (¢) of the design prototype which identifies the broad class
of which the design prototypeis a member, while partitions (p) represent the sub-
divisions of the concept represented by the prototype. Partitioning a design proto-
type supports viewing it from many perspectives. Once the partition or combina-
tion of partitionsis selected only information pertaining to these partitions will be
made available. In this sense, partitioning of design prototypes ultimately reduces
the space of potential designs. Finally, the structure has to be represented in a ca-
nonical form standard for each domain. Thisrepresentation isthedesign description
(D). Often the representation isin the form of drawings.

A design prototype, P, may be represented symbolically as

P=(FB,S D K,C)

where B = behaviour (Bs, B.)
B. = expected behaviour
Bs; = structure'sactua behaviour
C = context
D = designdescription
F = function
K = knowledge (K,, K,, K., K., K))
K. = computational knowledge
K., = context knowledge
K, = prototypeknowledge (¢, p)
K, = qualitativeknowledge
K, = reationa knowledge
D = partition
S = structure
t = typology

In summary, a design prototype brings together all the requi site knowledge ap-
propriate to a specific design situation. Although the contents of a design prototype
are developed by individual designers, like-minded designers will tend to agree on
its general contents. Thus, a design prototype concerned with initial design of a
houseis likely to include such notions as style, location on site, orientation, exist-
ence of spaces based on their functional activities, building planning codes, and so
on. A designer will draw on many design prototypes during the course of devel op-
ing any design.

Whether a design prototype is used as aformal schema for compiled or gener-
alised knowledge or whether it isused as aconceptual schema, itsutility liesin the
framework it provides. Thisframework is equally useful to structure design cases
or episodes.
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6. Creative design processes

Five cresative design processes with their computational analogs will be discussed.
Thesefive are:

1. combination

2. mutation

3. anaogy

4. first principles

5. emergence

6.1. COMBINATION

Combination as a creative design process involves the addition of two design pro-
totypes or some subset of them (Figure 1). It can occur at the function, behaviour
or structurelevel, i.e.

Fnew —Lexistingl N Fexisting?
Bnew:Bewistingl N Bewisting?
Snew :Sel’istingl N Sexisting?

Fig. 1. A graphica example of design using combination (after Rosenman and Gero, 1992)

However, the implications of each of these is different. Combining functions
alone does not necessarily imply that new behaviours have to be produced since
the new set of functions might be achieved with the existing behaviours. Although,
in general, new behaviourswill be expected to produce the new functions. Thus,

Fnew N {gexisting
new

where — = implies. Similarly, combining behaviours alone al so does not necessar-

ily imply either new structures or new functions although generally it will. Thus,

Bnew N {gel’isting
new
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Bnew N {?eacisting
new

Similarly with structure. Thus,

Bexistin
Snew — {B g
new

Normally, structuresare combined to produce anew structur e sincethe structure
isthebasisof theartefact. More precisely, the structurei sdescribed by aset of struc-
ture variables, SV, which describe the e ements of the structure and their relation-
ships. Thus, if S isrepresented by aset of structurevariables{SVi, SV, ..., SVi,}
and S; isrepresented by {SV3, SVaa, ..., SVs,, }, combinationof Sy and .S could
occur when either some of S'V; are substituted by S'V5; or are augmented by them.

For example

SVpew = {SV11, SVig, .., SVo;, SVap, o, SV}

If there is only structure variable substitution then this matches the notions of
crossover in genetic algorithms (Goldberg, 1989). Using the genetic metaphor from
natural biology, structure is divided into two levels: genomes or genotypes which
are composed of genes, and phenotypes which are the expressions of those genes
as an artefact. The genomes constitutearecipe for the production of the artefact. It
is possible to combine the genes of two different genotypesto produce new phen-
otypes which potentially improve the behaviours of the phenotypes represented by
the combined genotype. Therepresentation of the‘design genes’ isaresearch topic.
Current work at the University of Sydney makes use of shape transformation rules
and shape grammars (Stiny, 1980). Resultant forms (phenotypes) are produced by
an ordered execution of the shape rules. One approach isto code the potential order
of the rules as the genes and to evolve an order which, when applied over therules,
improves the resulting behaviours of the phenotype.

The effect of combination isthe introduction of anew variable into the original
structure and hence combination meets the formal definition of being a creative
design process.

6.2. MUTATION

Murtation is the ateration of a structure variable by an external agent (Figure 2). It
draws on the genetic metaphor aso in that it is the genes that are mutated not the
phenotype. In design the genes that produce the structure as artefact are the most
interesting to mutate.

Murtation can be modelled as

Snew =¥m (Sexisting)
or SVnew:@Qm (Svel’isting)
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Fig. 2. A graphica example of design using mutation (after Rosenman and Gero, 1992)

where ¢,,, = amutation operation.

Of interest in creative designisthe use of mutation to produce new variables (Jo
and Gero, 1991). Typical mutation operationsincludethea gebrai c and set theoretic
operators. Thus, division, for example, dividesasinglevariableintotwo. Such oper-
ations can affect the resultant topology of the artefact. Mutation operators fal into
two classes: homogeneous and heterogeneous. Homogeneous operators are those
that produce new variables of the same class as the variabl e being mutated. For ex-
ample, alengthis mutated into two lengths. Heterogeneous operators are those that
produce new variables of a different class to the variable being mutated. For ex-
ample, alength ismutated into alength and an angle. Heterogeneous mutations re-
quire additional knowledge to incorporate them into the existing design prototype
(Gero and Maher, 1991). Since mutation produces new structure variablesit meets
the formal definition of being a creative design process. Mutation need not be lim-
ited to structure variables, however. It is possibleto conceive of mutation being ap-
plied to behaviour variables also to produce new behaviours which can be inter-
preted as new functions. This a so meets the definition of a creative design process.
In natural evolution the introduction of anew behaviour is a significant event.

6.3. ANALOGY

Ana ogy isdefined as the product of processesin which specific coherent aspects of
the conceptual structure of one problem or domain are matched with and transferred
to another problem or domain (Figure 3). Based on the nature of the knowledge
transferred to the new problem, analogical reasoning processes can be placed into
one of two classes: transformationa analogy and derivational analogy (Carbonell,
1983, 1986).

Transformational anal ogy adaptsthe structureof apast sol utionto the new prob-
lem. Derivational anal ogy appliesthe successful problem solving processto the pro-
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Fig. 3. A graphical example of design using analogy (after Rosenman and Gero, 1992)

cess of producing a solution of the new problem.

Anal ogiescan operate on thefunction, behaviour or structureof knowledge. Ana
logy requires atarget and a source. Most anal ogies are drawn between situationsin
the same domain although interesting anal ogies can be drawn between situationsin
different domains (Qian and Gero, 1992).

Thus,

Btarget =Ta (Bsource)

(Fsource)
I(target:Ta (Bsource)
Starget =Ta (Ssource)

Ftarget =Tq

where 7, = an anaogical operation.

As with combination as a creative design process the implications of each of
these is different. The effects of anew Fiq,get; Biargetr OF Starger are the same as
for combination. The effect of anew K,,,.: can be described as

- Fewistin
I(target — {F g
new

I(new_> {Bexisting
Bew

i Seisti
I(new%{ existing
Snew

Thus, new target variables do not guarantee novel target results although it is most
likely. The effect of analogy on structureis the introduction of a new variable into
the original structure. The effect of analogy on function, behaviour and knowledge
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may be the introduction of a new variable into the original structure. Hence ana-
logy meets theformal definition of being a creative design process. Computational
model sof analogy arewell devel oped, particul arly for transformational anal ogy and
these have been used in design (Qian and Gero, 1992).

6.4. FIRST PRINCIPLES

First principlesrelies on causal, qualitative or computational knowledge used ab-
ductively to relate function to behaviour and behaviour to structure without the use
of compiled knowledge (Figure 4) (Cagan and Agogino, 1987).

Fig. 4. A graphical example of design using first principles (after Rosenman and Gero,
1992)

Thus, first principles can be modelled as
S = 1,(B)

where 7, = abductive knowledge-based transformation.

Design using first principles is the computational process that is the least de-
veloped because of the difficulty in relating behaviour to structure without the use
of compiled knowledge. However, the division of the problem into basic independ-
ent behavioursisthe crux of theideaso that the compiled knowledge can be utilised
at thelevel of indivisiblebehaviours. Sincethe useof first principlesintroduces new
variablesit meetsthe formal definition of acreative design process. Computational
models of first principles processes generdly rely on the use of qualitative physics
and have been used in design (Williams, 1991).

6.5. EMERGENCE

Emergence is the process whereby extensional properties of a structure are recog-
nised beyond its intentional ones (Mitchell, 1992), (Figures 5 and 6).
Emergence of structure can be modelled as

Se = 7(9)

where S =intentional structure
S. = emergent structure
T. = emergence transformation by substitution
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Fig. 5. Triangles 1, 2 and 3 are drawn (intentiona shapes)

Fig. 6. Some emergent shapes (extensional shapes) inferred from the original intentional
shapesin Figure5.

Design using emergence is computationally still being researched. Since emer-
genceisoften observedin the behaviour of designersit playsapotentialy important
rolein design. It can be characterised as replacing the representation of a structure
by another representation—that is, deleting one or many structure variablesand re-
placing them with others. Since the use of emergence introduces new variables it
meets the formal definition of a creative design process.

The computational model s of emergence are only now being devel oped and rely
on separating the representation of geometry and topology from a symbolic rep-
resentation from which geometry can be inferred. The effect of thisisto break the
nexus between intentional shapes and afixed representation from which only those
shapes can be found.
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7. Discussion

Artificial intelligence, which isa particular paradigmati c way of examining and ar-
ticul ating knowledge, provides arich context in which to explore design as a set of
processes with their computational analogs. The view taken is that design needsto
be understood prior to the devel opment of design support tools. Whilst the artificial
intelligenceparadigm cannot claim to providean ‘answer’ to what designis, it does
provide one framework for expeditious exploration particularly of creative design
Processes.

Most of the effort to date has been concerned with routine design since that is
both better understood than non-routine and covers the majority of design in prac-
tice. However, concepts from artificial intelligence can be used to articulate non-
routine design and in particular creative design and some of its related processes.
Thisis still very much aresearch area so no claims can be made about progress at
the tool making level. However, the understanding of creative design characterised
inthemanner described inthischapter isadvanced through the framework outlined.
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