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1. Introduction

Artificial intelligence has provided a rich set of concepts for design researchers to
work with. It has extended and considerably elaborated ideas from the design meth-
ods movement and from systems theory. There are three views that can be taken
about artificial intelligence in design. The first is that it provides a framework in
which to explore ideas about design; the second is that it provides a schema to model
human designing; and the third is that it has the means to allow the development of
tools for human designers. An extension of the third view is that these tools point
to ways to automate certain processes in design.

One of the fundamental concepts of artificial intelligence which finds favour with
design researchers is the externalisation of knowledge. This has led to the two major
research concerns:

representation of design knowledge; and
processes for designing

2. Representation of design knowledge

The three main symbolic knowledge representation approaches of rules, semantic
networks and frames were soon augmented by a sub-symbolic approach based on
neural networks. These four still remain the base knowledge representation approaches.
However, meta-symbolic or conceptual approaches which could be implemented in
these base approaches soon began to be developed. These approaches aimed to rep-
resent important conceptual relationshipswhich made up design knowledge (Coyne
et al., 1990).

Orthogonal to these issues is that of compiled or generalised design knowledge
versus case or episodic design knowledge. In compiled knowledge a set of design
cases is generalised so that an abstraction of their characteristics is produced. The
generalised knowledge can be instantiated for use in producing designs which are
similar to the original set of designs. Episodic design knowledge keeps individual
design cases separately without generalising them.� This chapter is based in part on a presentation made to EuropIA’91.
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3. Processes for designing

Artificial intelligencebrought with it a large number of processes applicable to prob-
lem solving tasks. If design could be cast as some sort of problem solving task then
it could use the array of available processes. Most prominent amongst these pro-
cesses are rule chaining, constraint-based processing and planning. Each has been
used by design researchers to model design processes (Coyne et al., 1990).

Rule chaining forms the basis of many expert systems. The expert systems tech-
nology readily lends itself to a variety of design related tasks and continues to be ex-
plored. However, there is a recognition that the synthesis activity in design is more
akin to abduction in logic than it is to deduction whereas rule chaining is more akin
to deduction. Backward chaining, it is suggested, matches abduction. This is likely
to be so only if the knowledge encoded in the rules is represented abductively.

Constraint-based processes lend themselves readily as design processes since
designing involves formulating requirements. These requirements may be treated
as either objectives or goals which point to the directions of improving performance
or behaviour or as constraints which restrict the values of the variables. However,
the underlying assumptions behind most of the processes are not necessarily in ac-
cord with those in design. For example, constraint-based systems assume a fixed
world in which to operate whereas part of designing involves changing the world.

Planning is an attractive concept drawn from artificial intelligence and is related
to constraint propagation. Its success relies on the existence of fixed but divisible
goals. Although each of these processes may be used within designing,none of them
characterises design itself as a process. Design is seen as being more complex than
any or all of these.

4. Routine and non-routine design

It is convenient to characterise design as routine or non-routine. Routine design, in
computational terms, can be defined as that design activity which occurs when all
the necessary knowledge is available. It may be expressed as being that design activ-
ity which occurs when all the knowledge about the variables, objectives expressed
in terms of those variables, constraints expressed in terms of those variables and the
processes needed to find values for those variables, are all known a priori. In addi-
tion, routine design operates within a context which constrains the available ranges
of the values for the variables through good design practice. None of this is to imply
that routine design is not complex or is even easy.

Non-routine design can be subdivided into two further groups: innovative design
and creative design. Innovative design, in computational terms, can be defined as
that design activity which occurs when the context which constrains the available
ranges of the values for the variables is jettisoned so that unexpected values become
possible. This produces two effects, one for the design process and the other for the
product or artefact. In terms of the design process, variable values outside the usual
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ranges have the potential to introduce unexpected as well as unintended behaviours
which can only be brought into formal existence if additional knowledge capable
of describing them can be introduced. For example, in designing a structural beam
to carry a load across a gap there are standard depth-to-span ratios for different ma-
terials. If the depth of the beam is made much larger than these then there is the
likelihood that the beam will buckle. However, if no buckling knowledge is applied
to its design (and buckling is not normally considered in the design of such beams)
then no buckling will be found. In terms of the artefact, innovative design processes
produce designs which recognisably belong to the same class as their routine pro-
genitors but are also ‘new’.

Creative design, in computational terms, can be defined as that design activity
which occurs when a new variable is introduced into the design. Processes which
carry out this introduction are called ‘creative design processes’. Such processes do
not guarantee that the artefact is judged to be creative, rather these processes have
the potential to aid in the design of creative artefacts.

The remainder of this chapter is concerned with creative design processes. Sec-
tion 5 addresses a schema for the representation of design knowledge which provides
a framework for what follows. Section 6 describes four creative design processes.
Section 7 concludes the chapter with a brief discussion on the implications of these
processes.

5. Design prototypes: A schema for design knowledge representation

5.1. OUTLINE

A design prototype (Gero, 1990) is a conceptual schema for representing a class of
a generalized grouping of elements, derived from like design cases, which provides
the basis for the commencement and continuation of a design. Design prototypes do
this by bringing together in one schema all the requisite knowledge appropriate to
that design situation.

A designed artefact may be broadly interpreted in terms of the three variable
groups of function, structure and behaviour. The level of specificity in each of these
depends on the granularity and level of abstraction being represented. Thus, at an
early stage of designingan appropriate design prototypemay contain primarily func-
tion and behaviour with little information on structure. Whilst at a later time an ap-
propriate design prototype will contain considerable detail in the structure group. A
design prototype brings together these three groups and the relations between them
which includes processes for selecting and obtaining values for variables. Design
prototypes draw from such sources as prototype theory (Osherson and Smith, 1981)
and scripts (Schank and Abelson, 1975). Prototype theory construes membership of
a concept to be determined by its similarity to that concept’s best exemplar. Design
prototypesuse the notionsof generalization to produce the prototype.Althoughclosely
related to scripts, design prototypes include semantics and are not time sequence
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bound.
Although it is well recognized that there is no function in structure and vice-

versa that there is no structure in function, human design experience produces a con-
nection between function and structure. Once that connection is learned it is very
difficult to unlearn. Once the connection between behaviour and structure is made
and the connection between behaviour and function is made it forms the basis of
much of a designer’s knowledge. It is function, structure, behaviour and the rela-
tionships between them which form the foundation of the knowledge which must
be represented in order for specific design processes to be able to operate on them.
In natural discourse the distinction between function and structure sometimes be-
comes blurred to the extent that the label of the structure takes on the meaning of the
function. For example, the label of a particular copier ‘Xerox’ is slowly taking on
the meaning of its function, i.e. to copy. However, if reasoning is to occur in trans-
forming function to structure then a clear separation must be made between them
and between function, structure and behaviour.

5.2. STRUCTURE OF DESIGN PROTOTYPES

A design prototype separates function (F ), structure (S), expected behaviour (Be)
and the structure’s actual behaviour (Bs). It also stores relational knowledge between
them (Kr) as well as qualitative knowledge (Kq), computational knowledge (Kc)
and context knowledge (Kct).

Relationalknowledge provides and makes explicit the dependencies between the
variables in the function, structure, behaviour categories and can take the form of a
dependency network. Relational knowledge identifies the relevant variables in go-
ing from function to behaviour, from behaviour to structure and in the inverse dir-
ection. Relational knowledge allows for the specialization of the information in a
design prototype to a specific design situation.

Qualitative knowledge (a subset of qualitative reasoning) is an adjunct to rela-
tional knowledge and provides information on the effects of modifying values of
structure variables on behaviour and function. Included here are the normal ranges
of values of variables found in the generalization. Qualitative knowledge can be
used to guide any decision making process.

Computational knowledge is the quantitative counterpart of qualitative know-
ledge and specifies symbolic or mathematical relationships amongst the variables.
Computational knowledge is used to determine values of variables.

Constraints appear in both the qualitative knowledge and computational know-
ledge. Constraints on function appear as expected behaviours, constraints on struc-
ture reduce the range of possibilities.

Context knowledge identifies the exogenous variables for a design situation and
specifies that values for these variables must come from outside the design proto-
type, i.e. from the context (C).

In addition there is knowledge concerning the design prototype itself (Kp). This
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comprises the typology (t) of the design prototype which identifies the broad class
of which the design prototype is a member, while partitions (p) represent the sub-
divisions of the concept represented by the prototype. Partitioning a design proto-
type supports viewing it from many perspectives. Once the partition or combina-
tion of partitions is selected only information pertaining to these partitions will be
made available. In this sense, partitioning of design prototypes ultimately reduces
the space of potential designs. Finally, the structure has to be represented in a ca-
nonical form standard for each domain. This representation is the design description(D). Often the representation is in the form of drawings.

A design prototype, P, may be represented symbolically as

P = (F;B; S;D;K;C)
where B = behaviour (Bs; Be)Be = expected behaviourBs = structure’s actual behaviourC = contextD = design descriptionF = functionK = knowledge (Kr; Kq; Kc; Kct; Kp)Kc = computational knowledgeKct = context knowledgeKp = prototype knowledge (t; p)Kq = qualitative knowledgeKr = relational knowledgep = partitionS = structuret = typology

In summary, a design prototype brings together all the requisite knowledge ap-
propriate to a specific design situation. Although the contents of a design prototype
are developed by individual designers, like-minded designers will tend to agree on
its general contents. Thus, a design prototype concerned with initial design of a
house is likely to include such notions as style, location on site, orientation, exist-
ence of spaces based on their functional activities, building planning codes, and so
on. A designer will draw on many design prototypes during the course of develop-
ing any design.

Whether a design prototype is used as a formal schema for compiled or gener-
alised knowledge or whether it is used as a conceptual schema, its utility lies in the
framework it provides. This framework is equally useful to structure design cases
or episodes.
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6. Creative design processes

Five creative design processes with their computational analogs will be discussed.
These five are:

1. combination
2. mutation
3. analogy
4. first principles
5. emergence

6.1. COMBINATION

Combination as a creative design process involves the addition of two design pro-
totypes or some subset of them (Figure 1). It can occur at the function, behaviour
or structure level, i.e.Fnew =Fexisting1 \ Fexisting2Bnew=Bexisting1 \ Bexisting2Snew =Sexisting1 \ Sexisting2
Fig. 1. A graphical example of design using combination (after Rosenman and Gero, 1992)

However, the implications of each of these is different. Combining functions
alone does not necessarily imply that new behaviours have to be produced since
the new set of functions might be achieved with the existing behaviours. Although,
in general, new behaviours will be expected to produce the new functions. Thus,Fnew ! �BexistingBnew
where!= implies. Similarly, combining behaviours alone also does not necessar-
ily imply either new structures or new functions although generally it will. Thus,Bnew ! �SexistingSnew
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Similarly with structure. Thus,Snew ! �BexistingBnew

Normally, structures are combined to produce a new structure since the structure
is the basis of the artefact. More precisely, the structure is described by a set of struc-
ture variables, SV , which describe the elements of the structure and their relation-
ships.Thus, ifS1 is represented by a set of structure variables fSV11; SV12; : : : ; SV1ng
andS2 is represented by fSV21; SV22; : : : ; SV2mg, combination of S1 andS2 could
occur when either some of SV1i are substituted by SV2j or are augmented by them.

For exampleSVnew = fSV11; SV12; : : : ; SV2j; SV2k; : : : ; SV1ng
If there is only structure variable substitution then this matches the notions of

crossover in genetic algorithms (Goldberg, 1989). Using the genetic metaphor from
natural biology, structure is divided into two levels: genomes or genotypes which
are composed of genes, and phenotypes which are the expressions of those genes
as an artefact. The genomes constitute a recipe for the production of the artefact. It
is possible to combine the genes of two different genotypes to produce new phen-
otypes which potentially improve the behaviours of the phenotypes represented by
the combined genotype. The representation of the ‘design genes’ is a research topic.
Current work at the University of Sydney makes use of shape transformation rules
and shape grammars (Stiny, 1980). Resultant forms (phenotypes) are produced by
an ordered execution of the shape rules. One approach is to code the potential order
of the rules as the genes and to evolve an order which, when applied over the rules,
improves the resulting behaviours of the phenotype.

The effect of combination is the introduction of a new variable into the original
structure and hence combination meets the formal definition of being a creative
design process.

6.2. MUTATION

Mutation is the alteration of a structure variable by an external agent (Figure 2). It
draws on the genetic metaphor also in that it is the genes that are mutated not the
phenotype. In design the genes that produce the structure as artefact are the most
interesting to mutate.

Mutation can be modelled asSnew ='m(Sexisting)or SVnew='m(SVexisting)
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Fig. 2. A graphical example of design using mutation (after Rosenman and Gero, 1992)

where 'm = a mutation operation.
Of interest in creative design is the use of mutation to produce new variables (Jo

and Gero, 1991). Typical mutation operations include the algebraic and set theoretic
operators. Thus, division, for example, divides a single variable into two. Such oper-
ations can affect the resultant topology of the artefact. Mutation operators fall into
two classes: homogeneous and heterogeneous. Homogeneous operators are those
that produce new variables of the same class as the variable being mutated. For ex-
ample, a length is mutated into two lengths. Heterogeneous operators are those that
produce new variables of a different class to the variable being mutated. For ex-
ample, a length is mutated into a length and an angle. Heterogeneous mutations re-
quire additional knowledge to incorporate them into the existing design prototype
(Gero and Maher, 1991). Since mutation produces new structure variables it meets
the formal definition of being a creative design process. Mutation need not be lim-
ited to structure variables, however. It is possible to conceive of mutation being ap-
plied to behaviour variables also to produce new behaviours which can be inter-
preted as new functions. This also meets the definition of a creative design process.
In natural evolution the introduction of a new behaviour is a significant event.

6.3. ANALOGY

Analogy is defined as the product of processes in which specific coherent aspects of
the conceptual structure of one problem or domain are matched with and transferred
to another problem or domain (Figure 3). Based on the nature of the knowledge
transferred to the new problem, analogical reasoning processes can be placed into
one of two classes: transformational analogy and derivational analogy (Carbonell,
1983, 1986).

Transformational analogy adapts the structure of a past solution to the new prob-
lem. Derivational analogy applies the successful problem solvingprocess to the pro-



COMPUTATIONAL MODELS OF CREATIVE DESIGN PROCESSES 17

Fig. 3. A graphical example of design using analogy (after Rosenman and Gero, 1992)

cess of producing a solution of the new problem.
Analogies can operate on the function, behaviouror structure of knowledge.Ana-

logy requires a target and a source. Most analogies are drawn between situations in
the same domain although interesting analogies can be drawn between situations in
different domains (Qian and Gero, 1992).

Thus,Btarget=�a(Bsource)Ftarget =�a(Fsource)Ktarget=�a(Bsource)Starget =�a(Ssource)
where �a = an analogical operation.

As with combination as a creative design process the implications of each of
these is different. The effects of a new Ftarget; Btarget or Starget are the same as
for combination. The effect of a new Ktarget can be described asKtarget ! �FexistingFnewKnew ! �BexistingBnewKnew ! �SexistingSnew
Thus, new target variables do not guarantee novel target results although it is most
likely. The effect of analogy on structure is the introduction of a new variable into
the original structure. The effect of analogy on function, behaviour and knowledge
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may be the introduction of a new variable into the original structure. Hence ana-
logy meets the formal definition of being a creative design process. Computational
models of analogy are well developed, particularly for transformational analogy and
these have been used in design (Qian and Gero, 1992).

6.4. FIRST PRINCIPLES

First principles relies on causal, qualitative or computational knowledge used ab-
ductively to relate function to behaviour and behaviour to structure without the use
of compiled knowledge (Figure 4) (Cagan and Agogino, 1987).

Fig. 4. A graphical example of design using first principles (after Rosenman and Gero,
1992)

Thus, first principles can be modelled asS = �k(B)
where �k = abductive knowledge-based transformation.

Design using first principles is the computational process that is the least de-
veloped because of the difficulty in relating behaviour to structure without the use
of compiled knowledge. However, the division of the problem into basic independ-
ent behaviours is the crux of the idea so that the compiled knowledge can be utilised
at the level of indivisible behaviours. Since the use of first principles introduces new
variables it meets the formal definition of a creative design process. Computational
models of first principles processes generally rely on the use of qualitative physics
and have been used in design (Williams, 1991).

6.5. EMERGENCE

Emergence is the process whereby extensional properties of a structure are recog-
nised beyond its intentional ones (Mitchell, 1992), (Figures 5 and 6).

Emergence of structure can be modelled asSe = �e(S)
where S = intentional structureSe = emergent structure�e = emergence transformation by substitution
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Fig. 5. Triangles 1, 2 and 3 are drawn (intentional shapes)

Fig. 6. Some emergent shapes (extensional shapes) inferred from the original intentional
shapes in Figure 5.

Design using emergence is computationally still being researched. Since emer-
gence is often observed in the behaviourof designers it plays a potentially important
role in design. It can be characterised as replacing the representation of a structure
by another representation—that is, deleting one or many structure variables and re-
placing them with others. Since the use of emergence introduces new variables it
meets the formal definition of a creative design process.

The computational models of emergence are only now being developed and rely
on separating the representation of geometry and topology from a symbolic rep-
resentation from which geometry can be inferred. The effect of this is to break the
nexus between intentional shapes and a fixed representation from which only those
shapes can be found.
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7. Discussion

Artificial intelligence, which is a particular paradigmatic way of examining and ar-
ticulating knowledge, provides a rich context in which to explore design as a set of
processes with their computational analogs. The view taken is that design needs to
be understood prior to the development of design support tools. Whilst the artificial
intelligence paradigm cannot claim to provide an ‘answer’ to what design is, it does
provide one framework for expeditious exploration particularly of creative design
processes.

Most of the effort to date has been concerned with routine design since that is
both better understood than non-routine and covers the majority of design in prac-
tice. However, concepts from artificial intelligence can be used to articulate non-
routine design and in particular creative design and some of its related processes.
This is still very much a research area so no claims can be made about progress at
the tool making level. However, the understanding of creative design characterised
in the manner described in this chapter is advanced through the framework outlined.
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